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Abstract

Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using 

different light-microscopy techniques. Reconstructing the filament curve from the acquired images 

constitutes the filament segmentation problem. Since filaments have lower dimensionality than the 

image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy 

and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method 

based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. 

We show that the resulting optimization problem is convex and can hence be solved with global 

optimality. We introduce a simple and efficient algorithm to compute such optimal filament 

segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further 

derive an information-theoretic lower bound on the filament segmentation error, quantifying how 

well an algorithm could possibly do given the information in the image. We show that our 

algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in 

comprehensive benchmarks, compare with other methods, and show applications from 

fluorescence, phase-contrast, and dark-field microscopy.
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Introduction

Filamentous structures are ubiquitous in biology and are routinely imaged using different 

modalities. Examples range from cytoskeletal filaments, like microtubules (Ruhnow et al., 

2011) and actin filaments (Gittes et al., 1993), to polymers (Graham et al., 2014), axonemes 

(Mukundan et al., 2014), sperm flagella (Rikmenspoel and Isles, 1985), nematodes (Geng et 

al., 2004; Ramot et al., 2008), and rodent whiskers (Clack et al., 2012). From the acquired 

images, one often aims to extract quantitative information about the filaments, such as their 

length (Ruhnow et al., 2011), curvature (Mukundan et al., 2014), bending (Gittes et al., 

1993; Graham et al., 2014), or motion dynamics (Rikmenspoel and Isles, 1985). Doing so 

manually is prohibitive for large data volumes. Moreover, manual analysis introduces 

significant intra- and inter-rater variability and bias. Image segmentation techniques are 

available to automate the process. However, the problem of filament segmentation is not 

trivial because the thickness of the imaged filaments is often below the resolution limit of 

the microscope, and the signal-to-noise ratio (SNR) of the images is routinely low. While the 

former calls for filament localization with sub-pixel precision, the latter amplifies 

localization errors.

Addressing the problem of localization precision and error control in filament segmentation 

has been explored in various methods over the past decades. These methods can generally be 

classified into region-segmentation methods (e.g., Paul et al., 2013; Fuller et al., 2005), 

curve-fitting methods (e.g., Smith et al., 2010; Clack et al., 2012; Valdman et al., 2012; Xu 

et al., 2014), and combinations of the two (e.g., Ruhnow et al., 2011). Region-segmentation 

methods detect a connected region of pixels within which the filament lies, represented as 

either a pixel mask (Fuller et al., 2005; Goldstein et al., 2010; Paul et al., 2013), particles 
(Florin et al., 2005; Cardinale et al., 2012), or a closed active contour (Kass et al., 1988; 

Ronfard, 1994; Yezzi et al., 1997; Butenuth and Heipke, 2012; Zhang et al., 2012a; 2012b; 

Bernard et al., 2009). Usually, a closed active contour is implicitly represented as the zero-

level set of a higher-dimensional function, which is called level-sets methods (Sethian, 

1999).

While region-segmentation methods narrow down the localization of the filament, they do 

not segment a filament in the sense of a curve. Curve-fitting methods account for this by 

fitting a smooth open curve to the image in order to represent the filament (Wong et al., 

1998; Sarry and Boire, 2001; Smith et al., 2010; Clack et al., 2012; Valdman et al., 2012; Xu 

et al., 2014), because characterizing a filament as a region of pixels is especially 

inappropriate if sub-pixel accuracy or smoothness are required. This is typically the case 

when quantifying filament polymerization kinetics by computing time derivatives of the 

filament length.

In both paradigms, the segmentation result can either be derived by solving an optimization 

problem (Paul et al., 2013; Fuller et al., 2005; Florin et al., 2005; Cardinale et al., 2009; 

Smith et al., 2010), or using filters (Saban et al., 2006; Danuser et al., 2000; Clack et al., 

2012; Rigort et al., 2012). Formulating the task as an optimization problem, e.g. maximizing 

the Bayesian posterior of the segmentation to explain the image, provides principled ways of 
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including prior knowledge about the imaged filaments and the imaging modality in the form 

of the object and forward models.

