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The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and
the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth,Medical decision
support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support
systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems
consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference
mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms
approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and
so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those
methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the
ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system
is compared on various data sets.

1. Introduction

Adecision support systems (DSSs) is a computer-based infor-
mation system that supports organizational and business
decisionmaking activities.Medical decision support systems,
which are variants of decision support systems, are intelligent
software systems that are designed to improve clinical diag-
nosis system and to support the healthcare personnel in their
decision. Intelligent decision support systems use artificial
intelligence system techniques to support the healthcare
personnel for selecting the best method for both diagnosis
and also for treatment especially when the information about
the treatment is incomplete or uncertain. These systems
can work in both active and passive modes. When they
are in passive mode, they will be used only when they are

required. When they are in active mode, they will be making
recommendations as well. When we look at the approaches
of the inference mechanisms, which constitute the most
important part of themedical decision support systems, these
approaches can be divided into two parts such as rule-based
systems and data-driven systems. Rule-based systems are
constructed on the knowledge base, which are formed by
if-then structures. In this structure, the information base is
formed by the rules. The operation logic of the system is
to find relevant rules on basis of the available information,
operate them, and continue to search for a rule until a result
has been obtained.

Those rule-based systems have some strong features as
well as some disadvantages. For example, the performance
of the system decreases and the maintenance of the system
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becomes difficult in case of the number of the rules being
large enough. The examples of the medical decision support
systems are MYCIN [1, 2], TRAUMAID [3], and RO2SE [4].

Data-driven systems, on the other hand, operate in large
data stacks and support the decision making process using
data mining methods. Several studies can be found on
literature about data-driven systems. Some of these studies
can be referred as Bayes networks [5], rough sets [6], and
artificial neural networks [7] which are the examples of such
studies. Data-driven systems are more flexible compared to
the rule-based systems and they have the ability to learn by
themselves.

In our previous study [8] ALARM network structure
was used for the generated synthetic data on the same data
set. When the results are examined in that study, it can
be seen that the rule based method is more successful in
the rate of 25% than the “Bayesian network based” method
in all dimensions of the data sets. Besides, when both of
thesemethods are combined and utilized together the success
rate rises to 80%; that is, much higher rates are acquired in
comparison to the values obtained by applying thesemethods
individually.

In this study, the accuracy of 11machine learningmethods
which can be used in the inferencemechanism of themedical
decision support systems is carried out on various data sets.

2. Decision Support Systems

Decision support systems (DSSs) are interactive computer-
based systems or subsystems that are designed to help
decision makers to decide and complete the decision process
operations and also to determine and solve problems using
communication technologies, information, documents, and
models. They provide data storage and retrieval but enhance
the traditional information access and retrieval functions
with support for model building andmodel-based reasoning.
They support framing, modeling, and problem solving. Typ-
ical application areas of DSSs are healthcare, management,
and planning in business, the military, and any area in
which management will encounter complex decision sit-
uations. DSSs are typically used for strategic and tactical
decisions faced by upper-level management-decisions with a
reasonably low frequency and high potential consequences,
in which the time taken for thinking through and modeling
the problem pays off generously in the long run [10].

Generally, decision support systems should include the
following features.

(i) DSSs are used to support the decisionmaking process
not to accomplish operational processes.

(ii) DSSs should support each phase of the decision
making process.

(iii) DSSs support the half or full configured decision
environments.

(iv) DSSs support each management levels from bottom
to top.

(v) DSSs have interactive and user-friendly interfaces.
(vi) DSSs use data and model as a basis.
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Figure 1: The main structure of decision support system.

Decision support systems and relevant operation methods
can be divided into four main subjects. These subjects are
called as inference mechanism, knowledge base, explanation
module, and active memory. Inference mechanism consti-
tutes the basis of decision support systems. In this part,
the results are generated in consideration of the current
information and/or the information that was entered to the
system by the user. The generated results may be a decision
or they may include guiding information. The second part
is the knowledge base which holds the expert information
used when the decision support system is making inference.
The active memory part holds the information, which is
supplied by the user and/or current inference processes. Also,
explanation module, which may not be present on each
decision support system, generates an accuracy validation
and explanation in consideration of the results generated by
the inference mechanism and knowledge base [11]. Those
subjects and their relations are shown in Figure 1.

In rule-based systems, the knowledge base is formed
by the rule group. The results are obtained for various
circumstances on the problem relevant to the subject, using
the generated rules.The rules forming the knowledge base are
prepared by if-then structure.The content of an inference sys-
tem, which is developed using rule-based methods, consists
of the rules generated by if-then, the facts, and an interpreter
that interprets the facts using the rules in the system [12].

There are two methods used to process the rules in the
rule-based methods. These methods are forward chaining
and backward chaining. In forward chaining method, the
results are obtained using the preliminary facts with the help
of the rules. In backward chaining method, it is started with
a hypothesis (or target) and the rules, which will reach that
hypothesis, are searched.The reached rules generate subrules
and the process continues in this way.

In cases, which the result is estimated and this estimation
should be verified, backward chainingmethod should be used
instead of forward chaining method.

In order to generate the rule set in rule-based methods
of inference systems, people who are experienced on the
problem should contribute to the design of the system. This
process usually proceeds with the help of experienced people
in the rule development phase by determining the faults and
defects in the estimations and using the planned system as a
reference [13].

The designer usually develops simple interfaces for
experts to contribute in the development phase. In the begin-
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ning of the process, the experts start testing the systems as
if they will use the system for operational purposes. The
questions asked to the experts in the scope of the limited
information of the systems are answered by the same experts.

The aim is to test the system in order to improve it. The
expert who answered the questions evaluates the system by
looking at the results generated by the system and then tries
to correct the defined defects and faults by using the rule
development tool.The rule set in the inference systems,which
use rule-based methods, can be generated by the expert on
the problem.

Data-driven systems examine large data pools in orga-
nizations. These systems usually work with the systems that
collect data like data warehouse, and so forth. Data-driven
systems take place in decision making process with online
analytical processing (OLAP) and data mining methods.
These systems work on very large datasets. The relations in
these datasets are analyzed electronically and make predic-
tions for future data relations. Data-driven systems use the
bottom-upprocedure to explain the characteristics of the data
system [14].

3. Machine Learning Algorithms

Machine learning is about learning to make predictions
from example of desired behavior or past observations.
Learning methods have found numerous applications in per-
formancemodeling and evaluation [15].The basic definitions
of machine learning are given below.

3.1. Basic Definitions. Data points called examples are typi-
cally described by their values on some set of features. The
space that examples live in is called the feature space and is
typically denoted by𝑋.

The label of an example will be predicted. The space of
possible labels is denoted by 𝑌.

A learning problem is some unknown data distribution𝐷
over 𝑋 × 𝑌, coupled with a loss function 𝑙(𝑦, 𝑦


) measuring

the loss of predicting 𝑦 when the true label is 𝑦.
A learning algorithm takes a set of labeled training

examples of the form (𝑥, 𝑦) ∈ 𝑋×𝑌 and produces a predictor
𝑓 : 𝑋 → 𝑌.The goal of the algorithm is to find𝑓minimizing
the expected loss �⃗�

(𝑥,𝑦)∼𝐷
𝑙(𝑓(𝑥), 𝑦).

There are two base learning problems, defined for any
feature space 𝑋. In binary classification, examples are cate-
gorized into two categories [15].

Definition 1. A binary classification problem is defined by a
distribution 𝐷 over 𝑋 × 𝑌, where 𝑌 = {0, 1}. The goal is to
find a classifier ℎ : 𝑋 → 𝑌minimizing the error rate on𝐷:

𝑒 (ℎ, 𝐷) =
→Pr
(𝑥,𝑦)∼𝐷

[ℎ (𝑥) ̸= 𝑦] . (1)

By fixing an unlabeled example 𝑥 ∈ 𝑋, a conditional dis-
tribution𝐷 | 𝑥 over 𝑌 is found.

Regression is another basic learning problem, where the
goal is to predict a real-valued label 𝑌.

The loss function typically used in regression is the
squared error loss between the predicted and actual labels.

Definition 2. A regression problem is defined by a distribution
𝐷 over 𝑋 × R. The goal is to find a function 𝑓 : 𝑋 → R
minimizing the squared loss [15]:

𝑙 (𝑓,𝐷) = �⃗�
(𝑥,𝑦)∼𝐷

(𝑓 (𝑥) − 𝑦)
2

. (2)

The machine learning algorithms that are used in the study
will be explained below.

3.2. C4.5 Decision Tree. A decision tree is basically a classifier
that shows all possible outcomes and the paths leading to
those outcomes in the form of a tree structure. Various
algorithms for inducing a decision tree are described in
existing literature, for example, CART (classification and
regression tress) [16], OC1 [17], ID3, and C4.5 [18]. These
algorithms build a decision tree recursively by partitioning
the training data set into successively purer subsets [19].

C4.5 [18] is an algorithm used to generate a decision tree.
C4.5 uses the fact that each attribute of the data can be used
to make a decision that splits the data into smaller subsets.
C4.5 examines the normalized information gain (difference
in entropy) that results from choosing a feature for splitting
the data [20]

SplitInfo
𝑥
𝑇 = −

𝑛

∑

𝑖=1

𝑇
𝑖

𝑇
log
2

𝑇
𝑖

𝑇
,

Gain Ratio
𝑥
(𝑇) =

Gain
𝑥
(𝑇)

SplitInfo
𝑥
𝑇
,

(3)

where SplitInfo
𝑥
𝑇 represents the potential information pro-

vided by dividing dataset, 𝑇, into 𝑛 partition corresponding
to the outputs of attributes 𝑥, and Gain

𝑥
(𝑇) is howmuch gain

would be achieved by branching on 𝑥.

3.3. Multilayer Perceptron (MLP). Multilayer perceptron
(MLP) [21] also referred to as multilayer feed forward neural
networks is the most used and popular neural network
method. It belongs to the class of supervised neural network.
The MLP topology consists of three sequential layers of
processing nodes: an input layer, one or more hidden layers,
and an output layer which produces the classification results.

A MLP structure is shown in Figure 2.
The principle of the network is that when data are

presented at the input layer, the network nodes perform
calculations in the successive layers until an output value
is obtained at each of the output nodes. This output signal
should be able to indicate the appropriate class for the input
data. A node inMLP can bemodeled as one or more artificial
neurons, which computes the weighted sum of the inputs
at the presence of the bias and passes this sum through
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Figure 2: Structure of a multilayer perceptron [7].

the nonlinear activation function. This process is defined as
follows [7]:

𝜇
𝑗
=

𝑁

∑

𝑖=1

𝑤
𝑗𝑖
𝑥
𝑖
+ 𝜃
𝑗
,

𝑦
𝑗
= 𝜑
𝑗
(𝜇
𝑗
) ,

(4)

where 𝜇
𝑗
is the linear combination of inputs 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
,

𝜃
𝑗
is the bias (adjustable parameter), 𝑤

𝑗𝑖
is the connection

synaptic weight between the input 𝑥
𝑖
and the neuron 𝑗, and

𝜑(⋅) is the activation function (usually nonlinear function) of
the 𝑗th neuron, and 𝑦

𝑗
is the output. Here, hyperbolic tangent

and logistic sigmoid function can be used for the nonlinear
activation function. But, in most of the applications widely
used logistic sigmoid function is applied as follows:

𝜑 (𝜆) =
1

1 + 𝑒−𝜆
, (5)

where 𝜆 represents the slope of the sigmoid [22].
The bias term 𝜃

𝑗
contributes to the left or right shift of the

sigmoid activation function, depending on whether 𝜃
𝑗
takes

a positive or negative value.

3.3.1. Backpropagation Learning Algorithm. Learning in a
MLP is an unconstrained optimization problem, which is
subject to the minimization of a global error function
depending on the synaptic weights of the network. For a
given training data consisting of input-output patterns, values
of synaptic weights in a MLP are iteratively updated by

a learning algorithm to approximate the desired value. This
update process is usually performed by backpropagating the
error signal layer by layer and adapting synaptic weights with
respect to the magnitude of error signal [23].

The first backpropagation learning algorithm for use with
MLP structures was presented by [21]. The backpropagation
algorithm is one of the simplest and most general methods
for the supervised training of MLP. This algorithm uses a
gradient descent search method to minimize a mean square
error between the desired output and the actual outputs.
Backpropagation algorithm is defined as follows [7, 24].

(i) Initialize all the connection weights 𝑤 with small
random values from a pseudorandom sequence gen-
erator.

