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toxicity, biodegradability, and little immunogenicity. Moreover, its structure can be extensively
modified, for example, to create scaffolds, hydrogels, nanoparticles, and membranes, allowing it
to be engineered precisely to achieve specific outcomes However, the therapeutic utilisation of
chitosan is impeded by significant challenges, such as its inadequate hemocompatibility, dura-
bility, and uniformity in commercial manufacturing. Additionally, there is insufficient research
offering a thorough examination of the capabilities, limitations, and challenges related to chi-
tosan as carriers for anticancer drugs and growth factors. This article examines the stability,
challenges, and advanced application of chitosan as a drug carrier in anti-cancer therapy and
growth factor delivery. The problems of unregulated chitosan degradation arising from unsuitable
storage conditions are considered and potential solutions, and areas for future research, are
proposed to deal with such problems. Consequently, this review is expected to be highly valuable
for aspiring scientists studying chitosan-related systems for delivery of anti-cancer drugs and
growth factors.

1. Introduction

Chitosan is a naturally-occurring linear polysaccharide, made up of glucosamine and N-acetylglucosamine units, connected by f-
(1,4) glycosidic bonds. Chitosan is produced by de-acetylating chitin, under alkaline conditions, in its solid state, or by using chitin
deacetylase to enzymatically hydrolyse chitin [1,2]. After cellulose, Chitin is the second most-plentiful natural polysaccharide on
Earth. Chitin is predominantly found in the shells of crustaceans, in the cell walls of fungi, mollusks, arthropods, and in certain types of
seaweed [3]. The functional properties of chitosan are related to its molecular weight and degree of deacetylation (DDA), which
impacts its physico-chemical (e.g., tensile strength, solubility, surface area, viscosity, conductivity, porosity, and flexibility) and
biological properties (e.g. biodegradability, antioxidant, bioavailability, and biocompatibility) [4-7]. Additionally, as illustrated in
Fig. 1, chitosan is highly amenable to chemical modification via one of its three reactive functional groups: the amino group, and both
primary and secondary hydroxyl groups, on its backbone.

The biopolymer chitosan has gained significant interest from researchers and practitioners in the fields of science, applied research,
and industrial biotechnology. Chitosan’s exceptional physical, biological, and chemical properties, molecular structure, bioactivity
and versatility, which are not found in synthetic polymers [8,9] have been at the root of this interest. Chitosan was found to be effective
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in drug delivery some 20 years ago and its use in the biomedical industry has been developed since then. Chitosan has been used in the
formulation of biomaterials and in extensive investigation into drug delivery systems. Natural polymers like chitosan are
anti-carcinogenic, bio-compatible, hemo-static, bacterio-static, anti-cholesteremic, and fungi-static. In drug delivery systems, chitosan
and its derivatives are regarded as safe and efficacious, due to these properties. The biodegradability of chitosan facilitates oral and
intravenous medication delivery [10-12].

The Figures illustrate how chitosan is used in drug delivery systems. Fig. 2(a-b) shows how chitosan (in its different forms) is
conjugated with drugs and disintegrates within the body distributing medicine, in a targeted manner, in the process [13]. Fig. 3 il-
lustrates how chitosan is used in several specific drug delivery applications [14].

Chitosan-based drug delivery systems have demonstrated considerable promise in the transport of therapeutic proteins, nucleic
acids, vaccines, and others [12,15]. Recently, cancer treatment and the introduction of numerous vital growth factors into the human
body have been important foci in biomedicine and an extensive literature now exists on these topics [10]. Fig. 2(b) illustrates the use of
chitosan-based porous matrices, including foams, hydrogels, and sponges, as a means of delivering anti-cancer medications and
tissue-regeneration growth factors [16].

For tissue regeneration, chitosan aids in the adhesion, proliferation, and specialisation of numerous cell types, in the transport of
several growth factors, due to its hydrophilic properties. Sutankulov et al. [17] noted that chitosan may bind negatively-charged
enzymes, proteins, and DNA in slightly acidic conditions, due to its positively charged composition. This property makes it a viable
carrier for delivering numerous growth factors. Additionally, chitosan exhibits a diverse array of applications in combating melanoma,
bladder, lung, breast, colon, pancreatic, and metastatic cancer [18]. Chitosan can be used in conjunction with anti-cancer medications
to create a novel drug delivery system that has several advantages. These advantages include a longer half-life, less adverse effects,
less-frequent dosing, targeted drug delivery to the affected area, and improved patient tolerance [14]. The cationic and electrostatic
interaction of chitosan with nucleic acids enhance its effectiveness as a carrier for cancer medicines and as a potent immunological
adjuvant for cancer vaccinations [18]. Despite the considerable promise that chitosan holds, as a growth factor or as a part of a delivery
system for anticancer drugs, significant barriers hamper the clinical implementation of chitosan. These include inadequate hemo-
compatibility, durability, and commercial production inconsistency. Its inadequate long-term stability poses a significant obstacle to
the expansion of its drug delivery applications. The determination of an adequate shelf life for chitosan formulations unveils an
enormous challenge. Chitosan experiences a progressive chain degradation and subsequent functional group extermination during
storage, resulting in an irreversible deterioration of its physicochemical properties [14,19].