Solving the resulting optimization problem, however, may be difficult. For discrete problems 

over pixel masks or filament pieces, dynamic programming (Clack et al., 2012) or graph-

cuts (Kolmogorov and Zabin, 2004; Boykov and Kolmogorov, 2004; Boykov and Funka-

Lea, 2006) can find the globally optimal solution. When using continuous filament 

representations, such as splines, active contours, or level-sets, however, optimization is 

mostly done locally, e.g., using gradient-descent (Zhang et al., 2012a; 2012b) or shape-

gradient flow (Tsai et al., 2003; Law and Chung, 2009; Paul et al., 2013). For level-sets 

methods, variational approaches are popular, relaxing the requirement of previously having 

to know the number of the filaments to be segmented (Goldstein et al., 2010; Paul et al., 

2013; Bernard et al., 2009). The main limitation of such local approaches is that image noise 

can cause the result to converge in a sub-optimal local minimum (Smith et al., 2010; Xu et 

al., 2014). In addition, curve-fitting methods usually require prior knowledge of the number 

of filaments present in the image (Wong et al., 1998; Sarry and Boire, 2001; Valdman et al., 

2012).

Methods from both paradigms usually assume Gaussian image noise and the use of a certain 

type of microscopy, e.g., fluorescence microscopy. These assumptions may be inappropriate 

in some cases, for example when using phase-contrast microscopy, or in low-light conditions 

where the noise is Poissonian.

Despite these shortcomings, both paradigms also have unique advantages. Specifically, 

region-segmentation methods can localize multiple filaments automatically and in a 

computationally efficient way. When using a level-set segmentation method, the number of 

filaments present in an image does not need to be previously known or imposed. While 

curve-fitting methods require prior knowledge of the number of filaments to be fitted, they 

can properly characterize the geometry of filaments as open curves.

These observations motivate us to combine the two paradigms in a novel way. We propose a 

method that represents filaments as open curves, hence providing sub-pixel resolution in a 

geometric representation of the correct dimensionality, just as existing curve-fitting methods 

do. At the same time, however, rather than directly using a 1D curve representation, we use a 

level-set representation of these curves. This means that, unlike in curve-fitting methods, our 

method does not require the number of filaments to be previously known. It automatically 

handles multi-filament cases, as long as the filaments do not cross.

We show how to formulate the resulting optimization problem in a globally convex way 

(Paul et al., 2013) by measuring distances between segmentations and the image using the 

Bregman divergence (Banerjee et al., 2005; Bregman, 1967). We further derive an analytical 

expression for the gradient of the energy functional, enabling us to efficiently solve the 

convex problem by an easy-to-implement gradient-descent optimizer. The segmentation 

produced is the best possible one for the given model and image data. We also exploit the 

model-based framework to account for key physical properties of the microscope (i.e., 

image-formation model), which are rarely considered in other methods. This renders our 
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method fully automatic in the sense that it does not require prior manual segmentation or 

image pre-processing (e.g., inversion or smoothing).

Technically, this is made possible by representing the filaments as a vector level-set with 

level functions represented as B-spline surfaces (Bernard et al., 2009). The evolution of 

those surfaces is driven toward the optimal segmentation by a convex Bregman energy (Paul 

et al., 2013), which derives from a generalized linear model (GLM) (McCullagh, 1984; 

Nelder and Wedderburn, 1972) for the noise in the image (see (Paul et al., 2013) for details). 

This allows for any pixel-wise noise distribution from the exponential family, which includes 

the most common cases in microscopy, such as Gaussian, Poisson, and Bernoulli noise (Paul 

et al., 2013). This relaxes the assumption of Gaussian pixel noise, rendering the model more 

flexible.

In order to confirm the optimality of our solution, we derive an information-theoretic lower 

bound for the segmentation error in filament segmentation. This lower bound defines how 

well any unbiased algorithm can possibly perform given the information in the image. We 

find that the algorithm presented here asymptotically reaches the bound in the spline 

coefficients, showing that the bound is attainable.