(ii) Repeat until convergence (either when the error 𝐽 is
below a preset value or until the gradient 𝜕𝐽/𝜕𝑤 is
smaller than a preset value).

(i) Compute the update using Δ𝑤(𝑚) = −𝜉(𝜕𝐽(𝑚)/

𝜕𝑤),
(ii) Iterative algorithm requires taking a weight

vector at iteration 𝑚 and updating it as 𝑤(𝑚 +

1) = 𝑤(𝑚) + Δ𝑤(𝑚),
(iii) Compute the error 𝐽(𝑚 + 1),

where𝑚 is the iteration number, 𝑤 represents all the weights
in the network, and 𝜉 is the learning rate andmerely indicates
the relative size of the change in weights. The error 𝐽 can be
chosen as the mean square error function between the actual
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output 𝑦
𝑗
and the desired output 𝑑

𝑗
; 𝑑 and 𝑦 are the desired

and the network output vector of length𝑁:

𝐽 (𝑤) =
1

2

𝑁

∑

𝑗=1

(𝑑
𝑗
− 𝑦
𝑗
)
2

=
1

2
(𝑑 − 𝑦)

2

. (6)

3.4. Support Vector Machines (SVMs). The support vector
machines (SVMs) [25] is a type of learning machine based
on statistical learning theory. SVMs are supervised learning
methods that have been widely and successfully used for
pattern recognition in different areas [26].

In particular in recent years SMVs with linear or non-
linear kernels have become one of the most promising
learning algorithms for classification as well as regression
[27].The problem that SVMs try to solve is to find an optimal
hyperplane that correctly classifies data points by separating
the points of two classes as much as possible [28].

Let 𝑥
𝑖
(for 1 ≤ 𝑖 ≤ 𝑁

𝑥
) be the input vectors in input space,

with corresponding binary labels 𝑦
𝑖
∈ {−1, 1}.

Let →𝑋
𝑖
= Φ(𝑥

𝑖
) be the corresponding vectors in feature

space, where Φ(𝑥
𝑖
) is the implicit kernel mapping, and let

𝐾(𝑥
𝑖
, 𝑥
𝑗
) = Φ(𝑥

𝑖
) ⋅ Φ(𝑥

𝑗
) be the kernel function, implying

a dot product in the feature space [29].
𝐾(𝑥, 𝑦) represents the desired notion of similarity

between data 𝑥 and 𝑦. 𝐾(𝑥, 𝑦) needs to satisfy a Mercer’s
condition in order forΦ to exist [28].

There are a number of kernel functions which have been
found to provide good generalization capabilities [30].

Themost commonly used kernel functions are as follows:

Linear Kernel: 𝐾(𝑥
𝑖
, 𝑥
𝑗
) = 𝑥
𝑇

𝑖
𝑥
𝑗

Polynomial Kernel: 𝐾(𝑥
𝑖
, 𝑥
𝑗
) = (𝜂(𝑥

𝑇

𝑖
𝑥
𝑗
) + 𝑟)
𝑑

Gaussian Kernel: 𝐾(𝑥
𝑖
, 𝑥
𝑗
) = exp(−𝜂‖𝑥

𝑖
− 𝑥
𝑗
‖
2
)

Gaussian Radial Basis Function Kernel: 𝐾(𝑥
𝑖
, 𝑥
𝑗
) =

exp(−𝜂‖𝑥
𝑖
− 𝑥
𝑗
‖
2
/2𝜎
2
)

Sigmoid Kernel: 𝐾(𝑥
𝑖
, 𝑥
𝑗
) = tanh(𝜂(𝑥

𝑖
𝑥
𝑗
) + 𝑟)

where 𝜂 > 0 and 𝑟 are kernel parameters, 𝑑 is the degree
of kernel and positive integer number, and 𝜎 is the standard
deviation and positive real number.

The optimization problem for a soft-margin SVM is

min
�⃗�,𝑏

{
1

2
‖�⃗�‖
2
+ 𝐶∑

𝑖

𝜉
𝑖
} (7)

subject to the constraints𝑦
𝑖
(�⃗�
𝑖
𝑥+𝑏) = 1−𝜉

𝑖
and 𝜉
𝑖
≥ 0, where

�⃗� is the normal vector of the separating hyperplane in feature
space, and𝐶 > 0 is a regularization parameter controlling the
penalty for misclassification. Equation (7) is referred to as the
primal equation. From the Lagrangian form of (7), we derive
the dual problem

max
𝛼

{

{

{

∑

𝑖

𝛼
𝑖
−
1

2
∑

𝑖,𝑗

𝛼
𝑖
𝛼
𝑗
𝑦
𝑖
𝑦
𝑗
𝐾(𝑥
𝑖
, 𝑥
𝑗
)

}

}

}

(8)

X1 X2 X3 X4

C

Figure 3: A simple Näıve-Bayes structure.

subject to 0 ≤ 𝛼
𝑖
≤ 𝐶. This is a quadratic optimization

problem that can be solved efficiently using algorithms such
as sequential minimal optimization (SMO) [31].

Typically,many𝛼
𝑖
go to zero during optimization, and the

remaining𝑥
𝑖
corresponding to those𝛼

𝑖
> 0 are called support

vectors. To simplify notation, from here on we assume that
all nonsupport-vectors have been removed, so that𝑁

𝑥
is now

the number of support vectors, and 𝛼
𝑖
> 0 for all 𝑖. With this

formulation, the normal vector of the separating plane �⃗� is
calculated as

�⃗� =

𝑁
𝑥

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
�⃗�
𝑖
. (9)

Note that because →
𝑋
𝑖

= Φ(𝑥
𝑖
) is defined implicitly, �⃗�

exists only in feature space and cannot be computed directly.
Instead, the classification 𝑓( ⃗𝑞) of a new query vector ⃗𝑞 can
only be determined by computing the kernel function of ⃗𝑞

with every support vector:

𝑓 ( ⃗𝑞) = sign(
𝑁
𝑥

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
𝐾( ⃗𝑞, 𝑥

𝑖
) + 𝑏) , (10)

where the bias term 𝑏 is the offset of the hyperplane along its
normal vector, determined during SVM training [29].

3.5. Naı̈ve Bayes. Näıve-Bayes is one of the most efficient and
effective inductive learning algorithms for machine learning
and data mining [32].

ANäıve-Bayes Bayesian network is a simple structure that
has the classification node as the parent node of all other
nodes. This structure is shown in Figure 3.

No other connections are allowed in a Näıve-Bayes
structure. Näıve-Bayes has been used as effective classifier
for many years. It has two advantages over many other
classifiers. First, it is easy to construct, as the structure is
given a priori (and hence no structure learning procedure is
required). Second, the classification process is very efficient.
Both advantages are due to its assumption that all the features
are independent of each other. Although this independence
assumption is obviously problematic, Näıve-Bayes has sur-
prisingly outperformed many sophisticated classifiers over
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a large number of datasets, especially where the features are
not strongly correlated [33].

The procedure of learning Näıve-Bayes (Figure 3) is as
follows.

(1) Let the classification node be the parent of all other
nodes.

(2) Learn the parameters (recall these are just the empir-
ical frequency estimates) and output the Naı̈ve-Bayes
Bayesian network [34].

Typically, an example 𝐸 is represented by a tuple of attribute
values (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), where𝑥

𝑖
is the value of attribute𝑋

𝑖
. Let

𝐶 represent the classification variable, and let 𝑐 be the value
of 𝐶 [32]. Näıve-Bayes classifier is defined as below:

classify (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

= argmax
𝑐

𝑝 (𝐶 = 𝑐)

𝑛

∏

𝑖=1

𝑝 (𝑋
𝑖
= 𝑥
𝑖
| 𝐶 = 𝑐) .

(11)

3.6. Instance-Based Learning. Instance-based learning (IBL)
[35] algorithms have several notable characteristics. They
employ simple representations for concept descriptions, have
low incremental learning costs, have small storage require-
ments, can produce concepts exemplars ondemand, can learn
continuous functions, and can learn nonlinearly separable
categories; IBL algorithms have been successfully applied to
many areas such as speech recognition, handwritten letter
identification, and thyroid disease diagnosis.

All IBL algorithms consist of the following three compo-
nents [36].

(1) Similarity function: Given two normalized instances,
this yields their numeric-valued similarity.

(2) Classification function: Given an instance 𝑖 to be
classified and its similarity with each saved instance
yields a classification for 𝑖.

(3) Memory updating algorithm: Given the instance
being classified and the results of the other two
components updates the set of saved instances and
their classification records.

The IB1 (one nearest neighbor) algorithm is the simplest
instance-based learning algorithm. IB1 (one nearest neigh-
bor) algorithm will be explained below.

3.6.1. IB1 (One Nearest Neighbor). IB1 [35] is an implemen-
tation of the simplest similarity based learner, known as
nearest neighbor. IB1 simply finds the stored instance closest
(according to Euclidean distance metric) to the instance to
be classified. The new instance is assigned to the retrieved
instance’s class. Equation (12) shows the distance metric
employed by IB1:

𝐷(𝑥, 𝑦) = √

𝑛

∑

𝑖=1

𝑓 (𝑥
𝑖
, 𝑦
𝑖
). (12)

Equation (10) gives the distance between two instances 𝑥 and
𝑦; 𝑥
𝑖
and 𝑦

𝑖
refer to the 𝑖th feature value of instance 𝑥 and 𝑦,

respectively.
For numeric valued attributes𝑓(𝑥

𝑖
, 𝑦
𝑖
) = (𝑥

𝑖
− 𝑦
𝑖
)
2, for

symbolic valued attributes𝑓(𝑥, 𝑦) = 0, if the feature values 𝑥
𝑖

and 𝑦
𝑖
are the same, and 1 if they differ [37].

3.7. Simple Logistic Regression. Logistic regressions are one
of the most widely used techniques for solving binary clas-
sification problems. In the logistic regressions, the posterior
probabilities 𝑝∗

𝑖
, 𝑖 ∈ {1, 2} are represented as in the following:

Π
1
=

exp (𝜂)
1 + exp (𝜂)

, Π
2
= 1 − Π

1
, (13)

where 𝜂 is a function of an input �⃗�
0
. For example, 𝜂 is a linear

function of the input �⃗�
0
, that is,

𝜂 = �⃗�
𝑇
�⃗�
0
+ 𝛽 (14)

and the parameters �⃗�, 𝛽 are estimated by the maximum
likelihood method.

𝜂 is an arbitrary function of �⃗�
0
. Note that if you choose

an appropriate 𝜂, the model in (13) can represent some kinds
of binary classification systems, such as neural networks and
LogitBoost [38].

LogitBoost with simple regression functions as base
learners is used for fitting the logistic models. The opti-
mal number of LogitBoost iterations to perform is cross-
validated, which leads to automatic attribute selection. This
method is called “simple logistic” [39, 40]. LogitBoost algo-
rithm is defined below.

3.7.1. LogitBoost Algorithm. The LogitBoost algorithm [41] is
based on the observation that AdaBoost [42] is in essence
fitting an additive logistic regression model to the training
data. An additive model is an approximation to a function

𝐹 (𝑥) =

𝑁

∑

𝑖=1

𝑐
𝑖
𝑓
𝑖
(𝑥) , (15)

where the 𝑐
𝑖
are constants to be determined and the 𝑓

𝑖
are

basis functions. If it is assumed that 𝐹(𝑥) is the mapping that
is looked for to fit as our strong aggregate hypothesis and
the 𝑓(𝑥) are our weak hypothesis, then it can be shown that
the two-class AdaBoost algorithm is fitting such a model by
minimizing the criterion:

𝐽 (𝐹) = 𝐸 (exp (−𝑦𝐹 (𝑥))) , (16)

where 𝑦 is true class label in {−1, 1}. LogitBoost minimizes
this criterion by using Newton-like steps to fit an additive
logistic regression model to directly optimize the binomial
log-likelihood − log(1 + exp(−2𝑦𝐹(𝑥))) [43].

3.8. Boosting. Boosting [44] is a meta-algorithm which can
be viewed as a model averaging method. It is the most
widely used ensemble method and one of the most powerful
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learning ideas introduced in the last twenty years. Originally
designed for classification, it can also be profitably extended
to regression. One first creates a “weak” classifier; that is, it
suffices that its accuracy on the training set is only slightly
better than random guessing. A succession of models is
built iteratively, each one being trained on a dataset in
which points misclassified (or, with regression, those poorly
predicted) by the previous model are given more weight.
Finally, all of the successive models are weighted according
to their success and then the outputs are combined using
voting (for classification) or averaging (for regression), thus
creating a final model. The original boosting algorithm
combined three weak learners to generate a strong learner
[45].

3.8.1. AdaBoost Algorithm. Let �⃗� = (�⃗�
𝑖
, 𝑦
𝑖
), 𝑖 = 1, 2, . . . , 𝑁

be a training sample of observations, where �⃗�
𝑖
∈ R𝑛 is an 𝑛-

dimensional vector of features, and 𝑦
𝑖
is a binary label: 𝑦

𝑖
∈

{−1, +1}.
In a practical situation the label 𝑦

𝑖
may be hidden, and

the task is to estimate it using the vector of features. Let us
consider the most simple linear decision function

𝑢
𝑖
= 𝑢 (�⃗�

𝑖
) =

𝑛

∑

𝑗=0

𝑤
𝑗
⋅ 𝑥
𝑖𝑗
, (17)

where 𝑥
𝑖0
is a constant term.

A decision rule can be defined as a function of decision
function and threshold parameter

𝑓
𝑖
= 𝑓 (𝑢

𝑖
, Δ) = {

1, if 𝑢
𝑖
≥ Δ,

0, otherwise.
(18)

Let us consider minimizing the criterion

𝑁

∑

𝑖=1

𝜉 (�⃗�
𝑖
, 𝑦
𝑖
) exp (−𝑦

𝑖
𝑢 (�⃗�
𝑖
)) , (19)

where the weight function is given below:

𝜉 (�⃗�
𝑖
, 𝑦
𝑖
) := exp {−𝑦

𝑖
𝐹 (�⃗�
𝑖
)} . (20)

It is assumed that the initial values of the ensemble decision
function 𝐹(�⃗�

𝑖
) are set to zero.

Advantages of the exponential compared with squared
loss function were discussed in [46]. Unfortunately, it is not
possible to optimize the step-size in the case of exponential
target function. It is essential to maintain low value of
the step size in order to ensure stability of the gradient-
based optimization algorithm. As a consequence, the whole
optimization process may be very slow and time-consuming.
The AdaBoost algorithm was introduced in [42] in order
to facilitate optimization process. The following Taylor-
approximation is valid under assumption that values of 𝑢(�⃗�

𝑖
)

are small:

exp {−𝑦
𝑖
𝑢 (�⃗�
𝑖
)} ≈

1

2
[(𝑦
𝑖
− 𝑢 (�⃗�

𝑖
))
2

+ 1] . (21)

Therefore, quadratic-minimization (QM)model is applied in
order to minimize (19).

Then, the value of the threshold parameters Δ for 𝑢
𝑖
is

optimized and the corresponding decision rule 𝑓
𝑖
∈ {−1, +1}

is found.
Next, we will return to (19),

𝑁

∑

𝑖=1

𝜉 (�⃗�
𝑖
, 𝑦
𝑖
) exp (−𝑐𝑦

𝑖
𝑓 (�⃗�
𝑖
)) , (22)

where the optimal value of the parameter 𝑐 may be easily
found:

𝑐 =
1

2
log {𝐴

𝐵
} (23)

and where

𝐴 = ∑

𝑦
𝑖
=𝑓( ⃗𝑥
𝑖
)

𝜉 (�⃗�
𝑖
, 𝑦
𝑖
) , 𝐵 = ∑

𝑦
𝑖
̸=𝑓( ⃗𝑥
𝑖
)

𝜉 (�⃗�
𝑖
, 𝑦
𝑖
) . (24)

Finally, for the current boosting iteration, we update the
function 𝐹

𝐹new (�⃗�𝑖) ← 𝐹 (�⃗�
𝑖
) + 𝑐𝑓 (�⃗�

𝑖
) (25)

and recomputed weight coefficients 𝜉 according to (20) [47].

3.9. Bagging. Bagging [48] predictors is a method for gener-
ating multiple versions of a predictor and using these to get
on aggregated predictor. The aggregation averages over the
versions when predicting a numerical outcome and does a
plurality vote when predicting a class. The multiple versions
are formed by making bootstrap replicates of the learning
set and using these as new learning sets. Tests on real and
simulated data sets using classification and regression trees
and subset selection in linear regression show that bagging
can give substantial gains in accuracy. The vital element is
the instability of the prediction method. If perturbing the
learning set can cause significant changes in the predictor
constructed, then bagging can improve accuracy [48].

3.10. Random Forest. Random forests [49] are a combination
of tree predictors such that each tree depends on the values
of a randomvector sampled independently andwith the same
distribution for all trees in the forest.The generalization error
of a forest of tree classifiers depends on the strength of the
individual trees in the forest and the correlation between
them. A random forest is a classifier consisting of a collection
of tree-structured classifiers {ℎ(�⃗�, Θ

𝑘
), 𝑘 = 1, 2, . . .}, where

the {Θ
𝑘
} are independent identically distributed random

vectors and each tree casts a unit vote for the most popular
class at input �⃗�.

3.11. Reduced Error Pruning Tree. Reduced error pruning
(REP) was introduced by Quinlan [50], in the context of
decision tree learning. It has subsequently been adapted
to rule set learning as well [51]. REP produces an optimal
pruning of a given tree, the smallest tree among those with
minimal error with respect to a given set of pruning examples
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[51, 52]. The REP algorithm works in two phases: first the
set of pruning examples 𝑆 is classified using the given tree
𝑇 to be pruned. Counters that keep track of the number
of examples of each class passing through each node are
updated simultaneously. In the second phase—a bottom-up
pruning phase—those parts of the tree that can be removed
without increasing the error of the remaining hypothesis
are pruned away [53]. The pruning decisions are based on
the node statistics calculated in the top-down classification
phase.

3.12. ZeroR (Zero Rule). Zero rule (ZeroR, 0-R) is a trivial
classifier, but it gives a lower bound on the performance of
a given a dataset which should be significantly improved by
more complex classifiers. As such it is a reasonable test on
how well the class can be predicted without considering the
other attributes [54].

4. ALARM Network Structure and Datasets

In order to compare the performances (in terms of accuracy)
of machine learning methods in the scope of this study, the
network structure, which is used in scientific studies and
known as ALARM (a logical alarm reduction mechanism)
network [5] in literature is used. ALARM network is a
network structure that is prepared by using real patient
information for many variables and shows the probabilities
derived from the real life circumstances. ALARM network
calculates the probabilities for different diagnosis based on
the current evidences and recently it has been used for many
researchers. Totally there are 37 nodes in ALARM network
and the relationships and conditional probabilities among
these have been defined. The medical information has been
coded in a graphical structure with 46 arches, 16 findings, and
13 intermediate variables that relate the examination results to
the diagnosis problems that represent 8 diagnosis problems.
Two algorithms have been applied to this Bayes network;
one of them is a message-passing algorithm, developed by
Pearl [55] to update the probabilities in the various linked
networks using conditioning methods and the second one is
that the exact inference algorithm, developed by Lauritzen
and Spiegelhalter [56] for local probability calculations in
the graphical structure. There are three variables named
diagnosis, measurements, and intermediate variables in the
ALARM network.

(1) Diagnosis and the qualitative information are on the
top of the network. Those variables do not belong
to any predecessors and they are deemed mutually
independent from the predecessors. Each node is
linked to the particular and detailed value sets that
represent the severity and the presence of a certain
disease.

(2) Measurements represent any current quantitative
information. All continuous variables are represented
categorically with a discrete interval set that divides
the value set.

(3) Intermediate variables show the element that can not
be measured directly. The probabilities in the Bayes
network can represent both objective and subjective
information. ALARM network includes statistical
data, logical conditional probabilities, which are cal-
culated from the equations relevant to the variables,
and a certain number of subjective valuations and it
is usually used to form the network structure over
synthetically data.

In cases for all given different predecessor nodes, it is required
to obtain a conditional probability for a node.The structure of
ALARMnetwork and defined variable are shown in Figure 4.

In order to compare the performances of algorithms
mentioned in Section 3, synthetic test data with 10, 100,
1000, and 2000 records have been produced to reflect the
possibilities on the ALARM network. For these operations,
based on ALARM network structure, NETICA 3.18 [57]
software has been used. Conditional probability diagram for
ALARM network structure and a variable defined in the
structure are shown in Figure 5. Some of the synthetic data
has been taken as test data.

Each record on those generated data shows probable
values for each of the 37 variables that were defined on
this network. Each record consist of values for intermediate
variable as well as 12 input and 11 output variables. The tests,
which were carried out, send the input variable values on
each record to the relevant module and keep the resulting
list as a separate file. The accuracy of the results is decided
by comparing the variable values on the relevant record on
the test data. For each record, 11 probable results have been
obtained.

The results that were obtained by using JavaBayes [58]
open source software are applied to each of the generated
synthetic data sets separately. 11 output variables for one
record belonging 100 data sets are shown in Table 1. JavaBayes
uses a generalized version of “variable elimination” method
as an inference algorithm [59]. It has generated 110 output
variables in 10 data sets, 1100 output variables in 100 data sets,
11000 output variables in 1000 data sets, and 22000 output
variables in 2000 data sets.

In Table 1, for each data set only 11 output variables
for one record are presented. In this table, first column
shows the variable name (disease name) and the second
column shows the accuracy and they are calculated by the
software using Bayes theorem, third column shows the real
situations in the ALARM network, fourth column shows the
results, generated by the software, and fifth column shows
the comparison between the real situation and the results
generated by the software. In the fifth column, if the real
situation and the results generated by the software are the
same POSITIVE and if the real situation and the results
generated by the software are not the sameNEGATIVE result
will be generated. POSITIVE values show correct diagnosis,
and NEGATIVE values show incorrect diagnosis.

For example, in Table 1, the accuracy of the MinVol
variable has been calculated as 0.9136 by the software.
Because this value is not the same with the real situation,
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(1) Central venous pressure (20) Insufficient anesthesia or analgesia

(2) Pulmonary capillary wedge pressure (21) Pulmonary embolus

(3) History of left ventricular failure (22) Intubation status

(4) Total peripheral resistance (23) Kinked ventilation tube

(5) Blood pressure (24) Disconnected ventilation tube

(6) Cardiac output (25) Left-ventricular end-diastolic volume

(7) Heart rate obtained from blood pressure monitor (26) Stroke volume

(8) Heart rate obtained from electrocardiogram (27) Catecholamine level

(9) Heart rate obtained from oximeter (28) Error in heart rate reading due to low cardiac output

(10) Pulmonary artery pressure (29) True heart rate

(11) Arterial-blood oxygen saturation (30) Error in heart rate reading due to electrocautery device

(12) Fraction of oxygen in inspired gas (31) Shunt

(13) Ventilation pressure (32) Pulmonary-artery oxygen saturation

(14) Carbon-dioxide content of expired gas (33) Arterial carbon-dioxide content

(15) Minute volume, measured (34) Alveolar ventilation

(16) Minute volume, calculated (35) Pulmonary ventilation

(17) Hypovolemia (36) Ventilation measured at endotracheal tube

(18) Left-ventricular failure (37) Minute ventilation measured at the ventilator

(19) Anaphylaxis

Figure 4: ALARM network structure and the variables defined in the network [9].

the correct diagnosis has not been obtained. Similarly, for
HREKG variable, the accuracy has been calculated as 0.8228
by the software. Because this value is the same with the real
situation, the correct diagnosis has been obtained. Similar
interpretations are also valid for other data sets. Each sample
generated by ALARM network includes 12 independent and
11 depended variables. So we formed 11 classification datasets
having 12 inputs and one output. The class labels for these 11
datasets are given at Table 2.

To see to effects of sample size, we generated several
datasets having 10, 100, 1000, and 2000 samples for each of

11 classification datasets. At the end, we have 44 (= 11 ∗ 4)

classification datasets.

5. Experimental Design

We used 11 machine learning algorithms fromWEKA library
[60] for the classification of these 44 datasets.The algorithms
are given in Table 3.

The default design parameters were selected for NB,
MLP, SL, SMO, IBK, J48, and RT algorithms. For the
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Figure 5: Conditional probability diagram for Alarm.dnet catechol variable.

Table 1: 11 Output variables for one record (100 datasets).

Variable name
(disease) Accuracy degree Real situations Results produced by the software The comparison of the real

situation and the result produced
History 0,9900 False False POSITIVE
Pres 0,9412 Normal Zero NEGATIVE
MinVol 0,9136 Normal Zero NEGATIVE
ExpCO2 0,9136 Normal Zero NEGATIVE
PAP 0,9000 Normal Normal POSITIVE
HRBP 0,8229 High High POSITIVE
HREKG 0,8229 High High POSITIVE
HRSat 0,8229 High High POSITIVE
CVP 0,7075 Normal Normal POSITIVE
PCWP 0,6970 Normal Normal POSITIVE
BP 0,4052 Low Low POSITIVE

Table 2: The class labels for 11 classification datasets.

Dependent variable (class) Class labels
BP Normal, low, high
CVP Normal, low, high
ExpCO2 Normal, low, high, zero
History False, true
HRBP Normal, low, high
HREKG Normal, low, high
HRSat Normal, low, high
MinVol Normal, low, high, zero
PAP Normal, low, high
PCWP Normal, low, high
Press Normal, low, high, zero

Table 3: Used classification algorithms and abbreviations.

Algorithm name Abbreviations
Zero rule ZR
Naive-Bayes NB
Multilayer perceptron MLP
Simple logistic SL
Support vector machines SMO
One nearest neighbor IBK
C4.5 decision tree J48
Rep Tree RT
Boosting BS
Bagging BG
Random forest RF
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Table 4: Classification accuracies with datasets having 10 samples (%).

ZR NB MLP SL SMO IBK BS BG J48 RF RT
BP 50.00 30.00 6.00 0.00 42.00 10.00 50.00 38.00 50.00 8.00 22.00
CVP 70.00 60.00 80.00 60.00 60.00 80.00 80.00 66.00 60.00 80.00 70.00
ExpCO2 50.00 50.00 60.00 50.00 52.00 50.00 50.00 46.00 50.00 54.00 20.00
History 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
HRBP 70.00 80.00 48.00 70.00 70.00 70.00 40.00 70.00 70.00 62.00 70.00
HREKG 60.00 70.00 42.00 48.00 60.00 40.00 30.00 58.00 30.00 44.00 60.00
HRSat 60.00 50.00 70.00 30.00 32.00 50.00 70.00 38.00 30.00 62.00 30.00
MinVol 70.00 70.00 80.00 70.00 72.00 70.00 80.00 70.00 70.00 72.00 70.00
PAP 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
PCWP 70.00 70.00 70.00 60.00 66.00 60.00 60.00 70.00 60.00 70.00 70.00
Press 70.00 70.00 80.00 70.00 70.00 70.00 80.00 70.00 70.00 70.00 70.00

Table 5: Classification accuracies with datasets having 100 samples (%).

ZR NB MLP SL SMO IBK BS BG J48 RF RT
BP 47.00 47.60 45.40 44.00 45.00 41.60 45.80 43.20 42.60 45.40 44.60
CVP 62.00 92.00 88.40 91.40 91.40 91.20 92.00 92.00 92.00 90.00 92.00
ExpCO2 65.00 70.80 73.20 74.00 69.20 69.00 65.00 67.60 69.20 71.60 66.20
History 98.00 98.00 100.00 98.00 98.00 98.00 100.00 98.00 98.00 98.40 98.00
HRBP 49.00 59.40 55.40 57.80 59.80 55.60 53.40 57.80 58.40 56.80 54.40
HREKG 48.00 55.60 56.80 54.80 56.80 54.20 54.00 50.80 53.20 54.60 50.20
HRSat 49.00 61.60 61.60 62.80 63.80 59.60 57.00 61.20 62.00 60.40 56.20
MinVol 79.00 84.00 86.20 84.60 85.20 82.00 79.00 79.00 82.00 83.40 79.00
PAP 88.00 88.00 86.80 88.00 88.00 88.00 88.00 88.00 88.00 87.40 88.00
PCWP 57.00 85.00 81.00 84.80 84.20 80.20 85.00 85.00 84.60 80.00 85.00
Press 80.00 85.00 89.80 87.20 85.20 84.00 80.40 82.20 85.00 85.60 81.40

Table 6: Classification accuracies with datasets having 1000 samples (%).

ZR NB MLP SL SMO IBK BS BG J48 RF RT
BP 45.00 46.32 44.52 46.44 46.58 44.58 45.00 47.18 46.52 44.84 46.60
CVP 67.70 87.64 87.00 87.72 87.08 87.14 85.60 87.70 87.70 87.06 87.68
ExpCO2 66.10 79.60 78.20 79.74 79.58 78.12 69.54 79.80 79.84 78.46 79.72
History 94.20 98.30 98.30 98.30 98.30 98.20 98.24 98.30 98.30 98.30 98.30
HRBP 48.00 67.12 66.18 67.20 67.56 66.48 59.20 67.06 67.04 66.62 66.88
HREKG 47.00 66.36 65.66 66.06 67.06 65.14 59.00 65.60 65.88 65.52 65.74
HRSat 47.40 65.68 65.02 65.88 66.84 64.60 59.00 65.14 65.20 64.68 65.10
MinVol 79.30 88.84 87.80 88.82 88.76 87.30 83.20 88.86 88.82 88.18 88.88
PAP 89.40 90.20 89.48 90.20 90.20 89.38 90.20 90.20 90.20 89.50 90.16
PCWP 65.20 86.80 86.40 86.90 86.72 86.18 83.80 86.90 86.90 86.50 86.90
Press 78.40 88.86 88.46 89.34 89.18 87.90 82.90 89.26 88.98 88.70 89.24

meta-algorithms (boosting, bagging, and random forest) the
ensemble sizes were selected as 100 to be sure frommaximum
accuracy.

6. Experimental Results

The performance of each classification algorithm was eval-
uated using 5 runs of 10-fold cross validation. In each 10-
fold cross validation, each dataset is randomly split into 10
equal size segments and results are averaged over 50 (5 ∗ 10)

trials. The classification results are divided by 4 according
to the dataset’s sample size. Tables 4, 5, 6, and 7 show the
averaged classification accuracies with experiments having
10, 100, 1000, and 2000 samples, respectively.

Figure 6, shows the classification accuracies changes with
the datasets’ sample size. J48 decision tree is used as classifier
in Figure 6.

As can be seen at Tables 4–7 andFigure 6when the sample
size increases it gives more accurate results, as expected. Zero
rule defines accuracy by chance. It selects the most existent
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Table 7: Classification accuracies with datasets having 2000 samples (%).

ZR NB MLP SL SMO IBK BS BG J48 RF RT
BP 45.40 47.37 45.63 46.88 46.64 46.31 45.40 46.93 47.08 46.38 46.62
CVP 69.30 88.65 88.48 88.64 88.65 88.46 86.80 88.60 88.55 88.53 88.63
ExpCO2 66.65 80.15 79.19 80.25 80.23 78.96 70.24 79.98 80.03 79.42 79.99
History 94.15 98.45 98.40 98.43 98.45 98.12 98.42 98.45 98.45 98.43 98.45
HRBP 49.75 66.47 66.72 66.57 66.78 66.57 58.20 67.12 67.41 66.71 67.20
HREKG 48.80 65.26 63.92 65.00 64.85 64.79 57.25 64.91 64.60 65.10 64.52
HRSat 48.95 65.05 64.41 65.03 65.58 65.40 57.40 64.90 65.26 65.51 64.95
MinVol 77.70 88.02 87.44 87.99 87.93 86.91 82.00 88.04 88.01 87.59 88.03
PAP 88.95 89.90 89.43 89.88 89.86 89.38 89.90 89.90 89.90 89.53 89.90
PCWP 65.45 86.95 86.53 86.95 86.95 86.67 83.55 86.95 86.95 86.67 86.95
Press 78.20 89.68 89.62 90.03 90.07 89.27 82.80 90.11 90.00 89.73 90.00
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Figure 6: Classification accuracies changes with datasets’ sample
size.

class for all samples. In BP and PAP datasets, none of the
algorithms won the zero rule. This means that the datasets
can not be learned by any of the algorithms.

We compared the accuracies of all classification algo-
rithms in a pairwise manner in Table 8. To compare two
algorithms’ performances, we employed the statistically sig-
nificance difference test (paired 𝑡-test) with 0.05 significance
level. The win/loss records in Table 8 are the number of wins
and losses of the algorithm in the row over the method in
the column.The number of ties is the sum of wins and losses
subtracted from 11. For example, J48 won over MLP on 5
datasets and the algorithms have similar performances on
other 6 datasets. For the comparison, the datasets having
2000 samples were only used.

In addition to statistical difference test, we also compared
the classification algorithms according to their average ranks.

In the average rank comparison, for each of the datasets, the
algorithms were ordered according to their performances.
Then their ranks were averaged over 11 datasets. The average
ranks and the sum of win and loses in Table 8 are given in
Table 9.

According to Table 9, J48 (C4.5 decision tree) is the best
ranked algorithm for our 11 datasets. The second one is
bagging. According to the sum of wins, the best one is again
J48.

To show the statistically meaningful difference between
the average ranks we also applied the Nemenyi test [61].
According to is the Nemenyi test, the performance of
two classifiers is significantly different if the corresponding
average ranks differ by at least the critical difference (CD)
calculated by

CD = 𝑞
𝛼
√
𝑘 (𝑘 + 1)

6𝑁
. (26)

In (26), 𝑘 is the number of classifiers compared, 𝑁 is the
number of datasets, 𝑞

𝛼
is the critical value, and 𝛼 is the

significance level. In our experiments, the critical value (𝑞
0.05

)

is 3.219 for 11 classifiers [62]. The critical difference (CD) is
3.129 ∗ sqrt((11 ∗ 12)/(6 ∗ 11)) = 4.424. According to the
Nemenyi test (at 𝑃 < 0.05), there are no statistical differences
between J48 and the algorithms having at most 4.424 + 3.55
= 7.974 average rank (NB, SL, SMO, BG, RF, and RT).

7. Conclusion

In cases of uncertainty and the lack of information, the
most important part of the decision support systems which
supports decision making process is the inference mech-
anism. There are data mining methods like SVM, MLP,
decision trees, and so forth which are available in inference
mechanism. Those methods can be used separately in an
inference mechanism or also as a hybrid system, which
consist of a combination of those methods.

In the study, for the generated synthetic data, ALARM
network structure which is widely used in scientific studies
has been used. This network structure is a structure that
has been prepared using real patient information for many
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Table 8: Pairwise comparison of accuracies (win/loss over 11 datasets) of all algorithms using 10 cv 𝑡-Test.

ZR NB MLP SL SMO IBK BS BG J48 RF RT
ZR 0/0 0/10 0/9 0/10 0/10 0/9 0/10 0/10 0/10 0/9 0/10
NB 10/0 0/0 3/0 0/0 0/0 5/0 8/0 0/0 0/1 3/0 0/0
MLP 9/0 0/3 0/0 0/3 0/3 2/0 8/1 0/4 0/5 0/0 0/4
SL 10/0 0/0 3/0 0/0 0/0 6/0 8/0 0/0 0/1 3/0 0/0
SMO 10/0 0/0 3/0 0/0 0/0 6/0 8/0 0/0 0/0 3/0 0/0
IBK 9/0 0/5 0/2 0/6 0/6 0/0 8/2 0/6 0/7 0/2 0/6
BS 10/0 0/8 1/8 0/8 0/8 2/8 0/0 0/8 0/8 1/8 0/8
BG 10/0 0/0 4/0 0/0 0/0 6/0 8/0 0/0 0/0 2/0 0/0
J48 10/0 1/0 5/0 1/0 0/0 7/0 8/0 0/0 0/0 4/0 0/0
RF 9/0 0/3 0/0 0/3 0/3 2/0 8/1 0/2 0/4 0/0 0/2
RT 10/0 0/0 4/0 0/0 0/0 6/0 8/0 0/0 0/0 2/0 0/0

Table 9: The average ranks of the algorithms over 11 datasets “and the sum of win/losses.”

Algorithm name ZR NB MLP SL SMO IBK BS BG J48 RF RT
Average rank 11 4.27 8.27 4.64 3.73 8 9.27 3.64 3.55 5.9 3.73
The number of wins/losses (over 110) 0/97 29/1 19/23 30/1 30/0 17/42 14/72 30/0 36/0 19/18 30/0

variables and shows the possibilities derived from the real life
circumstances.

In this study, the performances of 11 machine learning
algorithms (SVM, MLP, C4.5, etc.) are tested on 44 synthetic
data sets (11 different dependent variables and 4 different
dataset sizes). The comparison of algorithms we applied two
different tests (statistically difference and average rank). C4.5
decision tree is the best algorithm according to the both of the
tests for our 44 datasets. The datasets having more samples
can be better predicted than having fewer samples.

In the future study, the comparison of the performances
of the hybrid methods, which are combinations of the rule-
based methods, and the data-driven methods and other
machine learning systems will be carried out.
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