There is an extensive literature investigating the potential and challenges of chitosan as a delivery system for anti-cancer drugs and
growth factors. For instance, there are potential medical and pharmacological applications of CS-based nanocarriers, including
nanoparticles (NPs), nanofibers (NFs), nanogels (NGs), and chitosan-coated liposomes (LPs) [20]. Kurczewska [21] focused on
nanoparticles made of chitosan that were optimised for the delivery of a certain anti-cancer drug. Sadough et al. [22], reported the
potential role of chitosan-based nanoparticles in drug delivery systems for pancreatic cancer. The application of chitosan as a vehicle
for the transfer of growth factors, to facilitate tissue regeneration, was reported by Gohil et al., [23]. Improved and enhanced tissue
regeneration has been documented by Sivashankari and Prabaharan [24], using chitosan-based scaffolds for growth-factor delivery.
Yet very little is known about the material’s strengths, weaknesses, opportunities, and threats in growth-factor and anti-cancer drug
delivery, as no collaborative research has been published in this area.
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Fig. 1. Functional group-mediated chemical modification of chitosan [4].
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Fig. 2. (a) Chitosan-drug conjugate system for effective drug delivery [13], and (b) Utilising chitosan in its diverse forms for drug delivery.
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Fig. 4. Advantages of using chitosan for tissue regeneration [33].

Therefore, this review seeks to summarise recent findings in chitosan research to allow us to understand its stability, obstacles and
fundamental uses as a drug carrier, in tissue regeneration and in anti-cancer therapy. In the process, we can see the views of many
researchers on chitosan’s suitability for such applications. Assessments of technical, environmental, and internal aspects, influencing
the stability of chitosan-based systems, are also summarised in this paper.

2. Delivery of growth factors for tissue regeneration

In biomedical applications, growth factor delivery has emerged as a critical technique for reaching desired clinical outcomes. As
originally described, a growth factor is a secreted, physiologically-active chemical, such as a vitamin or hormone, that can influence
the growth in living cells. Growth factors are found in a variety of creatures, including insects, amphibians, humans, and plants, but
were initially isolated from the tissues of mice and cattle [23]. Growth factors impact cellular activities like viability, migration,
proliferation, and differentiation. They interact with cell surface receptors, transmit growth signals, and alter gene expression. Their
impact on cells can be varied, as there are different growth factors, their spatial distribution affects their impact, as does cell number,
receptor type and exposure time [25]. For instance, the growth of epithelial cells is stimulated by epidermal growth factor (EGF);
muscle and connective tissue cells are stimulated by platelet-derived growth factor (PDGF); neural growth factor (NGF) stimulates the
growth of neuronal cells; and insulin-like growth factors (IGF) stimulate growth by mediating the pituitary gland’s secretion of growth
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Fig. 5. The mechanisms of chitosan-based hydrogels to promote wound healing [38].
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Table 1
Chitosan-based materials for delivery of various growth factors in skin regeneration and wound management.
Function Materials composition Growth factors Effects References
Name
Tissue Chitosan hydrogel Transforming growth factor Clinical articular cartilage repair [44]
regeneration beta-1 (TGF-p1)
Heparin crosslinked chitosan microspheres Fibroblast growth factor-2 Central nervous system (CNS) repair [45]
(FGF-2)
Nanochitosan loaded Gellan xanthan hydrogel — Basic fibroblast growth factor ~Bone regeneration [46]

(BFGF), and bone
morphogenetic protein 7

(BMP7)
Heparin/chitosan nanoparticle-immobilised Vascular endothelial growth Accelerated regeneration of tissue [47]
decellularized bovine jugular vein scaffold factor (VEGF)
Heparin-functionalized chitosan (CS)/poly Fibroblast growth factor (bfgf) Ischemic tissue regeneration and preventing [48]
(y-glutamic acid) (y-PGA) nanoparticles (HP-CS/ and heparin blood vessel rethrombosis.
y-PGA nanoparticles)
Novel chitosan/collagen scaffold Human transforming growth  Periodontal tissue engineering. [49]
factor-p1 (TGF-$1)
Chitosan-gelatin complex as three-dimensional ~ Transforming growth factor-f1 Cartilage defects regeneration. [50]
scaffold (TGF-51)
Porous nano-hydroxyapatite/collagen/poly(L- ~ Bone morphogenetic protein-  Bone regeneration [51]
lactic acid)/chitosan microspheres (nhac/PLLA/ 2, BMP-2-derived synthetic
cms) composite scaffolds peptide
Chitosan/coral composite scaffold Platelet-derived growth factor Periodontal tissue regeneration [52]
B (PDGFB)
Chitosan sponge Platelet-derived growth factor- Periodonta bone regeneration [53]
BB (PDGF-BB)
Porous chondroitin-4-sulfate (CS)-chitosan Platelet-derived growth factor- Bone regeneration [54]
sponge BB (PDGF-BB)
Covalently bonded biodegradable chitosan Recombinant human bone Guided tissue regeneration (GTR) & new [55]
membrane morphogenetic protein-2 bone formation
(rthbmp-2)
Calcium phosphate cement (CPC) —chitosan Recombinant human bone Bone repair, osteoblastic induction, and [56]
composite scaffold morphogenic protein-2 bone regeneration
(rthbmp-2)
Wound Polyethylene glycol (PEG) cross-linked cotton-  Fibroblast growth factor (bfgf) Enhanced wound healing [57]
management like chitosan scaffold (CS-PEG-H) and vascular endothelial
growth factor (VEGF)
Dextran hydrogel loaded with chitosan Epidermal and vascular Wound healing [58]
microparticles endothelial growth factors/
epidermal growth factor
(EGF), basic fibroblast GF
Chitosan film Basic fibroblast growth factor ~Accelerated wound healing. [59]
(BFGF)
Chitosan gel Epidermal growth factor (EGF) Increase the healing period in burns [60]
Light-cured glycol chitosan (GC) hydrogel Vascular endothelial growth ~ Enhanced wound healing, showed [61]
factor (VEGF) and platelet- outstanding granulation effects
derived growth factor-BB
(PDGF-BB)
Collagen-chitosan composite film modified with Basic fibroblast growth factor ~Showed outstanding performance in wound [62]
graphene oxide (GO) and 1-(3- (Bfgf) remodeling