In summary, our method can (1) automatically detect and optimally segment a previously 

unknown number of filaments as smooth open curves with sub-pixel resolution, and (2) be 

adapted to different types of image data from different microscopy modalities. The method 

is easy to implement, since it amounts to standard gradient descent over a convex function.

The paper is organized as follows: in Section 2, we present the optimization framework, 

mathematically formalizing the filament segmentation problem. The algorithm design and 

the theoretical lower bound for the segmentation accuracy are introduced in Sections 3 and 

4, respectively. Results of comprehensive benchmarks and experiments are shown in Section 

5, and we conclude this work in Section 6.

2. Problem formulation

Before providing the details of our method, we mathematically formulate the filament 

segmentation problem. The first thing we need is a mathematical representation of the 

filaments.

We represent filaments as vector level-sets, because by using a single level function the level 

set is necessarily a closed curve. In order to represent open curves, we use a vector level-set 

with two components. The zero level set of the first component ϕ describes a closed curve 

that contains the filament (black circle in Fig. 1a). The part of that closed curve where the 

second component ψ is positive then is the actual open filament (black arc in Fig. 1b). The 

vector level function is represented as a B-spline surface. This geometric model can 

represent an arbitrary number of non-crossing and non-overlapping filaments. Filaments are 

overlapping as soon as they are too close to each other for the microscope optics to resolve 

them as two.
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Based on this filament representation, it is possible to predict the image that one expects to 

see when imaging those filaments with a particular microscope. This forward model hence 

simulates the generative process of image formation. The so-predicted model image is then 

compared with the actually observed image data. The difference between the two (measured 

in a suitable metric) then drives the evolution of the filament representation so as to 

minimize this difference. A regularizer is used to avoid over-fitting. The data-fitting term 

and the regularizer together form the energy functional that is to be minimized in order to 

find the best possible segmentation. The variables of the optimization problem are the 

coefficients of the B-spline vector level-set surfaces. They evolve such that the represented 

filaments lead to an expected image that is as close as possible to the actually observed 

image.

2.1. Image model

The forward model assumes that each filament has a uniform intensity along its length, and 

that the background is uniformly homogeneous. If these assumptions are not met, the 

algorithm will still work, but the result is no longer guaranteed to be globally optimal, as we 

show below. The (unknown) intensities of the filament and background are thus represented 

by a 2-vector β = [β1, β2]T. Let Hf (x) be an indicator function such that Hf (x) = 1 means 

that the point x lies on a filament, Hf (x) = 0 is background. Hence, the intensity distribution 

in the model sample before imaging is

(1)

The indicator function Hf (x) is represented by the vector level set. In order to represent non-

intersecting filaments, we use two level functions ϕ(x) and ψ(x). Open-curve filaments are 

then represented by

(2)

where Ωℐ is the image domain. The level set ϕ(·) = 0 describes a closed contour, while the 

condition ψ(·) > 0 cuts the closed contour to an open curve since only a subset of x on ϕ(x) 

= 0 can yield ψ(x) > 0. The above indicator function Hf (x) is then given by

(3)

where δ(·) is a Dirac and H(·) a Heaviside distribution. This is equivalent to condition (2) 

because if ϕ(·) = 0 and ψ(·) > 0, Hf (·) = 1, meaning that x belongs to a filament. Otherwise 

Hf (·) = 0, meaning the point belongs to the background.

As an illustrating example explaining the vector level-set representation, in Fig. 1a, a closed 

contour (shown as a black circle) is represented by the first level set ϕ(x) = 0. This closed 

contour ϕ(x) = 0 is cut so as to satisfy ψ(x) > 0, which directly interprets condition (2). In 

Fig. 1b, the resulting indicator function Hf (x) in Eq. (3) is shown in the 2D image domain. 
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The image of Hf (x) = 1 (red curve) presents an open curve, while Hf (x) = 0 is the dark 

background. This forms a solution space for filament segmentation, since different indicator 

functions Hf (·), represented by the two level functions, correspond to different segmentation 

results.

The resulting expected model image is then formed by running the hypothetical scenery μ 

through the image-formation forward model. This predicts what the image would look like 

in expectation when seen through that particular microscope.

2.2. Representation of level functions

The two level functions ϕ(x) and ψ(x) can be represented in a number of ways. A common 

choice is to use signed-distance functions. This, however, requires re-initialization (or 

penalization) during contour evolution in order to ensure that the signed-distance property is 

not lost (Sethian, 1999). In our application, we do not require distance information in the 

filament domain. Following earlier works, we hence simplify the representation by using B-

spline functions (Maeland, 1988; Farin, 1996; Bernard et al., 2009) for both level-set 

functions. Representing the level functions as B-spline surfaces moreover provides an 

analytical form (polynomial) of each segmented filament, which provides direct access to 

geometric features such as gradients, normals, and curvature (Bernard et al., 2009). Using 

ϕ(x) as an example (ψ(x) is analogous), the function is

(4)

where  is a 2D mesh grid of positive integers that has the same size as the image domain 

Ωℐ, k is an integer 2-index, cϕ[k] is the spline coefficient set, and  is an nth-

order basis function with the size h controlling the spacing between two consecutive nodes.

The dimensionality of the resulting optimization problem is given by the number of spline 

coefficients used to represent the level functions. This number is controlled by h. We 

illustrate B-spline surfaces of different sizes h in Fig. 2. For h = 0, the B-spline function has 

one coefficient (node) per image pixel. For h = 1, one pixel is left empty between any two 

consecutive nodes, thus quartering the number of coefficients in 2D. Thus, increasing h 
reduces the resolution of the spline, but also reduces the dimensionality of the resulting 

optimization problem.

On the one hand, smaller h allow the segmented filaments to trace smaller undulations. On 

the other hand, smaller h increases the computational cost and renders the segmentation 

more sensitive to noise. We investigate the trade-off of the scaling size h in simulation 

results in Section 5.3, and provide good parameter choices.
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2.3. Energy functional

The energy functional is a criterion that evaluates the quality of a given segmentation with 

respect to the image data. If the model image shows the correct filaments, the energy should 

be minimal. Following the standard approach, we use an energy functional composed of two 

parts: a data-fitting term that measures the distance between the model image and the data 

image, and a regularization term that penalizes over-fitting.

2.3.1. Data-fitting term—The data-fitting term measures how closely the image one 

expects to see under the current segmentation hypothesis matches the observed data image. 

This includes a simulation of the image-formation process in the given microscope, and a 

pixel noise model. We model image formation as a convolution with a kernel K, which is 

known from optics or calibration measurements. The expected model image hence is K*μ(x, 
β). This simulates how the imaging system maps the scene to an image. In fluorescence 

microscopy, K is the point-spread function (PSF). For phase-contrast microscopy, K is given 

by a non-linear imaging model that involves Bessel functions, as previously described (Yin 

et al., 2010).

The second component is the noise process, providing a likelihood to compare the model 

image to the image data. Assume that the intensity value u(x) at location x is a realization 

from a stochastic process with probability density function (p.d.f.) p(u(x) | θ) and unknown 

parameters θ. In our problem, the unknown parameters are the mean intensities β1 and β2 of 

the forep.f.f and background, respectively. The likelihood of a segmentation given in the 

image data is ℓ(μ(x, β) | u(x)). This likelihood increases as the model (i.e., segmentation) μ(·, 

·) converges to the correct solution.

To estimate the unknown parameters β1 and β2, we use a linear predictor for the parameters 

of any p.d.f. from the exponential family (EF) of distributions. A non-linear link function 
correlates the linear predictor to the unknown parameters. This is the standard GLM 

framework in statistics.

We give a brief example to illustrate the GLM idea. We are given a set of pixels sampled 

from a probability distribution with unknown mean. We can estimate the mean as the 

average of the samples. In this case, the linear predictor of the GLM is an averaging 

operation, and the link function is the identity function because we let the mean directly 

equal the average of the samples. In the general case, we can specify an arbitrary link 

function. If we for example let the log of the parameters equal the sample average, we 

enforce positivity of estimated intensity values. Hence, a GLM generalizes the classical 

estimation of the mean by the average, allowing additional flexibility.

In our problem, the linear predictor is the model μ(x, β). We further use the link function g(

(u(x))) = K * μ(x, β), or (u(x)) = g−1 (K * μ(x, β)) where g−1 (·) is the inverse link function.
1 The likelihood of the model can then be written as

1If g−1 (·) is the identity function, i.e., 1(·), this reduces to the classical method of estimating the mean as the average of the samples.
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(5)

Though it would be possible to directly maximize the likelihood in Eq. (5), likelihoods of 

some p.d.f.’s from the EF are complicated. For example, the p.d.f. of a Poisson distribution 

contains factorials and is a discrete function. More importantly, some p.d.f.s are not globally 

convex and, as a result, global optimality cannot be guaranteed. Hence, a better data-fitting 

term is needed.

We address these problems by replacing the likelihood with the Bregman divergence 

(Bregman, 1967) induced by that specific p.d.f. from the EF. The Bregman divergence 

generalizes the familiar squared Euclidean distance to a class of distances that all share 

similar properties. The most important property for our purpose is that a Bregman 

divergence is globally convex. This guarantees global optimality of the solution.

The form of the Bregman divergence varies according to the p.d.f. chosen as the noise 

model. For example, assuming p(·) to be Gaussian, the Bregman divergence is the squared 

Euclidean distance . If p(·) is a Poisson distribution, the corresponding 

Bregman divergence is the relative entropy . The 

Bregman divergences associated with any p.d.f. from the EF are given in Table 1 of Paul et 

al. (2013). We denote by Bp*(·‖·) the Bregman divergence induced by the noise model p.d.f. 

p*. Integrating over the image domain Ωℐ, the final data-fitting energy term then reads

(6)

2.3.2. Regularization term—The regularizer is required to prevent over-fitting the noise 

in the image. It is a necessary component of any segmentation energy function and plays the 

role of a Bayesian prior in the estimation problem. We here use the popular total variation 

(TV) regularizer:

(7)

where ∇μ is the gradient of the model image.

The total energy functional is then given by

(8)
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where the scalar regularization coefficient λ > 0 weights the regularizer term. This function 

is convex, since both ℰd and ℰr are convex, multiplying a convex function by a positive 

constant leaves it convex, and the sum of two convex functions is convex. Increasing λ 
increases the penalization of small undulations of the segmented filaments. Both λ and the 

scaling size h of the B-spline functions affect the robustness against noise and the 

segmentation precision of the method.

Now we can state the filament segmentation problem more formally: The goal is to 

design an algorithm that finds the optimal coefficients  and  such that the energy 

in Eq. (8) is minimized, hence

(9)

Since the spline coefficients are normalized to [−1, 1] (see Section 3.2.2), the domain of the 

optimization variables is the hypercube [−1, 1]|k|, which is a convex set. Minimizing a 

convex function over a convex domain constitutes a globally convex optimization problem. 

The result will hence be a globally optimal filament segmentation .

3. Algorithm design

We provide an algorithm that globally optimizes the coefficients cϕ[k] and cψ[k] of the two 

B-spline level-set functions and estimates the mean intensities β of the fore- and background 

regions. We use alternating minimization (Gunawardana and Byrne, 2005) over the energy 

functional in Eq. (8). We first introduce the method to estimate the intensities β, followed by 

the procedure used to optimize the level-set coefficients. Since both the level-set 

optimization problem and the intensity estimation problem are convex, the alternating 

minimization scheme is guaranteed to converge (Gunawardana and Byrne, 2005). Note that 

the two problems are likely not jointly convex, but separately convex, which is enough for 

convergence (Gunawardana and Byrne, 2005). If needed, a jointly convex formulation could 

possibly be derived by extending recent works (Brown et al., 2012). A post-processing step 

then extracts parametric polynomial curves for all filaments.

3.1. Photometric estimation

Photometric estimation aims to estimate the mean intensity vector β for fixed Hf (x). For a 

perfect imaging process (i.e., if K = 1), estimating β is trivial, as we can directly use the 

average intensity of a region as its mean. With an imaging-distortion kernel K acting on μ(·), 

however, the optimal value for β is not a simple average (Paul et al., 2013).

In this case, we minimize the data-fitting term to find the most likely value of β. This convex 

problem is efficiently solved using the Fisher scoring algorithm (McCullagh, 1984; Nelder 

and Wedderburn, 1972). We use the freely available solver from Paul et al. (2013), and refer 

to it as the region statistics solver. This solver is called multiple times in the alternating 

minimization framework. After each call, Hf (x) is re-optimized using the new photometries, 
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iterating until convergence (which is guaranteed for a separately convex problem). For this 

geometric optimization step, the spline coefficients are optimized using gradient descent.

3.2. Geometric optimization

The gradient-descent procedure iteratively evolves the coefficients for the two B-spline 

level-set functions ϕ(·) and ψ(·), going from iteration i to i + 1 as

(10)

where α is the step-size (automatically adapted as described below), and  and 

are the energy gradients for the two level-set functions, respectively. Instead of numerically 

approximating the gradients, we directly compute and use the regularized analytical 

gradients.

3.2.1. Analytical gradients—The gradient of the energy cannot directly be computed 

because of the Dirac and Heaviside distributions in Hf. In order to get a continuously 

differentiable energy, we hence regularize them as previously described (Bernard et al., 

2009):

(11)

Since the level function is normalized to [−1, 1], we fix the regularization parameters to εH = 

20 and εδ = 0. 1 (Bernard et al., 2009).

The parametric representation of the level-set functions as B-splines allows us to directly 

compute the analytical gradients of the energy with respect to the spline coefficients using 

the chain rule for differentiation. For the data-fitting term ℰd (·), we have
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(12)

For compactness of notation, we omit the arguments of the Bregman divergence, hence read 

Bp* (·‖·) as Bp* (u(x) ‖ g−1 (K * μ(x, β)) and  is the derivative with respect to the B-

spline coefficients in μ. For the regularizer term ℰr(·), we have

(13)

The prime (′) means derivative with respect to the only variable of that function. The total 

gradient is the weighted sum of these two parts:

(14)

These analytical gradients can be efficiently evaluated numerically. Specifically, Eq. (14) can 

be rearranged as follows (taking ϕ(k) as an example):

(15)

It can hence be interpreted as a convolution of the function ωϕ(x) with the spline basis bn(·). 

This simplifies the gradient calculation for each coefficient in cϕ[k] to
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(16)

3.2.2. Implementation details—A first technical issue is that any gradient-descent 

strategy is sensitive to the value of the step size α. In our implementation, we dynamically 

adapt the step size so as to guarantee that the energy decreases in each step. For this, we do a 

simple line search to find the optimal step size in each iteration. The search uses recursive 

bisection (binary search) starting from an initial value α0 = 1 (recall that the coefficients are 

normalized to [−1, 1]). By construction, the resulting α is guaranteed to decrease the energy.

A second technical issue is the presence of strong local distortions that may be introduced 

into the level functions by the energy minimization process. The level-set functions may in 

principle develop arbitrarily steep or flat gradients, challenging the numerical stability of the 

algorithm. Traditional implementations of level-set methods address this problem by 

periodically re-initializing the level function to a signed-distance function from the zero 

level-set. This, however, comes with two important drawbacks: extra computational costs 

and insufficient topological flexibility (Tsai and Osher, 2003). In our case, we do not require 

a signed-distance property, but simply wish to bound the gradient magnitudes for numerical 

stability. Thanks to the parametric B-spline representation of the level functions, this can be 

done by simple coefficient renormalization. This idea was originally introduced in Gelas et 

al. (2007). We hence normalize the coefficients cϕ(·) and cψ(·) in each iteration by dividing 

with the ℓ∞-norm over all coefficients after each gradient-descent iteration:

(17)

After normalization, the norm of the gradient of the level-set function is bounded, as proven 

in Bernard et al. (2009). This normalization has two main advantages: the first is its modest 

computational cost, the second is that it does not counteract the creation of new zero-level 

components, thereby conserving topological flexibility.

The complete optimization algorithm is summarized in Algorithm 1. The algorithm 

terminates as soon as the energy improvement achieved in the last iteration is less than a 

fixed tolerance of ξ = 10−3, indicating that the algorithm has converged at the global 

optimum. The output of Algorithm 1 are the two optimal B-spline level functions ϕ*(·) and 

ψ*(·). The following post-processing stage then extracts all zero-level curves from these 

level functions and stores them as polynomials.
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Algorithm 1

Optimization Procedure

Input: Image u(x), Noise type p(·), imaging kernel K

Output: Optimal  and 

1:

i ← 0, initialize  and  and ;

2: while (tol > ξ) do

3:   α ← α0;

4:   Line search for α;

5:

  ;

6:

  ;

7:

  calculating  (call Region Statistics Solver);

8:

  ;

9:

  update , i ← i + 1;

10: end while

3.3. Post-processing

The optimal level functions ϕ*(·) and ψ*(·) jointly encode all filaments in a single optimal 

indicator function . Due to the regularization in Eq. (11), this function is smooth and 

takes values in the interval [0, 1], rather than being binary. The post-processing stage serves 

a double purpose: it determines the total number of filaments detected and then represents 

each filament as a parametric polynomial.

The total number of filaments is determined by thresholding the smooth  followed by 

extracting the foreground regions according to their topological connectivity. Representing 

each filament by a polynomial starts from extracting all local maxima from the original 

.

3.3.1. Filament splitting—In order to split the global vector level function into individual 

filaments, we threshold the smooth  according to the optimal energy value 

achieved by Algorithm 1. For this,  is thresholded with an arbitrary initial threshold ξ. 

After thresholding, we calculate the resulting energy . Performing a line search, we 

determine the threshold ξ* that leads to an energy closest to . Since the set of binary 
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functions is a subset of the set of functions over the interval [0, 1], this threshold is optimal. 

Thus, the optimally thresholded binary indicator function is H̄
f (x).

All points si (x) with H̄
f (x) = 1 that are connected by reachable paths lie on the same 

filament. We hence identify regions of disjoint filaments (not the filament themselves!) as 

connected components in a 10-fold oversampled image of H̄
f (x) (i.e., 100 grid points per 

pixel) using the MATLAB routine bwconncomp.

3.3.2. Filament extraction—After identifying the region of each si (x), the body of the 

filament is identified by all local maxima of the original  in that region. These are, to 

sub-pixel accuracy, the points of highest localization probability of the filament. Let s̃i (x) 

denote the so-determined finite set of tip and body points of filament i.

In order to provide a parametric description of each filament, we fit s̃i (x) with a B-spline, 

which is then converted to a single polynomial. While this step is not strictly necessary, it 

facilitates later access to geometric features of the filaments, such as normals and curvatures. 

Fitting s̃i (x) does not degrade the accuracy of the solution because the fitted positions 

already minimize the energy ℰT. This problem has been studied before, and we solve it 

using cubic smoothing splines as, e.g., implemented in the MATLAB routine csaps to solve 

the fitting problem:

(18)

which yields for each filament i a polynomial ci (·) that minimizes the distance to the point 

set sĩ (x), penalizing the total variation of the curve. The coefficient p balances data-fitting 

and curve length, and t ∈ [0, 1] is the curve parameter.

The pseudo code of the entire post-processing step is summarized in Algorithm 2.

Algorithm 2

Post-Processing

Input: optimal indicator function  with energy 

Output: parametric curve set {ci(x)}

% filament splitting

1:

;

2: split {x : x = 1} into subsets S = {si(x)};

% filament extraction

3:

s̃i(x) ← local maxima in  along si(x)

4: for ∀ s̃i(x) ∈ S do

5:   find ci(x) by solving Eq. (18);
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6: end for

3.4. Summary

We use two B-spline level sets to represent filament objects without restricting their 

topology. This is neither an open parametric curve nor a pixel mask. This representation 

enables our method to detect and segment previously unknown numbers of filaments, while 

preserving sub-pixel curve resolution for each filament. Additionally, the B-spline 

formulation enables analytically computing the energy gradients for global optimization, and 

extracting parametric polynomials for all detected filaments.

Our proposed algorithm optimizes the coefficients of the two level functions using gradient 

information. Each iteration consists of three steps: the gradient-descent procedure, the 

photometric estimation, and the coefficient normalization. A post-processing step at the end 

then extracts the parametric polynomial descriptions of all detected filaments. Since all 

problems are convex, the final result is globally optimal with respect to the imaging model 

postulated.

4. Theoretical error bound

A natural question to ask is how closely this globally optimal reconstruction represents the 

true filaments that were imaged. The imaging process and the pixel noise irreversibly 

destroy image information. In addition, the geometric representation of the filaments as B-

spline level sets, as well as the model of the transfer function of the microscope, may not be 

appropriate. Thus we ask the question: “What is the theoretical bound of the localization 

error of the filament, considering the information contained in an image, and what is the 

expected performance of an optimal and unbiased algorithm?”

This is the question about a theoretical lower bound on the segmentation error. For point 

sources, this bound is known: given M photons that are all emitted from the same point 

source and imaged with a Gaussian PSF of standard deviation σ, the location of the point 

source can only be estimated with an error of at least  (Ober et al., 2004). This is a 

direct consequence of the Central Limit Theorem. For non-Gaussian PSFs and more 

complex noise models, similar bounds have also been derived (Chao et al., 2013; Ober et al., 

2015). No unbiased algorithm could possibly break them.

Such a theoretical lower bound is not known for filaments, where the situation is 

considerably more complex than for point sources. The photon sources along a filament are 

correlated through the filament geometry, which is unknown. A theoretical bound can hence 

only be derived by assuming something about the smoothness of the filaments, that is the 

function space in which they live.

Here, we study this problem and provide a theoretical lower bound on the filament 

segmentation error. First, we consider the general case, where we do not assume anything 

about how the filaments are represented in the computer. This bound is valid for any 

unbiased filament segmentation algorithm. Then, we derive the lower bound for the special 
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case where the filaments are represented by vector B-spline level sets, as in our framework. 

This characterizes the capability of any vector level-set algorithm to segment filaments and 

leads to a bound that is actually computable.

Since we segment filaments, the lower bound is on the error of the filament geometry. A 

similar lower bound for the estimated filament intensity, or even a joint lower bound for 

geometry plus intensity, could possibly be derived in a similar fashion.

4.1. The general case

Without loss of generality, we only consider the case where a single filament is represented 

in the image. Since our algorithm assumes that filaments never cross, the multi-filament case 

can always be reduced to the single-filament case by cropping or decomposing the image 

accordingly.

Let a curve γ(s) denote the true imaged filament, where s ∈ [0, 1] is the curve parameter. We 

assume γ(s) ∈ C2, i.e., continuous and at least twice differentiable. A segmentation 

algorithm reconstructs the filament as γ̂(s) from a single image u(x) that represents the 

intensity values in a 2D image domain Ωℐ.

The posterior p.d.f. of γ(s) in a Bayesian sense is

(19)

where the first term on the right-hand side is the likelihood of u(x) given the filament γ(s), 

and the second term is the prior probability of γ(s).

The perfect (i.e., noise-free and perfect imaging identity function) image one would expect 

to see from γ(s) is

(20)

where I(s) is the intensity of the filament, d(·) is the closest-point transform (CPT) yielding 

the shortest distance from x to the filament, and δ(·) is the Dirac delta distribution. If x is on 

γ(s), then d(·) = 0 and δ(·) = 1, otherwise δ(·) = 0.

As an error metric, we consider the mean squared error (MSE) between the estimated 

filament γ̂(s) and the true filament γ(s). Let the operator  denote expectation with respect 

to its subscript. The MSE then is

(21)

The Bayesian Cramér Rao Bound (B-CRB) C (van Trees, 2004) provides a lower bound on 

the MSE Σ. It is the inverse of the Bayesian information J of the posterior in Eq. (19). Thus, 

we have
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(22)

indicating that Σ − C (or equivalently Σ − J−1) is a positive semi-definite matrix.

We further elaborate the Bayesian information matrix J. