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Abstract: Single-phase monazite-type ceramics are considered as potential host matrices for the
conditioning of separated plutonium and minor actinides. Sm-orthophosphates were synthesised
and their behaviour under irradiation was investigated with respect to their long-term performance in
the repository environment. Sintered SmPO4 pellets and thin lamellae were irradiated with 1, 3.5, and
7 MeV Au ions, up to fluences of 5.1 × 1014 ions cm−2 to simulate ballistic effects of recoiling nuclei
resulting from α-decay of incorporated actinides. Threshold displacement energies for monazite-type
SmPO4 subsequently used in SRIM/TRIM simulations were derived from atomistic simulations.
Raman spectra obtained from irradiated lamellae revealed vast amorphisation at the highest fluence
used, although local annealing effects were observed. The broadened, but still discernible, band
of the symmetrical stretching vibration in SmPO4 and the negligible increase in P–O bond lengths
suggest that amorphisation of monazite is mainly due to a breaking of Ln–O bonds. PO4 groups show
structural disorder in the local environment but seem to behave as tight units. Annealing effects
observed during the irradiation experiment and the distinctively lower dose rates incurred in actinide
bearing waste forms and potential α-radiation-induced annealing effects indicate that SmPO4-based
waste forms have a high potential for withstanding amorphisation.

Keywords: monazite-type SmPO4; actinide waste form; radiation damage; ion-beam irradiation;
threshold displacement energies

1. Introduction

Since the 1980s, various single-phase and polyphase ceramic materials have been
discussed as potential waste forms for the immobilisation of special nuclear waste streams,
such as separated plutonium from civilian sources, excess weapons plutonium, or separated
minor actinides (MA: Np, Am, Cm) (e.g., [1–10]). In this context, monazite-type compounds
(i.e., monoclinic lanthanide orthophosphates LnPO4) have been subject to particular interest
due to their specific physico-chemical properties including high structural flexibility for
actinide incorporation, high chemical durability, and high radiation resistance ([11–23]).
Monazite crystallises in the monoclinic system (space group P 21/n, Z = 4) with its structure
composed of chains of alternating and edge-sharing LnO9 polyhedra and PO4 tetrahedra
parallel to the c-axis; the large and irregular LnO9 polyhedra can easily incorporate and
accommodate a variety of cations including actinide elements [16,24–26].
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One important issue for crystalline ceramic waste forms concerns potential property
changes in response to radiation-induced phase transformations due to the α-decay of the
incorporated actinides (e.g., [3,4,27,28]). The α-decay of actinide elements (e.g., Th, U, Np,
Pu, Am, and Cm) produces α-particles (i.e., 4He2+ nuclei) with energies between 4.5 and
6 MeV and some γ-rays. The recoiling nuclei (energy 70 to 180 keV) contribute mostly to
radiation damages in crystalline ceramic materials, producing about 1000 to 2000 atomic
displacements due to ballistic effects [4,9,29]. In contrast, despite their significantly higher
energy, the α-particles induce only about 100 to 200 atomic displacements, mainly due to
ionisation effects [29].

Monazites in nature can contain significant amounts of naturally occurring α-decaying
radionuclides such as thorium (up to 30 wt% ThO2) and uranium (up to 16 wt% UO2)
(cf., [3,27,30–32]). In spite of comparatively large α-doses received by monazites with high
uranium and thorium content over long timescales (i.e., often about 1019 to
1020 α g−1; [33–36]), monazites are usually found in the crystalline state in nature
(e.g., [34,36–42]), independently of their thermal history. Sm-rich monazite with an age
of 2.64 Ga containing 16.3 wt% ThO2 [43]—α-dose approx. 3.5 × 1020 α g−1—showed
also no evidence of metamictisation. This lacking evidence for metamictisation and the
apparent resistance of monazite in nature to radiation-induced amorphisation were among
the key factors leading to consideration of monazite-type ceramics as potential nuclear
waste forms [4,27].

Monazite can be amorphised rather easily by ion-beam irradiation (e.g., [41,44–50]),
where dose rates are several orders of magnitude higher than internal α-dose rates inflicted
on actinide-bearing monazites (e.g., ~1500 to 3000 α g−1 s−1; [33–35]). This contrasting
behaviour suggests that in geologic environments, the rate of damage recovery exceeds
the rate of damage production, consistent with the low critical temperatures Tc observed
for ion-beam-induced amorphisation of monazites (Tc < 500 K; e.g., [44–47]), low tem-
peratures (~570 K), and activation energies (<3 eV) required for thermal annealing and
recrystallisation (cf., [4,41,47,50–53]). Moreover, from comparison of the amorphisation
behaviour of ion-beam irradiated monazite and self-irradiated 238Pu implanted monazite, it
was inferred that α-radiation-induced annealing might play an important role with respect
to the observed crystallinity of actinide-bearing monazites [41,50].

Systematic ion-beam irradiation studies of lanthanide orthophosphates were con-
ducted by Meldrum et al. using 800 keV Kr2+ irradiation, following the amorphisation
process using selected-area electron diffraction and transmission electron microscopy [46].
The critical temperature Tc above which no amorphisation can be achieved was found
to be lower for LnPO4 compounds with monazite structures (Ln = La—Gd; Tc: 350 to
490 K) compared to the phosphates of Tb, Tm, Yb, Lu, Sc, and Y that crystallise in the
zircon structure (Tc: 480 to 580 K), with a systematic increase with the atomic number of
the lanthanide cation [46]. Moreover, monazite- and zircon-structure phosphates reveal
distinctively lower critical temperatures than their silicate analogues [27,47]. In general, a
higher resilience against radiation-induced phase transitions was observed for ABO4-type
phosphates compared to structurally related silicates [39,47,54].

Due to the size of the Sm3+ ion (r = 113.2 pm, CN = 9, [55]), SmPO4 with a monazite
structure can easily incorporate and immobilise relevant radionuclides (e.g., Pu, Am, Cm),
which exhibit both slightly larger and slightly smaller cationic radii than Sm3+ [56,57].
Therefore, we investigate the potential application of monazite-structured SmPO4 as a
waste form for specific actinide-containing radioactive waste streams. Here, we focus
on the analyses of the effects of internal radiation on the local structure and short-range
order in SmPO4 monazite, using vibrational spectroscopy to derive conclusions on the
potential long-term structural behaviour of an actinide-bearing SmPO4 waste form in a
geological disposal facility. The damage produced in the monazite structure by α-decay
of incorporated actinides was simulated by using multiple-energy ion-beam irradiation
under controlled experimental conditions. The experimental approach was aligned to
previous studies of Picot et al. [48], Nasdala et al. [49], and Deschanels et al. [50], who used
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triple irradiation with Au ions of 1, 3.5, and 7 MeV energy to induce radiation damage in
LaPO4 [48,50], La0.73Ce0.27PO4 [48] and CePO4 [49], respectively, and used inter alia Raman
spectroscopy to investigate the effects of ion-beam irradiation on the monazite structure
(cf., [42,48,49]).