Dimethylaminopropyl)-3-ethylcarbodiimide

hydrochloride (EDC)

Chitosan:gelatin nanopillars (nano C:G films) Epidermal growth factor (EGF) Provide desirable healing characteristicsand [1]
cause improved melanogenic outputs.

Chitosan microneedle array (CSMNA) patch Ascular endothelial growth Promote inflammatory inhibition, collagen [63]
factor (VEGF) deposition, angiogenesis, and tissue

regeneration during the wound closure
Semi-interpenetrating network (semi-IPN) Epidermal growth factor (EGF) Highest mitochondrial activities and [64]
hydrogel based on polyacrylamide (paam) and enhanced wound-healing
chitosan (CS)
Bio-multifunctional benzaldehyde-terminated 4- Basic fibroblast growth factor ~Having strong wet-tissue adhesion, self- [65]
arm PEG (4-arm-PEG-CHO)/carboxymethyl (BFGF) mending, and antibacterial property,
chitosan (CMCS)/basic fibroblast growth factor excellent biocompatibility and fast
(bfgf) hydrogels (BP/CS-bfgf) hemostasis capacity, display great potential

for diabetic chronic wound management
Curcumin-loaded chitosan nanoparticles Epidermal growth factor (EGF) Promising treatment for dermal wounds [66]
Hydrogel composed of a mixture of PVA, gelatin Basic fibroblast growth factor ~ Contribute to accelerated wound healing [67]
and chitosan (bfgf).

(continued on next page)
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Table 1 (continued)

Function Materials composition Growth factors Effects References
Name

Poly (lactic-co-glycolic acid) (PLGA), chitosan  Tylotoin (skin repair peptide) ~Promotes the migration and proliferation of [68]

Tylotoin nanoparticles (CPT nps) keratinocytes, fibroblasts, and vascular
endothelial cells; release of TGF-1 and IL-6;
macrophage recruitment; and fibroblast to
myofibroblast differentiation, increasing
drug bioavailability.

Chitosan-crosslinked collagen sponge (CCCS) Recombinant human acidic Improve the recovery of healing-impaired [69]

fibroblast growth factor (FGF) wound such as diabetic skin wound
Chitosan film containing basic fibroblast growth Basic fibroblast growth factor  Proliferation of fibroblasts, facilitates wound [70]

factor (BFGF) repair

Novel silver and nanoparticle-encapsulated Epidermal growth factor (EGF) Diabetic foot ulcer, [711
growth factor co-loaded chitosan composite Exhibited thorough re-epithelization,

hydrogel sufficient collagen deposition, and

accelerated collagen maturation, highly
advantageous for use in the clinical diabetic/
chronic wound treatment.

Film-forming spray of water-soluble chitosan Human epidermal growth Accelerated wound closure significantly [72]

(FFSWSC) containing hegf-liposomes factor (hegf)

Rhegf-Loaded Carboxymethyl Chitosan Recombinant human Showed good cytocompatibility. Accelerated [73]

Nanoparticles epidermal growth factors the wound-closure rate in full thickness, can
(rhegfs) be used as a topical wound-healing drug

carrier.

hormone. Erythropoietin, which promotes the production of red blood cells, is used to treat anemia brought on by chemotherapy for
cancer, zidovudine (AZT) therapy in AIDS patients, and anemia related to chronic kidney failure. Patients with cancer are given
granulocyte colony-stimulating factor (G-CSF; filgrastim) or granulocyte-macrophage colony-stimulating factor (GM-CSF; sar-
gramostim) to increase the production of white blood cells [26-28]. Furthermore, in regenerative engineering, bone morphogenetic
protein (BMP), fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), and transforming growth factor- (TGF-) are
commonly employed [27,29,30].

However, the controlled delivery of growth factors is an extremely difficult process, as the development of an optimal system
requires the resolution of a number of different obstacles. A diverse array of methodologies has been utilised to regulate the release of
growth factors. Extensive research has been conducted on polymeric carriers in the context of growth factor delivery.

Among an extensive array of natural polymers, chitosan is widely recognised as a highly-promising vehicle for the delivery of
growth factors [23,31]. It has been shown that this biomaterial encourages bone, cartilage, tooth, skin, heart, and nerve tissue
regeneration and repair, owing to its exceptional biological characteristics [31,32]. The major benefits of CS in tissue regeneration
[33] are illustrated in Fig. 4.

Extensive research has been conducted on chitosan-based porous matrices, including sponges, scaffolds, nanoparticles, foams, and
hydrogels, for the purpose of delivering growth factors that promote tissue regeneration. For instance, Modaresifar et al. [34], reported
that a Gelatin methacryloyl (gelMA)/chitosan nanoparticle composite hydrogel delivered angiogenic growth factor (bFGF), proving
itself biocompatible and having a capacity for sustained release. The hydrogel scaffold, capable of releasing over 75 % of bFGF within
four days, was ideal for angiogenesis applications. For cartilage tissue engineering, Faikrua et al. [35] documented the utilisation of
thermo-sensitive hydrogels, composed of chitosan-starch-p-glycerophosphate, to co-deliver chondrocytes and TGF-p1. The encapsu-
lated growth factor maintained its biological activity throughout the 14-day sustained release in vitro from these hydrogels. To achieve
higher levels of tissue engineering efficacy, Rajam et al. [36] investigated the feasibility of incorporation of combinative dual growth
factors and their controlled release for tissue engineering and drug delivery application. They found high loading efficiency (90 %) in
chitosan nanoparticles with EGF/FGF, resulting in sustained growth factor release (50 % was released by day 12) and prolonged
release (a constant release up to 35 days), influenced by diffusion and matrix erosion mechanisms. In another study, Azizian et al. [31]
introduced chitosan nanoparticles (average size 266 nm), incorporating chitosan-gelatin scaffolding, for the delivery of fibroblast
growth factor (FGF) and bovine serum albumin (BSA), in tissue engineering. The introduction of nanoparticles, loaded with BSA-FGF,
into chitosan-gelatin scaffolds, significantly improved their biological properties, enhancing their physical properties and promoting
fibroblast cell proliferation.

For tissue support and regeneration, chitosan may be easily shaped into scaffolds. Scaffolds with growth factors on them encourage
quicker tissue repair and regeneration than those without it [24]. Furthermore, recent research has focused on the application of
various chitosan biomaterial forms for skin injury treatment, highlighting their potential to enhance wound healing, reduce fibrosis,
and promote anti-inflammatory, antibacterial, and cell proliferative effects [34]. Chitosan aids wound healing by facilitating hemo-
stasis, promoting antibacterial protection, and promoting tissue proliferation.

However, chitosan’s mechanical properties limit its usefulness for skin regeneration. To improve strength and elasticity, synthetic
polymers, or inorganic substances, can be added to chitosan-based drug delivery systems. Loading with antibacterial, hemostatic, and
immune-modulatory drugs can further enhance their effectiveness [32,37].

There are several reports of chitosan-based hydrogels being used successfully for the management of wounds, with good healing
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outcomes. Through surface erosion, bulk erosion, and polymeric degradation, among other methods, chitosan, loaded with various
drugs, is transported to the site of injury. Subsequently, the drug molecules initiate the healing process within the impaired region.
Fig. 5 illustrates the mechanisms by which chitosan-based hydrogels facilitate the process of wound healing [38].

Chitosan displays positive effects at each step of the wound-healing process. In the hemostasis phase, chitosan promotes surface-
induced thrombosis and blood coagulation. It also accelerates coagulation in vivo by influencing the activation of platelets [39,40]. In
the inflammatory phase, CS can regulate the activity of inflammatory cells and the release of pro-inflammatory factors, providing a
micro-environment favourable for healing. In the proliferative process, CSprovides a non-protein matrix support for tissue growth.
Moreover, CS will gradually depolymerise, to release N-acetyl-p-D-glucosamine. This polymer will stimulate fibroblast proliferation,
angiogenesis and ordered collagen deposition at the wound site. Such events will enhance the wound healing process and prevent scar
formation in the remodeling process [41,42]. CS is also able to avoid the occurrence of skin infections, which are considered one of the
major complications associated with the wound-healing process. Ong et al. [43] reported a new chitosan-based composite dressing,
with potent hemostatic and antimicrobial properties, incorporating a procoagulant (polyphosphate) and an antimicrobial (silver) with
the chitosan.