An important parameter to describe radiation effects in solid materials is the thresh-
old displacement energy, Ed, which constitutes the minimal kinetic energy required to
displace an atom from its original position inside the crystal lattice. The Ed value of a
primary knocked-on atom (PKA) is a material property dependent on the nature of the
atom and its local structural environment (e.g., [58–61]). The threshold displacement
energies Ed are decisive parameters when simulating the extent of radiation damage in
materials (e.g., calculation of displacements per atom, dpa) with widely used codes such as
SRIM/TRIM [62,63] or DART [64–66]. However, the displacement energies are generally
difficult to obtain by experiments and the values are known mainly for simple oxides
but only for relatively few ceramic materials and are unknown for most minerals [29].
According to Meldrum et al., the Ed values for lanthanide orthophosphates were so far not
known [47]. Recently, a couple of atomistic modelling studies reported the derivation of
these values for selected monazite-type ceramics [67,68]. Therefore, instead of using default
Ed values implemented in SRIM/TRIM (e.g., [49]) or using those for structurally related
silicates such as zircon (e.g., [39,47]), we used atomistic simulations to derive Ed values for
various monazites, such as LaPO4 and GdPO4 [68], as well as SmPO4 [this work].

2. Materials and Methods
2.1. Sample Preparation and Characterisation

For the production of SmPO4 ceramics with monazite structures, a rhabdophane-
type precursor phase (SmPO4 · nH2O) was synthesised at ambient temperature via a
coprecipitation route, similar to the method described by Boakye et al. [69]. An aqueous Sm-
nitrate solution (Alfa Aesar, Thermo Fisher GmbH, Kandel, Germany; >99.9% purity) was
mixed with citric acid (CA) as chelating agent in a molar ratio of Sm:CA = 1:2. Subsequently,
an excess of phosphoric acid (Merck KGaA, Darmstadt, Germany; EMSURE®) (P) was
added to this solution (Sm:P = 1:5) and the pH was adjusted to about 10 by adding NH4OH
(25% v/v; Merck KGaA, EMSURE®) while stirring to obtain quantitative precipitation.
After drying at 90 ◦C, the precipitates were calcined at 550 ◦C for 3 h. After each thermal
treatment step, the materials were ground in an agate mortar. The calcined powders were
then pressed into pellets with a 10 mm diameter by uniaxial pressing (60 kN or 765 MPa,
resp.) and sintered at 1600 ◦C for 5 h.

The microstructure and homogeneity of the pellets were investigated by scanning
electron microscopy (SEM) and energy dispersive X-ray spectroscopic (EDS) analyses using
a Quanta 200F instrument (FEI, Eindhoven, The Netherlands) equipped with an Apollo X
silicon drift Detector (EDAX, Weiterstadt, Germany). The measurements were performed
in a low-vacuum mode at 60 Pa, using an acceleration voltage of 20 kV and spot size
4. EDS mapping was carried out at a working distance of 10 mm and a magnification
of 500×, using a resolution of 512 × 400 pixels with a size of 1.11 × 1.11 µm2. X-ray
diffraction (XRD) analyses were performed on polished pellets and sintered powders with
a D4 ENDEAVOR diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) equipped with
a LynxEye detector, using Cu radiation (λ Cu Kα1 = 1.5406 Å) at a power setting of 40 kV
and 40 mA. XRD patterns were obtained at ambient conditions in the 2 Θ range from 10 to
100◦/130◦ (pellet/powder) using a step size of 0.02◦/2 Θ and a counting time of 0.5/4 s
(pellet/powder) per step. EVA software (Bruker AXS GmbH) was used for qualitative
phase analysis, as well as for background and x-axis correction, and Kα2 stripping for
visualisation. For refinement of the Sm-orthophosphate structure, the Rietveld method [70]
as implemented in the Topas-Academic software (Coelho Software, Brisbane, Australia;
Version V4.1; [71]) was used, applying a fundamental parameter approach for X-ray line
profile fitting [72]. In the refinement, sample height/displacement, crystallite size, lattice
parameters, and fractional coordinates for all sites, as well as a six-coefficient background
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polynomial were allowed to vary, using the monazite structure of Ni et al. as a starting
model [24].

SmPO4 lamellae for irradiation experiments were prepared from sintered pellets by
focused ion-beam (FIB) milling, using a Zeiss NVision 40 Cross Beam workstation (Carl
Zeiss AG, Oberkochen, Germany) (cf., Figure 1). The instrument is equipped with a
GEMINI high-resolution field emission electron gun and a high performance SIINT zeta
FIB column, thus providing for a combination of ion milling and sample characterisation
by SEM. Prior to sample preparation, the pellet was coated with a carbon layer to enhance
conductivity. A protective layer of around 2 µm thickness of Pt was deposited on the
region of interest to protect the sample surface. Afterwards, an approximately 1.5 µm
thick slice was cut out of the bulk material using a Ga ion-beam at a power setting of
13 nA and 30 kV, and attached to a Cu sample holder by C deposition. The lamellae were
subsequently thinned with a decreasing beam current and finished with a low kV polishing
(10 kV/10 pA) to reduce amorphisation and Ga implantation on the sample surface due
to the Ga ion-beam. Four lamellae were prepared with a size of about 20 × 15 µm2 and a
final thickness between 300 and 600 nm. No obvious grain boundaries were observed in
the finished lamellae by SEM examination.
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Figure 1. Preparation of FIB-lamellae, (a) wedge-shaped trenches dug out with the focused Ga
ion-beam on both sides of the sample material covered with a protective Pt layer, (b) attachment of
lamella to the sample holder (Figures taken from [56]).

Raman spectra were recorded on sintered SmPO4 pellets and FIB lamellae at ambient
pressure using a Horiba Jobin Yvon LabRam HR (high resolution) Raman spectrometer
(HORIBA Jobin Yvon, Villeneuve d’Ascq, France) with a focal length of 80 cm, equipped
with a Peltier-cooled charge-coupled device (CCD) detector, using a diffraction grating
with 1800 grooves per mm. For excitation, a He-Ne laser (wavelength 632.8 nm) was
employed. The spectral resolution, i.e., the instrumental profile function or apparatus
function, was evaluated to be 0.8 cm−1. Spectra were recorded in the wavenumber range
from 100 to 1200 cm−1. For each spectrum, an acquisition time of 10 to 25 s (pellet samples)
and 60 s (FIB lamellae), respectively, was used, with an average of two accumulated spectra.
Multiple measurements were performed across each pellet and lamella, respectively, to
consider potential lateral variations. Peak positions were analysed using the Horiba
LabSpec software (HORIBA Scientific, Villeneuve d’Ascq, France; version 5.58.25) after
fitting the Raman modes using Gaussian–Lorentzian mixed functions. The measured
FWHMs of the Raman bands were corrected for the “apparatus function” or “instrumental
profile function (IPF)” of the Raman system (cf., [42,73–75]), using the empirical formulae of
Dijkman and van der Maas [73] and Váczi [76], respectively. Both methods lead to similar
true FWHMs; in all cases the corrections amounted to less than 0.2 cm−1.
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2.2. Ion-Beam Irradiation

Three SmPO4 pellets and lamellae each were irradiated with multiple-energy Au
ions at the JANNuS facility at the Commissariat à l’Energie Atomique et aux Energies
Alternatives (CEA), Saclay, France, using the Japet accelerator. The Japet acceleration facility
consists of a 6SDII-2 2MV Tandem pelletron-accelerator, equipped with an SNICS II ion
source. The samples were irradiated at ambient conditions with equal doses of Au ions
with energies of 1 MeV (Au2+), 3.5 MeV (Au3+), and 7 MeV (Au5+), to obtain a rather
constant deposited nuclear energy profile throughout the affected depth zone of up to about
1.5 µm (cf., [48–50]). The selected fluences per Au ion energy were 2.0 × 1012, 6.0 × 1012, and
1.7 × 1014 ions cm−2, respectively, i.e., the total doses of the triple irradiations ranged from
F1 = 6.0 × 1012, via F2 = 1.8 × 1013 to F3 = 5.1 × 1014 ions cm−2. In order to minimise
potential ion channelling in the monazite samples, the ion-beam was directed at an angle
of about 15◦ to the surface of the pellets and lamellae, respectively. The temperature in the
sample chamber was kept to about 20 ◦C. Irradiation-induced changes in the crystallinity of
the monazite-structured SmPO4 samples were assessed by Raman spectroscopy, comparing
the spectra of the irradiated samples to measurements performed on an unirradiated
reference pellet and lamella, respectively.

2.3. SRIM/TRIM Calculations and Simulation of Threshold Displacement Energies

The penetration depth of the Au ions, the resulting displacements of target atoms, and
the distribution of vacancies in the experimentally studied monazite-structured SmPO4
were evaluated with the help of the SRIM/TRIM (Stopping and Range of Ions in Mat-
ter/Transport of Ions in Matter) software package, using SRIM-2013 (cf., www.srim.org).
SRIM/TRIM employs a Monte Carlo (MC) simulation method to address interactions
of ions with energies of up to 2 GeV amu-1 with matter. It is based on a quantum me-
chanical treatment of the collisions of incident particles with the atoms in the target ma-
terial [62,63,77] using the binary collision approximation (BCA) [78]. The results of the
SRIM/TRIM simulation results comprise, inter alia, the three-dimensional distribution of
sputtered ions and vacancies in the target material, as well as the partitioning between nu-
clear and electronic energy losses, following all target atom cascades in the target material
in detail. In the SRIM/TRIM simulations, it is generally assumed that the target is isotropic
and amorphous. Moreover, annealing or recrystallisation processes are disregarded. The
TRIM simulations of the irradiation experiments were performed for 10,000 incident ions in
full cascade mode to obtain sufficient statistical precision. The density of the unirradiated
SmPO4 was set to 5.3 g cm−3 corresponding to the measured density of the sintered SmPO4
pellets (i.e., ~94% of the theoretical density of SmPO4 with a monazite structure [56]).

The threshold displacement energies Ed of all three chemical species constituting the
investigated material were derived by intensive molecular dynamics simulations using the
LAMMPS code [79], adapting the methodologies of Robinson et al. [80] and Ji et al. [68],
respectively. In addition to the standard Coulomb interaction term, Buckingham-type
interaction potentials between atoms of type i and j, Φi,j, in the form [81]

Φi,j = A· exp(−Br)− C/r6 (1)

were employed in the simulations, with r being the distance between interacting atoms. The
A, B, and C parameters for the Ln–O interactions were fitted to reproduce the ab initio data
of Blanca-Romero et al. [82]. Regarding the P–O and O–O interactions, the parametrisation
of Gale and Henson [83] and Girard et al. [84] were applied, respectively (cf., Table 1);
cut-off values of 12 Å were applied for the interatomic distances. The resulting interaction
energy is given in eV.

www.srim.org


Materials 2022, 15, 3434 6 of 23

Table 1. Buckingham potential parameters used in the simulations.

A/eV B/Å–1 C/Å6 eV

Sm–O 14,794.52 0.26 0.00
P–O 877.3 0.3594 0.0000
O–O 22,764.3 0.1390 27.879

The simulations of the Ed values were performed using monazite structure supercells
containing 1536 atoms, assuming a range of PKA energies for each atom. For each PKA
energy, 100 independent simulations were performed with the PKA initial velocity direc-
tions distributed randomly or symmetrically on the surface of a sphere with the symmetric
arrangement constructed according to the Thomson model (cf., [80]); both simulation
methods yielded very similar results. Each simulation was performed for 5 ps allowing
for the diminishing of effects of the initial cascade and subsequent system equilibration.
An algorithm to analyse displacements and defects according to initial and final atomic
positions in the monazite-type lattice was employed to estimate displacement and defect
formation probabilities. The simulations were performed assuming T = 300 K, controlled
by a thermal layer. The threshold displacement energies, Ed, were obtained from the depen-
dence between the initial PKA energy E and the displacement probabilities DP(E) [80,85],
by fitting the equation:

DP(E) = [Eα − Eα
d]/β, E > Ed (2)

with α and β as fitting parameters.

3. Results
3.1. Material Characterisation

The XRD patterns of sintered SmPO4 powder and pellet samples are shown in Figure 2,
revealing the typical monoclinic monazite structure. The structural parameters (Table 2)
and bond lengths obtained by Rietveld refinement are in good agreement to published
structural data, obtained by XRD (e.g., [18,24,86–88]) or atomistic simulations [67,82];
however, the DFT data of Rustad [89] systematically overestimate the lattice parameters
by a few percent, which is expected from the Perdew–Burke–Ernzerhof (PBE) exchange-
correlation functional [90] applied in these studies. No additional phases or impurities
were detected by XRD.
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Table 2. Structural data of monazite-type SmPO4 obtained by Rietveld refinement compared to
selected published crystal data.

Reference a/Å b/Å c/Å β/◦ V/Å3

This work 6.69035 (4) 6.89207 (4) 6.37219 (4) 103.8632 (4) 285.2647 (3)
[24] 6.6818 (12) 6.8877 (9) 6.3653 (9) 103.86 (1) 284.42
[87] 6.6891 (3) 6.8958 (3) 6.3770 (6) 103.9 (1) 285.54
[88] 6.6902 (9) 6.8935 (5) 6.3714 (3) 103.871 (9) 285.30
[18] 6.6888 (3) 6.8948 (2) 6.3725 (3) 103.87 (1) 285.32 (5)
[89] 6.803 6.961 6.394 104.2 293.52

[82] * 6.731 6.923 6.383 104.081 288.523
[67] * 6.686 6.880 6.344 104.032 283.128

* Values derived from atomistic simulations—due to the approximate character of the applied DFT method, the
expected relative error in these values is up to about 3%.

The uniform grey values obtained in SEM pictures of polished pellets taken in back
scattered electron (BSE) mode already indicate the chemical homogeneity of the synthesised
monazite-structured SmPO4 (cf., Figure S1 in the Supplementary Materials). Moreover, the
EDS analyses and the elemental mappings performed on polished pellets revealed that,
within the error of the applied analytical method and on the scale of the applied methods,
the synthesised monazite-structured SmPO4 is chemically homogeneous (cf., Figure 3).
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Figure 4 shows SEM-BSE images taken from the fracture edge of an (intentionally)
broken sintered SmPO4 pellet, revealing a dense, nonregular texture with elongated SmPO4
grains without preferential orientation. According to Heuser, the density of the sintered
pellets was about 94% of the theoretical density of monazite-structured SmPO4 [56]. The
SmPO4 grains contain partly small (1 to 5 µm), round intergranular pores. Conchoidal
fractures as well as fractures along smooth grain boundaries and/or cleavage planes are
present. From the SEM pictures, the dimensions of the grains were estimated to be about
100 to 120 µm along the longer axis, and about 10 to 25 µm in cross direction and showed
no preferred orientation (cf., also data from optical microscopy in [56]).
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3.2. Simulation of Threshold Displacement Energies

The simulated displacement probabilities for the Sm, P, and O atoms in the monazite
structure as a function of PKA energy are shown in Figure 5. Each point represents the
average value obtained by sampling the 100 directions for a single PKA energy.
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The derived Ed values are 49 eV for Sm, 65 eV for P, and only 8 eV for O, indicating
that it is easiest to form a defect at the oxygen site and hardest to displace the P atoms
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in the phosphate tetrahedra in the SmPO4 lattice. Due to the high P–O bond strength
compared to the Sm–O bond, the P atoms are “protected” against displacement within the
PO4 tetrahedra. Moreover, the ionic radius of P (17 pm) is significantly smaller compared
to O (138 pm) and Sm (113.2 pm) in the monazite structure [55]; hence, the probability of
striking a P atom in a displacement cascade is lower. Similar trends with respect to the
Ed values have been obtained previously [68] in atomistic simulation studies addressing
monazite structures containing La and/or Gd (cf., Section 4.1). The Ed values for oxygen are
practically identical (~8 eV); however, with respect to the Ed values of the A and B cations,
the simulation results show lower values for SmPO4 compared to the terminal monazite-
type phases within the monazite-type series (LnPO4, Ln = La—Gd), in particular for P. A
similar observation was made for monazite-structured (La,Eu)PO4, where a minimum of
Ed values for the Ln-cations within this monazite-type solid solution series was calculated
for an Eu mole fraction of 0.2 [91]. The authors interpreted the observed minimum as a
consequence of two opposing effects: (i) the decrease of the unit cell volume with increasing
Eu content, impeding the displacement of the Ln-cations, and (ii) the weakening of the
Ln–O bond with an increasing Ln atomic number, facilitating the displacement of the Ln-
cations [91]. These opposing effects can probably also serve as an explanation for the lower
Ed values for Sm and P in SmPO4 compared to the values derived for the A and B cations
in LaPO4 and GdPO4.

3.3. SRIM/TRIM Simulations

SRIM/TRIM simulations of the triple irradiation of monazite-structured SmPO4 with
Au ions were performed in support of the interpretation of the results of the ion-beam
irradiation experiments. Figure 6 shows the simulated energy deposition by nuclear
stopping processes (i.e., elastic collisions between the Au projectile ions or recoiling nuclei
with atoms in the monazite structure) and electronic stopping processes (i.e., inelastic
collision between bound electrons in the monazite structure and the moving Au ions or
recoiling nuclei) for the individual irradiations as a function of sample depth. The average
energy deposition and doses are summarised in Table 3. During triple irradiation, about
69% of the energy of the incoming Au ions is deposited by electronic stopping processes;
the energy deposition by nuclear stopping processes amounts to ~31%.
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Table 3. Average energy deposition and doses during triple-energy irradiation of SmPO4 with Au
ions (1, 3.5, 7 MeV).

Fluence/Ions cm−2 Average Energy Deposition/keV cm−3 Average Dose/MGy
Total Nuclear Electronic Total Nuclear Electronic

F1 6.0 × 1012 1.57 × 1020 4.85 × 1019 1.09 × 1020 4.8 1.5 3.3
F2 1.8 × 1013 4.72 × 1020 1.45 × 1020 3.26 × 1020 14.3 4.4 9.9
F3 5.1 × 1014 1.34 × 1022 4.12 × 1021 9.24 × 1021 403.9 124.5 279.4

The simulated vacancy distribution in the monazite-structured SmPO4 due to triple
irradiation with Au ions (1, 3.5, and 7 MeV) and the calculated dpa dose for the fluences
used in the irradiation experiments are shown in Figure 7 as a function of sample depth.
The results of the SRIM/TRIM simulations are summarised in Table 4. According to the
simulations, the maximum in the number of vacancies is located at a distance of about
120 nm from the sample surface; the irradiation affected zone extends to a depth of about
1640 nm in bulk SmPO4 with a monazite structure. As expected from the displacement
threshold energies, mainly O vacancies are created, whereas the number of Sm and P
vacancies are relatively low. The simulated depth profiles indicate that the thickness of the
irradiated lamellae (300 to 600 nm) is significantly smaller than the depth range affected by
irradiation-induced damage in SmPO4, suggesting that the lamellae could be completely
amorphised in the ion-beam irradiation experiments at sufficiently high fluence, as long
as the temperature during the experiment is below Tc. The simulated profiles indicate
that, due to the application of triple irradiations with different energies at equal fluences, a
damage gradient is expected to develop in the irradiated SmPO4 material. However, the
damage predicted in the irradiated FIB lamellae (300 to 600 nm thickness) is rather similar
(on average ~180 to 190 vacancies ion−1 nm−1) with a relative standard deviation of approx.
20%.
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The simulated depth of the irradiation-affected layer on the surface of bulk SmPO4 (e.g.,
when irradiating pellet samples or (larger) single crystals) agrees well with experimental
results obtained on Au ion irradiated La-monazite pellets by Deschanels et al., using a
triple irradiation scheme similar to the one in this study [50].

Applying BF-TEM and selected area diffraction, these authors found amorphisation in
La-monazite up to 1.6 µm after irradiation at a fluence of 7.2 × 1014 ions cm−2.
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Table 4. Results of SRIM/TRIM simulation of external Au ion irradiation of monazite-structured
SmPO4 pellets and lamellae.

Pellet Samples Lamellae

F1 F2 F3 F1 F2 F3

Fluence/ions cm−2 6.0 × 1012 1.8 × 1013 5.1 × 1014 6.1 × 1012 1.8 × 1013 5.1 × 1014

dpa(max) 0.06 0.19 5.44 0.06 0.19 5.44
dpa(avg) 0.03 * 0.08 * 2.13 * 0.05 0.15 3.81

* Averaged over the irradiation-affected depth of 1640 nm.

3.4. Ion-Beam Irradiation of SmPO4

Raman microspectroscopic analyses were performed on pristine monazite-structured
SmPO4 samples and SmPO4 pellets and lamellae after multienergy Au ion irradiation.
In Raman spectroscopy, increasing short-range disorder is commonly characterised by
band broadening, using the FWHMs as a measure for disorder in crystal structures
(e.g., [36,42,49,75,92]). The ν1 symmetric stretching band of the PO4 tetrahedra (~980 cm−1)
was used for assessing the short-range order of the monazite-structured SmPO4, due to its
high intensity even in (partially) radiation-damaged samples, and the lack of significant
orientation dependence of the Raman shift and the bandwidth (cf., [36]). The sensitiv-
ity of the ν1 vibration of monazite-type phases to structural disorder has already been
demonstrated, for example, by Seydoux-Guillaume et al. [33], Nasdala et al. [49], Ruschel
et al. [36], and Nasdala et al. [42]. Raman stretching modes are specifically sensitive to
local disorder of nearest neighbour structural atoms, particularly atoms from other sublat-
tices [92]. Table 5 provides the ν1 vibration band positions and FWHMs of unirradiated
and irradiated SmPO4 samples.

Table 5. Position and FWHM of the Raman band ν1 of unirradiated and irradiated SmPO4 pellets
and lamellae.

Pellet Samples Lamellae

F1 F2 F3 F1 F2 F3

Fluence/ions cm−2 0 6.0 × 1012 1.8 × 1013 5.1 × 1014 0 6.1 × 1012 1.8 × 1013 5.1 × 1014

ν1/cm−1 982.0 981.8 981.6 982.4 980.9 979.6 979.3 961.8
FWHM/cm−1 4.3 3.6 3.5 3.4 3.5 5.2 6.5 >>10

Figure 8 shows Raman spectra of pristine and Au-irradiated SmPO4 pellets. The
position of the ν1 band in the unirradiated material at 982.0 cm−1 is in agreement with
the data from Begun et al. [93] and Ruschel et al. [36], obtained on SmPO4 single crystals
(ν1(PO4): 982 cm−1 and 981.3 cm−1, respectively). Silva et al. [94] determined a slightly
higher value for the position of the ν1 band of SmPO4 in monazite structure (983 cm−1).
However, the FWHM of the ν1 band (averaged over a number of measurements performed
on three unpolished pellets) of the unirradiated material was found to be somewhat
higher than the one from Ruschel et al. [36] (FWHM 2.6 cm−1), potentially due to the
polycrystalline nature of the material used in the investigations of this study.

The spectra of the pellets irradiated at fluences F1 and F2 are rather similar to the
unirradiated crystalline reference sample; however, a decrease in intensities was observed,
and, therefore, not included in Figure 8. Only at the highest fluence (5.1 × 1014 ions cm−2,
average dpa = 2.13), a slight change around the band of the ν1 vibration of the phosphate
tetrahedron was observed, leading to the development of a shoulder with higher intensity
at lower wavenumbers, indicating an amorphisation at the pellet surface (cf., Figure 8,
right). Based on the SRIM/TRIM calculations, the irradiation-affected zone extends to
about 1600 nm below the pellet surface. In contrast, the depth of the volume analysed by
Raman spectrometry is distinctively larger (cf., [49]). Moreover, the Raman scattering from
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the crystalline bulk material beneath the irradiation-affected zone is more intense than from
amorphous material (cf., [42,49]). Thus, the Raman spectra obtained from irradiated pellet
samples show mainly contributions from the underlying crystalline material, obscuring the
observation of irradiation-induced structural changes close to the sample surface, despite
the calculated average defect densities of up to about dpa = 2.1 in the irradiation affected
surface layer.
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arrow indicates a shoulder developing at a wavenumber around 960 cm−1 (Figures reproduced
from [56]).

In Figure 9, the representative Raman spectra of nonirradiated and Au ion irradiated
FIB lamellae are shown. The thickness of the lamellae is significantly smaller than the
calculated penetration depth of the Au ions and the extent of the irradiation-induced
damaged zone; thus, the ion irradiation affects the complete lamellae, inflicting calculated
average damages of 0.05, 0.15, and 3.81 dpa in the monazite-structured SmPO4 materials,
respectively. The Raman spectrum of the nonirradiated lamella is rather similar to the
one of the pristine SmPO4 pellet. However, a slight shift in the position of the ν1 band
to lower wavenumbers (980.9 cm−1) was observed, compared to the unirradiated pellet.
This shift, similar to the one observed for monazite-(Ce) lamellae and single crystals by
Nasdala et al. [49], as well as the higher FWHM compared to data from SmPO4 single crys-
tals [36] can probably be attributed to contributions of surface effects and/or local strain in
the foils from sample preparation (cf., [42,49,95]). With increasing doses, a broadening of
the Raman bands accompanied by frequency shifts towards lower wavenumbers and de-
creasing intensities are observed that are typical for radiation-damaged minerals/materials
(incl. Ln-orthophosphates), indicating a decrease in crystallinity (e.g., [33,42,49,96]). The
thickness of the investigated FIB lamellae was in the order of the wavelength of the laser
used for the Raman spectroscopy, which can result in the broadening of Raman bands due
to surface strain or other effects (cf., [42,49,95]). Here, these effects seem to be small com-
pared to the irradiation-induced changes provoked in the differently irradiated lamellae,
thus not impeding the general conclusions of this work.

At the highest fluence F3, instead of a peak of the symmetrical stretching vibration ν1,
only a broad bump at ~962 cm−1 is visible in an otherwise nearly featureless spectrum, in-
dicating amorphisation including distortion of the phosphate tetrahedra. Nasdala et al. [42]
assigned a low-intensity broad bump centred near 950 cm−1 in the Raman spectrum of
irradiated monazite-(Ce) (i.e., red shift of ~20 cm−1 compared to the unirradiated material)
to the Raman signal of amorphous CePO4. However, Raman spectra obtained at differ-
ent measuring points on this lamella reveal an inhomogeneous distribution of areas of
varying crystallinity in the sample, ranging from nearly crystalline, via intermediate to
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completely amorphised areas (Figure 10a). Exemplarily, the Raman spectra from areas of
different crystallinity in this sample are depicted in Figure 10b. Due to the small facial
area of the lamellae (20 × 15 µm2) compared to the beam size (2 × 2 cm2), a nonuniform
irradiation of the lamellae is very unlikely to be the cause for the varying crystallinity. The
temperature set in the irradiation chamber during the experiment (~293 K) was well below
the critical temperature for SmPO4 with a monazite-structure of 472 K as determined by
Meldrum et al. [46]. However, slight heating of the samples themselves during ion-beam
irradiation, thus facilitating annealing effects, cannot be ruled out. Thus, the varying degree
of crystallinity in this sample is assigned to local recrystallisation/annealing effects occur-
ring during or shortly after the irradiation. Repeated Raman measurements performed after
a 6-month interval revealed no additional recovery of amorphised areas, indicating that the
energy from the laser-beam of the Raman spectrometer does not contribute significantly to
further sample annealing. In contrast, the two lamellae irradiated at lower fluences each
revealed rather similar Raman spectra at different measurement positions.
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Figure 10. Raman measurement points on SmPO4 FIB lamellae (a) and respective spectra (b) indi-
cating variations in crystallinity in the sample after triple irradiation with multi-energy Au ions at
the max. total fluence (F3) of 5.1 × 1014 ions cm−2; the colour coding of the measurement points
(a) refers to areas of different crystallinity as indicated in the Raman spectra (b) (Figures modified
(a) and reproduced (b) from [56]).
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Figure 11 depicts the region of the stretching vibrations in the Raman spectra of the
monazite-structured SmPO4 lamellae irradiated at different fluences, including the spectra
obtained from different crystalline areas in the material irradiated at the maximum fluence
used in this study. Here, the broadening of the Raman bands (increase in FWHM) and
the concomitant shift to lower wavenumbers with increasing dose and amorphisation are
clearly discernible for the band of the symmetrical stretching vibration ν1. Compared
to the sample irradiated at fluence F2 to an average dpa = 0.15 (FWHM 6.5 cm−1), the
more crystalline areas in the sample irradiated with the highest dose (5.1 × 1014 ions cm−2,
average dpa = 3.81) also show a higher level of irradiation-induced damage in the crystal
lattice, as indicated by the higher FWHM (8.9 cm−1) and stronger red-shift. The shift of
the Raman bands to lower wavenumbers can be attributed to a decreasing short-range
order and the radiation-induced stretching of the P–O bonds and changes in the local
environment of the phosphate tetrahedra (e.g., distortion and tilting), as well as the presence
of amorphous clusters causing strain due to volume expansion (cf., [49,50]).
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Figure 11. Raman spectra depicting the region of the stretching vibrations in unirradiated and Au
ion irradiated FIB lamellae prepared from monazite-structured SmPO4, showing the broadening
and shift of the symmetrical stretching vibration ν1 with increasing fluence from F1 to F3 ((a); cf.,
Figure 9), and for variable crystalline regions in the lamella irradiated at fluence F3 ((b), cf., Figure 10)
(Figures reproduced from [56]).

The radiation-induced changes in the length of the P–O bonds were estimated from
the shift of the ν1 band using the approach of Popovic et al. [97]. The red-shift of the ν1
vibration band indicates only a small P–O bond length increase from 155.1 to 155.6 pm as a
consequence of the Au ion irradiation even in the sample irradiated at the highest fluence.
This small increase in the P–O bond length indicates that these bonds are not broken
and the phosphate tetrahedra behave either as tight units under irradiation [48] or can
recombine rather quickly after receiving irradiation damage. This supports the assumption
that amorphisation of monazite occurred mainly due to increasing (short-range) structural
disorder in the local environment of the phosphate groups (cf., [36,49]) and breaking of
Ln–O bonds. Since all O atoms belong to SmO9 polyhedra, as well as to PO4 tetrahedra,
both polyhedra are destroyed when an O atom is displaced. However, the resulting PVO3
units are highly unstable and directly capture nearby O atoms. Therefore, tilted/distorted
and recombined PO4 tetrahedra are observed after irradiation, although P–O bond lengths,
O–P–O angles, and the sites of P atoms have probably changed. Moreover, the vibrations of
the P–O bonds are eased due to the destruction of the SmO9 polyhedra, which contributes
to the shift to lower vibration frequencies.
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4. Discussion
4.1. Radiation Damage in Monazite-Type LnPO4

The comparison of the results of different studies on ion-beam irradiation of natural
and synthetic Ln-orthophosphates with a monazite structure, for example, with respect
to the dpa and fluences required for amorphisation, is not straightforward, since often
monazite-type samples of different compositions were investigated using varying irradia-
tion conditions. Moreover, different approaches regarding the selection of displacement
threshold energies used for the calculation of dpa were applied. In this study, Ed values
derived from atomistic simulation were used. In Table 6, the Ed values of the current study
are compared to those used in previous studies of radiation effects in various monazite-type
phosphates, where, in many cases, rather uniform Ed values for all atoms in the monazite
structure were used (e.g., [44–46,49,50]). These are generally lower for the Ln and P atoms
and higher for O atoms compared to the Ed values obtained by molecular modelling.
Meldrum et al. [39,47] used Ed values for zircon (ZrSiO4) obtained by molecular dynamic
simulations [4,98] for monazite and synthetic LaPO4, respectively. Interestingly, for the
zircon ABO4 structure, the lowest Ed value has been assigned to the atom on the B position,
whereas, for oxygen, a relatively high Ed value was obtained (47 eV). On the other hand,
molecular dynamics simulations of displacement energies in zircon by Park et al. [99] re-
vealed a contrasting trend (Ed 89 eV for Zr, 48 eV for Si, and 28 eV for O). This can probably
be attributed to different force-field parameterisation used in these studies.

Table 6. Threshold displacement energies (Ed values) used in various studies on radiation effects in
monazite-type phosphates (Σ: sum of Ed counting the value for O fourfold).

Phase Ed/eV Used by Comment

Ln P O Σ

Monazite (natural) 25 25 25 150 [44]
Monazite (natural) 79 23 47 290 [39] analogy to ZrSiO4 [4]

LnPO4 (Ln: La—Lu) 20 20 20 120 [46]
LaPO4 20 20 20 120 [45]
LaPO4 79 23 47 290 [39,47] analogy to ZrSiO4 [4]
LaPO4 25 25 25 150 [50]
LaPO4 56 75 8 163 [68] derived from MD simulations
CePO4 25 25 28 162 [42,49] SRIM/TRIM default [77]
SmPO4 49 65 8 146 this work derived from MD simulations
GdPO4 51 75 8 158 [68] derived from MD simulations

By using triple irradiation with multienergy Au ions (1, 3.5, and 7 MeV) in this study,
first indications of structural modifications in monazite-structured SmPO4 were already
observed in the Raman spectra at an average dpa of 0.05 to 0.15; vast amorphisation was
achieved at a fluence of 5.1 × 1014 ions cm−2 and an average dpa of 3.81, notwithstanding
that local annealing occurred. This is in the order of magnitude of the critical amorphi-
sation dose (fluence 1.21 × 1014 ions cm−2, reported dpa = 0.38) reported by Meldrum
et al. to cause amorphisation of monazite-structured SmPO4 using irradiation with 800 keV
Kr2+ ions [46]. In these experiments, amorphisation of various monazites (Ln: La—Gd)
was generally achieved at a fluence of about 1.2 × 1014 ions cm−2 (reported dpa 0.35
to 0.39 [46]). Picot et al. concluded from grazing incidence XRD patterns a practically
complete amorphisation of LaPO4 at a fluence of 7.2 × 1014 ions cm−2 (reported dpa = 2.11)
when using the same triple irradiation scheme with Au ions as in the present study [48].
Similarly, Nasdala et al. [49] and, more recently, Deschanels et al. [50] investigated multi-
energy (1, 3.5, 7 MeV) Au ion-irradiation-induced phase transformations in Ce-monazite
and La-monazite, respectively. Similar to the here presented results, Nasdala et al. achieved
amorphisation of CePO4 at a fluence of 5.1 × 1014 ions cm−2 (reported dpa = 1.0) [49].
Recently, Nasdala et al. observed complete amorphisation in foils of synthetic CePO4 and
monazite-(Ce) from nature in triple irradiation experiments (1, 4, 10 MeV Au-ions) already
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at a fluence between 4.5 × 1013 and of 1.2 × 1014 ions cm−2 (corresponding to reported
dpa values of 0.125 and 0.353, respectively) [42]. The lower amorphisation fluences and
higher damage compared to the previous study were attributed to the fact that irradiation
was performed at a low temperature (liquid N2 cooling), leading to a significantly reduced
fraction of immediate defect recombinations. Using TEM investigations, Deschanels et al.
observed complete amorphisation of LaPO4 up to a depth of 1.6 µm from the surface at a
fluence of 7.2 × 1014 ions cm−2 (reported dpa = 2.11); amorphisation was seen to occur for
fluences exceeding 9.6 × 1013 ions cm−2 (reported dpa = 0.28), while, at a lower fluence of
1.3 × 1013 ions cm−2 (dpa = 0.05), the deposited energy was not sufficient to lead to dis-
cernible amorphisation; however, it resulted in a strained lattice up to 1.2 µm depth [50].
Similarly, Seydoux-Guillaume et al. achieved complete amorphisation of Au-irradiated
LaPO4 foils with a monazite structure at 2 × 1014 ions cm−2 (reported dpa 1.13); amor-
phisation was found to be almost complete already at 1 × 1014 ions cm−2 (reported dpa
0.56), with only few phantoms of grain boundaries remaining [41]. However, it has to be
noted that the degree of radiation damage detected in the materials can differ substantially
depending on the analytical techniques employed (e.g., TEM, Raman spectroscopy, photo-
luminescence or XRD), and thus amorphisation may be detected at different fluences with
different methods (cf., [42]).

Thus, the studies using similar irradiation conditions agree rather well on the flu-
ence required for amorphisation of chemically different monazite-structured materials,
although the reported dpa values vary distinctively due to different Ed values used in
SRIM/TRIM simulations. Moreover, it often remains unclear whether the reported dpa
values refer to maximum or average values in the irradiation-damaged zones. In contrast,
in recent ion-beam irradiation studies on monazite-type La0.2Gd0.8PO4 using swift heavy
ions (100 MeV Au9+), significant amorphisation effects were already observed by XRD at
fluences of 1013 ions cm−2 [68]; full amorphisation of the samples up to a depth of 9 µm was
attained at fluences higher than 1013 ions cm−2. The comparatively low fluences required
for amorphisation of the monazite structure by swift heavy ions were attributed to the
thermal spike induced by electronic stopping effects [68], in analogy to results of swift
heavy ion irradiation experiments using pyrochlore-type materials [100]. Using the Ed
values for LaPO4 and GdPO4 derived by Ji et al. ([68]; cf. Table 3), it was estimated from
SRIM/TRIM simulations in this study that about 95% of the energy of the 100 MeV Au ions
was deposited by electronic processes in these irradiation experiments.

Compared to studies using ion-beam irradiation, investigations on the effects of
self-irradiation of Ln-monazites due to internal alpha-decay of incorporated (short-lived)
actinides such as 238Pu (half-life 87.7 years, ENDF/B-VIII.0, Brown et al. 2018) are rather
scarce, and addressed mainly La-based monazites [50,101]. Burakov et al. reported that
238Pu-doped La-monazite (8.1 wt% 238Pu) remained crystalline up to a cumulative dose of
2.5 × 1018 α g−1 (i.e., ~0.26 dpa) without any swelling or crack formation [101]. Luo and
Liu reported that LuPO4 doped with 244Cm (half-life 18.11 years, ENDF/B-VIII.0, [102]) re-
mained crystalline even after having received a dose of 5 × 1019 α g−1 [103]. Investigations
of Deschanels et al. revealed that, in contrast to externally Au ion irradiated monazite-type
materials, 238Pu-doped monazite-type samples (La0.73Pu0.09Ca0.09Th0.09PO4) remained crys-
talline up to a cumulative dose of 7.5 × 1018 α g−1 (0.8 dpa) accompanied by a low swelling
of close to 1% [50]. This contrasting behaviour was attributed to α-radiation-induced an-
nealing in actinide-bearing monazite-structured samples and the significantly higher dose
rates inflicted in ion-beam irradiation experiments. Recently, Seydoux-Guillaume et al. in-
ferred an α-healing-induced defect recovery mechanism from experiments using sequential
and simultaneous irradiation of synthetic monazite-type LaPO4 with Au and He ions [41].
In contrast, Nasdala et al. observed that He irradiation induced radiation damage in crys-
talline CePO4 [104]. According to Nasdala et al., more research is required to determine in
which materials and under which conditions α-radiation leads to structural damage and/or
can anneal already existing radiation damage, in order to evaluate the significance of these
effects for the long-term structural properties of monazite-type materials [42].
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Generally, the question about the behaviour of PO4 units under irradiation has been
discussed controversially. While Picot et al. [48] proposed PO4-tetrahedra as particularly
irradiation-resistant structural elements, Nasdala et al. [42,49] and Deschanels et al. [50]
reported the opposite. These contrasting observations might partially be explained by the
competition between the accumulation of irradiation-induced structural damage on the
one hand, and immediate and/or fast postirradiation annealing on the other hand, which
is rather effective in monazite-structured LnPO4 even at low temperatures. Moreover, if
ion-beam experiments are performed without sample cooling, the temperature rise in the
samples can result in a distinct increase in immediate defect recombinations (cf., [42]).

4.2. Implications for SmPO4 as Waste Form for Actinides

Application of ceramic waste forms for the immobilisation of actinides can be en-
visaged in particular for the disposal of surplus Pu from civilian or, if applicable, mili-
tary sources (e.g., [5,7,10,105]). The investigations of Arinicheva et al. on monazite-type
La1-xPuxPO4 showed that up to 15 mol% Pu can be incorporated into the monazite structure
as Pu3+ [106], i.e., no coupled substitution for charge compensation would be required to
immobilise separated Pu, which is usually stored as PuO2, in such waste matrices. In Pu
waste forms, the various alpha decay events in the decay chains of the different Pu isotopes
contribute to a variable extent to the total radiation damages arising with time. Within a
period of 106 years, in the 239Pu and 242Pu decay chains, only the decay events 239Pu to
235U and 242Pu to 238U, respectively, play a role with respect to potential radiation damages,
whereas in the 238Pu and 241Pu series, practically the complete decay chain contributes to
damage events in the longer term, i.e., at times exceeding 105 years (cf., Tables S1 and S2
in the Supplementary Materials). The isotopic composition of civilian plutonium from
the reprocessing of spent nuclear fuels depends on various factors, including the type of
nuclear reactor and its neutron spectrum, the mode of reactor operation, the initial level of
uranium enrichment in the fuel, and the burn-up of the fuel at the time of discharge (cf.,
Table S3 in the Supplementary Materials). The majority of the Pu consists of the isotopes
239Pu and 240Pu, with the proportion of the heavier isotopes (241Pu and 242Pu) increasing
with increasing fuel burn-up (e.g., [107]). Depending on the source of Pu, a waste form
containing 10 wt% Pu will incur about 1 to 4·1020 alpha decay events in 106 years, with
average dose rates decreasing from about 0.5 to 1 × 109 α g−1 s−1 in the first thousand
years to about 107 α g−1 s−1 over a period of one million years (cf., Table S4).

Inferring potential radiation damages and amorphisation effects occurring in ceramic
waste forms in the long-term from irradiation experiments with heavy ions, doping with
short-lived alpha emitters, or natural analogues requires the consideration of differences
regarding the total received doses (e.g., in dpa), dose rates, and the energy deposition (i.e.,
electronic vs. nuclear stopping) in the experiments and the waste forms. In Table 7, the
calculated alpha doses and alpha dose rates incurred in Pu waste forms (10 wt% Pu loading)
in one million years are compared to those received by nonmetamict monazites from nature
and alpha-doped Ln-phosphates with a monazite structure, respectively. Here, the mode of
energy deposition from alpha particles and recoiling nuclei is rather similar in all materials,
with electronic energy losses distinctively exceeding energy losses by nuclear processes
(cf., [50]). It has to be noted that the total doses received by the waste forms within one
million years are in the same order of magnitude as in naturally occurring nonmetamict
monazites, though the dose rates are several orders of magnitude higher for the former.
However, the total doses in alpha-doped materials within the experimental time frames are
about one to two orders of magnitude lower than ones in a waste form integrated over one
million years; however, the dose rates in the experiments are distinctively higher due to the
usage of short-lived isotopes.

The fast annealing of damages in monazites in nature and alpha-doped synthetic
LnPO4, despite high alpha doses and/or dose rates, is probably due to the low critical
temperature of monazite and alpha-assisted annealing effects [41,108] in consequence of
electronic energy losses of alpha particles. Based on SRIM/TRIM simulations of the alpha
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decays in the Pu decay chains in SmPO4, the alpha energy is dissipated to >99.6% by
electronic stopping. A similar behaviour can also be expected in Pu waste forms based
on monazite-structured LnPO4, such as SmPO4. In addition to alpha-assisted annealing,
Mir and Peuget suggested that additionally, electronic energy losses of recoiling nuclei in
waste forms will potentially lead to partial defect healing in the long term (according to
SRIM/TRIM simulations, in SmPO4, the main energy loss (60 to 65%) of the recoiling nuclei
in the Pu decay chains is due to nuclear stopping) [109].

Table 7. Comparison of alpha doses (Dalpha) and alpha dose rates incurred in Pu waste forms (10
wt% Pu loading) in 106 years to nonmetamict monazites from nature and alpha-doped Ln-phosphates
with monazite structure (in parentheses: exposure time (LnPO4) or age (monazites), respectively).

Material Dalpha/α g−1 Dose Rate/α g−1 s−1 Source

Pu wasteform
(10 wt% Pu)

1 × 1020 to 4 × 1020

(1 Ma) ~1 × 107 this work
(cf. Table S4)

Monazite-(Sm) (natural) 2.9 × 1020 to 3.7 × 1020

(2640 Ma)
3471 to 4492 [43]

Monazite-(Ce) (natural) 2.43 × 1019

(474 to 479 Ma)
1618 [33]

Monazites
(natural)

1.3 × 1018 to 1.7 × 1020

(24 to 1928 Ma)
1718 to 3561 [34]

Monazites
(natural)

6.0 × 1018 to 1.1 × 1020

(101 to 1391 Ma)
379 to 4973 [36]

Monazite-(Ce) (natural) 2.4 × 1019 to 1.7 × 1020

(500 to 1928 Ma)
1522 to 2796 [35]

244Cm-doped LuPO4
5.0 × 1019

(18 a) 8.8 × 1010 [103]

238Pu-doped (La,Pu)PO4 2.5 × 1018 [101]

238Pu-doped (La,Ca,Th)PO4
7.5 × 1018

(5 a) 4.7 × 1010 [50]

In the present irradiation experiments with SmPO4 lamellae, a distinct amorphisation
was only observed at the highest fluence, leading to an average dose of 3.8 dpa (dose rate:
2.2 × 10−4 dpa s−1), though annealing effects were already observed in the course of the ex-
periment. In a real Pu waste form, a time frame of several hundred years would be required
to reach a similar damage level, disregarding annealing processes (cf., Tables S2 and S4 in
the Supplementary Materials). Considering the radiation stability of alpha-doped synthetic
LnPO4, the distinctly higher proportion of electronic energy losses in a Pu waste form and
the lower dose rates suggest that waste forms consisting of monazite-structured SmPO4
will not undergo a macroscopic crystalline to amorphous phase transition in the repository
environment. However, it should be noted that in aged (i.e., >10 years) synthetic LnPO4
(Ln = La, Eu) doped with significant amounts of 238Pu, despite preservation of crystallinity,
a loss of mechanical integrity and formation of secondary phases (Pu-containing rhabdo-
phane) after storage in air was observed, which might affect the leaching behaviour of a
monazite-type waste form in the long term [110,111].

5. Conclusions

Synthetic single phase SmPO4 with a monazite structure was irradiated with multi-
energy Au ions (1, 3.5 and 7 MeV) to investigate the response of potential SmPO4-based
waste forms to internal α-decay of incorporated actinides. The threshold displacement ener-
gies Ed for monazite-structured SmPO4 to estimate dpa values were derived from atomistic
simulations, revealing distinct differences to default Ed values used in SRIM/TRIM and
those for zircon, which were used as surrogate values for monazite-type LnPO4 in the past.
The different displacement threshold energies used for the calculation of amorphisation
doses in terms of dpa in the past impede the comparison to other ion irradiation experi-
ments. However, the comparison of fluences required for amorphisation indicated a similar
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resistance of SmPO4 to ion-beam irradiation as observed for other LnPO4 compounds with
monazite structures. The irradiation effects on the local structure of SmPO4 revealed by
the Raman spectra supports the assumption that amorphisation of the monazite structure
is mainly due to a breaking of Ln–O bonds and increasing structural disorder in the local
environment of the phosphate groups, with the phosphate tetrahedra behaving as tight
units under irradiation. Moreover, fast recombination in case of displacement of oxygen
atoms from the PO4 units is expected.

Although monazite-structured SmPO4 can be amorphised in ion-beam experiments
at repository-relevant temperatures, annealing effects were observed already during the
irradiation experiment itself, leading to partly crystalline domains even in the sample
irradiated at the highest fluence. This suggests that a SmPO4 waste form for actinides will
probably not undergo a macroscopic crystalline to amorphous phase transition. Moreover,
with respect to amorphisation effects in nuclear waste forms in the repository environment
due to α-decay of incorporated actinides, one should be aware that the dose rates (e.g.,
in dpa per s) are distinctively lower than in ion-beam irradiation experiments, i.e., the
ratio between damage production and recovery/annealing is different, and further mecha-
nisms such as α-radiation-induced annealing may contribute to the radiation resistance of
monazite-type waste forms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15103434/s1, Figure S1: SEM-BSE images of polished SmPO4
pellets—the uniform grey values indicate the chemical homogeneity of the synthesised monazite-
structured SmPO4; Table S1: alpha decay events in the decay chains of 238Pu to 242Pu and fractional
contributions of specific decay events to the total alpha dose for selected periods (half-lives: y: years,
d: days, h: hours, m: minutes, s: seconds; total alpha doses per gram of initial Pu isotope; nuclear data
from ENDF/B-VIII.0, Brown et al. [102]). Energies refer to decay events with emission probabilities
exceeding 5%; Table S2: Results of Monte Carlo (MC) simulations (SRIM/TRIM) of alpha-event effects
in monazite-structured SmPO4. In the respective decay chains, only decay events contributing to
more than 1% of the total alpha dose received in one million years are considered. The displacements
per decay event are weighted averages for the respective alpha and recoil energies given in Table
S1; TableS3: Isotopic composition of Pu produced in nuclear reactors for different burn-up levels
and reactor designs (HWR: Heavy water reactor; AGR: Advanced gas-cooled reactor, BWR: Boiling-
water reactor, PWR: Pressurised-water reactor, VVER: Pressurised water-water energetic reactor,
MOX: mixed oxide (U,Pu)O2 fuel; n.a.: information not available—isotope produced but only in
small amounts); Table S4: Calculated (integral) alpha doses (Dalpha) and dose rates for waste forms
containing 10 wt% Pu waste load originating from different sources (Pu isotopic composition from
Table S3) compared to 239Pu. References [112–115] are cited in the Supplementary Materials.
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