The antibacterial effect results from the interaction of CS’ positively-charged amine groups with the negatively charged pepti-
doglycans of the bacterial cell wall. This interaction can lead to internal osmotic imbalances in the microorganisms which inhibit their
growth [39,41,43]. Furthermore, CS can bind to the DNA of the microorganisms and thereby inhibit mRNA synthesis. Such bonding
can interfere with the expression of proteins that are essential for microorganisms’ growth [38]. Table 1 presents a comprehensive
overview of chitosan-based materials, their compositions and their role in skin regeneration and wound management systems.

3. Delivery of anti-cancer drugs

Despite advancements in medical technology, cancer treatment remains inadequate due to its high mortality rate, side effects,
inefficiency, and high costs [74]. Nano drug delivery systems are rapidly developing in cancer treatment, due to their ability to control
drug release and improve bioavailability.

Nanocarriers improve drug delivery in oncology, enabling cancer treatment and diagnosis. These systems, which can be easily
cleared in systemic circulation, reduce cytotoxicity, and increase the therapeutic index. They are particularly suitable for use with
chitosan, among several materials utilised as nanocarriers.

Chitosan is a biopolymer that is easily modified, readily available, and non-toxic, making it a perfect carrier for the delivery of anti-
cancer drugs (Fig. 6) [75,76]. Research indicates that combining anti-cancer drugs with chitosan can enhance drug release periods,
minimise side effects, reduce dosing frequency, accurately deliver drugs to diseased areas, and increase patient tolerance [77].

A variety of cancer treatments have made use of chitosan polymers to transport drugs in the form of hydrogels, nanoparticles, and
nanofibers. Various features can be achieved by altering the surface moieties, for instance, by introducing a peptide that enters the cell
membrane, monoclonal antibodies, or receptors that target particular cancer cells [78-80]. Ailincai et al. [81] reported about drug
delivery systems using chitosan hydrogelation with citral and 5-fluorouracil. These systems have micro-porous morphology, uniform
encapsulation, enzymatic degradability, and sustained drug release, making them suitable for intraperitoneal chemotherapy. This
approach enhances the transportation of drugs to the intended location and minimises the impact on unintended areas.

Fig. 7 shows chitosan nanocarrier’s anti-cancer drug carrier activity. The illustration demonstrates how the ligand of chitosan
nanocarriers interacts with the overexpressed receptor of cancer cells. Following this binding, receptor-mediated endocytosis occurs,
resulting in the creation of an endosome and the subsequent controlled release of the drug. Following the release of the drug, the cell
undergoes apoptosis, resulting in DNA damage, translation blockage, and cell cycle arrest [82].

Trapani et al. [84] described the use of methotrexate- (MTX) loaded chitosan or glycol chitosan (GCS) nanoparticles (NPs) for the
treatment of brain tumors, both with and without a Tween 80 coating layer. It was demonstrated that the particles could cross the
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MDCKII-MDR1 cell barrier and were cytotoxic to the C6 cell line. The most cytotoxic NPs were those based on GCS. The findings imply
that Tween 80, even at low concentrations, is adequate to improve the transport of MTX from the NPs across MDCKII-MDR1 cells.
Ruman et al. [85] found that Sorafenib (SF)-loaded chitosan (SF-CS) and its folate-coated nanoparticles (SF-CS-FA) enhanced drug
delivery to human Hepatocellular Carcinoma and Colorectal Adenocarcinoma cell lines. The nanoparticles showed excellent release
under pH 4.8 in PBS solution, better anti-cancer action than free sorafenib, and negligible toxicity to normal cells.

An efficient and safe anti-cancer drug delivery system, using chitosan-based nanoparticles, was immobilised in sodium alginate
beads. The anti-cancer drug, doxorubicin, hydrochloride (DOX), was efficiently absorbed by the small intestine of Sprague Dawley
(SD) rats, with higher concentrations found in major organs after oral administration of porous beads [86]. A thermos-sensitive,
cross-linked, injectable chitosan hydrogel, with good biocompatibility and quick gel formation at body temperature, was reported
as excellent at efficient delivery of disulfiram to cancer cells [87]. Moreover, novel folate redox-responsive chitosan (FTC) nano-
particles was examined for intracellular MTX delivery, targeting folate receptors, and providing tumour specificity and controlled drug
release [88]. When compared to non-target chitosan-based NPs, these nanoparticles efficiently reduced HeLa cancer cell
multiplication.

Many investigations of natural, biologically-active chemicals are being undertaken, in order to create novel chemotherapeutic
drugs and cancer treatments. Propolis contains a high concentration of physiologically-active chemicals, which influence multiple
signaling pathways that regulate critical cellular processes involved in anti-cancer activity. Elbaz et al. [89] investigated a method for
improving propolis oral administration, solubility, bioavailability, and anticancer efficacy. They increased the solubility of propolis
and regulated its release with nanoparticles and chitosan microparticles. Propolis-loaded nano-in-microparticles demonstrated
improved solubility and controlled release, cytotoxicity, and apoptosis in human liver cancer (HepG2) and human colorectal cancer
(HCT 116) cells with considerable reduction in their number. Gupta et al. [90] formulated a paclitaxel-loaded chitosan nanoparticle
formulation (PTX-CS-NP-10), which showed improved anti-cancer activity in vitro and in vivo. In vitro release showed a persistent
pattern, with over 60% of the drug released within 24 h. The nanoparticulate formulation was biocompatible, safe, and reduced
hemolytic toxicity. It also enhanced late cell apoptosis, indicating that the nanoparticulate formulation not only reduced overall
toxicity but also improved the anti-cancer efficacy of paclitaxel. A novel approach was introduced by Abruzzo et al. [91] to encapsulate
lipophilic molecules into chitosan nanoparticles and deliver them to cancer cells. The nanoparticles were positively-charged, stable in
water, and reduced cell proliferation without causing reactive oxygen species (ROS) generation. In human breast cancer cell lines,
HelLa cervical cancer cells, and fibroblast cells, a chitosan/polyethylene oxide (CH/PEO/BBR) nanofibers scaffold containing Berberine
inhibited cell proliferation [92]. The nano-scaffolds also reduced cell viability in a time-bound way. Wu et al. [93] reported a new class
of chitosan-based hybrid nanogels, immobilised with Cadmium-Selenium (CdSe) quantum dots (QDs) in chitosan-poly (methacrylic
acid) networks. These nanogels exhibited excellent stability, reversible physical properties, and low cytotoxicity, enabling the illu-
mination of B16F10 cells and regulation of anti-cancer drug release.

Chitosan/multi-walled carbon nanotube (Cs/MWCNT) nanocomposite, for drug carriers, including 5-fluorouracil, curcumin, and
water-soluble curcumin derivative, showed higher cytotoxicity against MCF-7 cancer cells and better controlled release capabilities
than chitosan. This indicates a strong drug-CNT association [94].

In order to facilitate the targeted delivery of anti-cancer medications to cancer cells, a chain transfer agent was added to pH- and
redox-responsive Chitosan Nanogels (Ngs). Several advantages arise from the fact that this method distributes anti-cancer treatments
to tumour tissue centrally and does not involve intrusive medication administration [95]. The combination of ultrasound and
chemotherapy is proposed for improved anti-cancer therapeutic efficacy. Bifunctional nanodroplets, PFH @chitosan/alginate, show
excellent anti-tumour efficacy and tumour-targeting ability when pH changes and ultrasound exposure is applied [96]. They found that
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chitosan-based plumbagin microspheres showed significant anti-tumour efficacy and reduced systemic toxicity, with a 22.2-fold in-
crease in elimination half-life (t;/2) of plumbagin from chitosan microspheres, as compared to free plumbagin. This finding suggests
that chitosan-based microspheres have great promise as a means of anti-cancer drug delivery. Table 2 presents an overview of
chitosan-based drug delivery systems against cancer, including their compositions and effects in cancer treatment.

4. Stability of chitosan

Despite the outstanding performance of chitosan in drug delivery and other applications depicted in Table 2 above, chitosan de-
grades naturally into its basic, non-toxic components eventually. Its ability to help in destroying tumour and other cancer cells never
gets turned against the normal cells of the human body Numerous enzymes degrade chitosan in vivo, with lysozyme, a non-specific
protease present in all mammalian tissues, being the most important. This enzyme converts chitosan into non-toxic oligosaccha-
rides, which can be excreted or incorporated into glycosaminoglycans and glycoproteins [116,117]. Chitosan, with four possible
glycosidic linkages such as-D-D-, -A-A-, -A-D- and -D-A- (where A and D denote N-acetylglucosamine and glucosamine monomers,
respectively), can be degraded through acid hydrolysis, oxidative-reductive depolymerisation, ultrasonic degradation, or enzymatic
degradation, using specific enzymes [7,118], among other means. The potential pathways for chitosan’s structural breakdown are
depicted in Fig. 8. The mechanism and rate of chitosan degradation are largely dependent on the molecular weight, polydispersity,

Table 2
Chitosan-based anticancer Drug Delivery Systems.
Function Materials composition Anticancer drug name Effects References
Cancer Chitosan nanoparticles (CSNPs), Cisplatin (CP) and 5-fluoro-  Targeted drug delivery to tumour cells, promoting [96]
Treatment  crosslinked with sodium tripolyphosphate  uracil (FA) anti-bacterial and anti-cancer activities
(TPP)
Chitosan-coated magnetic nanoparticles Black pomegranate peel Targeted drug delivery to treat breast cancer [97]
(CCMNPs) extract (BPPE) as a novel
anti-cancer drug
Chitosan nanoparticles Doxorubicin (DOX) Doxorubicin and Doxorubicin-loaded chitosan [98]

nanoparticles deliver anti-cancer drug with lower
toxicity and less-negative impact on heart

Chitosan-modified Fe304 magnetic Imatinib Targeted anti-breast-cancer drug delivery [99]
nanoparticles
Tripolyphosphate-crosslinked chitosan lenalidomide (LND) Enhanced efficiency for anti-cancer drug delivery [100]
(TPPCS) nanoparticles
Chitosan/polyacrylic acid/Fe3O4 magnetic  5-Fluorouracil Enhanced stability of drug dose for a longer time due [101]
nanocomposite hydrogel to controlled release of drug in the colrectal area
Chitosan/3-methoxy-4- 5-fluorouracil Constant and controlled release of 5-FU anticancer [102]
hydroxybenzaldehyde (vanillin) drugs to colon.
nanoparticles
Chitosan (CS), magnetite (Fe30,), graphene Carboplatin (CARB) Better nano-carrier of the anti-cancer drug [103]
Oxide (GO) nanoparticles carboplatin.
Chitosan or glycol chitosan (GCS) Methotrexate (MTX) Enhancing the transport of MTX from the NPs across [104]
nanoparticles (NPs) MDCKII-MDR1 cells, administration of MTX to brain
tumors
Polycaprolactone/chitosan blend 5-fluorouracil Anti-cancer drug delivery system for colorectal cancer [105]
nanofibers and improved release efficiency
Chitosan nanoparticles Cytarabine Possibly better therapeutic efficiency against solid [106]
tumors.
Chitosan nanoparticles Paclitaxel Enhanced anti-cancer effect [107]
Chitosan (Cs)/Multi-walled carbon 5-fluorouracil, curcumin, Better slow and controlled release of anti-cancer drug [108]
nanotube (MWCNT) (Cs/MWCNT) and water-soluble curcumin
nanocomposite derivative
(i) Hydrophobically-modified chitosan Silibinin (SLB) Controlled-release delivery of SLB for cancer therapy [109]

nanoparticles (Palmitoyl Chitosan
Nanoparticles (pCNP))

Chitosan nanoparticles Pravastatin (PRV) Promising carrier for cancer medication due to [110]
sustained drug release
chitosan nanocarrier 5-fluorouracil Functionalisation of chitosan nanoparticles with [111]

drugs: solvation and binding energy provides stability
and controlled release of the drug

Chitosan/palladium nanocomposite Curcumin (CUR) and 5-Fluo- Prolonged release of the drug, successfully inhibits the [112]
rouracil (5-FU) growth of cancer cells

Polyoxalates cross-linked with chitosan (CS) Cisplatin (CDDP) Promising drug carrier for the delivery of CDDP, [113]

nanocomposites tumour growth inhibitionist

Chitosan (CH) nanoparticles Tamoxifen Increases intracellular concentration of Tamoxifen [114]

and enhances its anticancer efficiency by inducing

apoptosis in a caspase-dependent manner.
Chitosan hollow nanospheres (CHN) & Paclitaxel (PTX), Inhibited proliferation of lung cancer A549 cells and [115]
polystyrene nanospheres (PS) as templates increased their apoptosis
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degree of deacetylation, purity, and moisture content. Chitosan’s extreme sensitivity to outside influences and processing parameters
(such heating or freezing) can put stress on the material’s structure and lead to degradation [19,118]. As DD lowers, degradation
increases [117]. Degradation kinetics appear to be inversely related to the degree of crystallinity [119]. Furthermore, the length of the
chains (Mw) affects the degradation rate as well [120] (as one example among many).

Chitosan is highly-vulnerable to changes in its environment. Hardness and mechanical strength were reduced, for example, when
exposed to high temperatures (40 °C) because the overheated chitosan powder was dehydrated. Additionally, the rate of chitosan
degradation, especially in semi-solid and liquid items, may be affected by air temperature. The rate of hydrolysis was found to follow
first-order kinetics when chitosan solutions were stored at ambient or elevated temperatures, leading to quicker degradation of chi-
tosan chains [116,121]. In a chitosan solution held at 5 °C, no appreciable chain hydrolysis was observed. As a result, it is recom-
mended that chitosan be stored in closed containers at low temperatures (2-8 °C). High humidity conditions (RH > 60 %) cause water
molecules to penetrate chitosan chains more intensively, leading to swelling, reduced physico-chemical properties, and increased
hydrolytic degradation [122]. Kurek et al. [123] reported that high humidity increased chitosan film’s swelling, releasing active
compounds faster, and weakening muco-adhesive properties, due to dilution of functional groups for mucin interactions.

The limited stability and susceptibility to biodegradation of chitosan-based systems limit their practical use in biomedical appli-
cations. As a result, establishing a suitable shelf life for chitosan formulations has become a great challenge [116]. Several methods
have been developed to preserve the original characteristics of chitosan by preventing polymer chain degradation. Controlling
environmental parameters, altering manufacturing conditions (e.g., temperature, relative humidity, light), introducing an appropriate
stabilising component, producing chitosan blends with another polymer, or modifying the chitosan structure, using chemical or ionic
agents, can all improve stability [19,118,124,125]. Nevertheless, for numerous drug delivery applications, involving release of mini-
and macro-drug molecules, comprehending and controlling the degradation rate of chitosan-based devices is essential.

5. Side effects of chitosan in drug delivery: Allergenicity & cytotoxicity

Chitosan is widely respected, across the world, as a non-toxic, biologically-compatible polymer [126]. Chitosan is approved for
dietary applications in Japan, Italy and Finland and America’s FDA has approved chitosan for use in wound dressings [127].

However, research has shown that chitosan can induce an immunological response (allergy) in certain individuals, thereby causing
allergic reactions. So, concern about chitosan allergy may counterindicate use of medications with chitosan components in some
patients [128]. It is an issue on which we need more research and on which we should educate medical professionals.

Moreover, alterations of chitosan may result in varying degrees of toxicity. Chitosan formulations induce cytotoxicity into processes
including cellular uptake, drug release, augmentation of drug efflux, evasion of drug-induced apoptosis, and activation of DNA repair
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Fig. 8. Possible steps in chitosan’s compositional breakdown [19].
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pathways. Additionally, chitosan may induce toxicity through cell membrane injury [128]. It is important to bear in mind that the
integration of chitosan into drugs may alter the pharmacokinetic and biodistribution profiles of the new, integrated substance, which
may be significantly different than those of the component substances. Moreover, the charge interaction may cause alterations in the
kinetics of cellular absorption, as is the case with DNA complexes. The reduction or harmonising of the positive charges on the chitosan
molecule influences its interactions with cells and the micro-environment, frequently resulting in reduced toxicity and uptake. When a
covalent drug conjugate is present, the chitosan undergoes modifications to its physico-chemical properties (eg. hydrophilicity) and
conformation (eg. micelle formation). Such modification may thus subsequently impact distribution of chitosan and its assimilation by
cells. Additionally, the toxicity profile is influenced by the route of administration, which. in turn, also determines the uptake, con-
centration, contact period, and cell types affected, of the administration [127,128]. Scientists are attempting to resolve the issue of
chitosan’s minimal adverse effects, which must be viewed in their proper perspective and not overemphasised. However, until these
scientists succeed in eliminating potential problems in chitosan’s use, these issues must be borne in mind by those planning to use
chitosan-based drug delivery systems.

6. Challenges of chitosan for growth factor and anticancer drug delivery

Though there is a lot of published research on chitosan for growth factor and anti-cancer drug delivery systems, the US FDA has
only approved chitosan for a limited number of uses at this time. Since the FDA has not yet approved this material for all biomedical
purposes, very few biotech businesses are utilising it, fearing litigation if there are any unplanned impacts on patients. Despite being
biocompatible, there are certain challenges in using chitosan nanoparticles as drug carriers [129,130]. The lack of hemocompatibility
and poor stability of chitosan nanoparticles are two of the biggest barriers to their therapeutic utilisation. Many scholars have shown
the hemostatic properties of chitosan. While chitosan-based nanoparticles have been shown in animal experiments to be safe for
intravenous injections, the production of fatal embolisms is a concern. Clinical translational problems could also be caused by the
off-target dispersion of chitosan nanocarriers loaded with chemotherapeutic drugs. These carriers are readily phagocytosed by the
mononuclear phagocytic system, which is present at key sites throughout the human body [131,132] During apoptosis, chitosan’s
pharmacological cargo may be distributed to several organs. Chitosan has been licensed by the FDA for use in oral medication delivery
and wound healing. Beyond that, medicinal compositions containing chitosan may be hazardous in vivo [130,133]. Therefore, it is
essential to conduct safety analyses while creating chitosan-based drug carriers and to examine the nano-theranostic platforms they
use [134].

Notwithstanding these challenges, chitosan holds great promise for the delivery of growth factors and the treatment of cancer. As
new technologies develop and our knowledge of the mechanism of action of chitosan-based drug delivery carriers advances, the limits
in place will be lifted.

7. Future perspectives

Chitosan can be used in growth factor and anti-cancer drug delivery because of its excellent pharmacological properties. Many
potential applications exist for chitosan and its derivatives. Another strong indicator of their significance is the abundance of scholarly
literature on chitosan and its derivatives, based on nanomaterials. The commercial exploitation of chitosan, however, is hindered by
the challenges associated with producing uniformly-reproducible chitosan in large quantities from the many marine creatures found
worldwide. Chitosan derivativisation raises the total cost of production and raises the possibility of character-uniformity variances.
These constraints may be solved by research and technological breakthroughs, which will be aided by the increasing application of and
demand for chitosan and its derivatives. Among numerous biomolecules, however, chitosan has proven to be an ecofriendly, non-toxic,
and sustainable polymer. As a result, chitosan-based formulations, as growth factor and anti-cancer drug delivery carriers, will be
most-promising materials for application in the biomedical field for some time to come.

8. Conclusion

Drug delivery systems utilising chitosan, a naturally-occurring polysaccharide, have demonstrated promising results, particularly
for delivery of growth factor and anticancer drugs. Despite the wide variety of chitosan derivatives that have proven useful in
biomedical applications, very few have achieved the status of well-established specified compounds. Therefore, there is an enormous
demand for additional research to let us utilise chitosan and its derivatives for medicinal products delivery and develop them to their
full potential. This paper has summarised the status quo on chitosan and its derivatives. Aspiring scientists should read this paper, to
understand where we are on chitosan now, and then do the necessary work to show us the ways forward to develop our understanding
and use of chitosan fully.
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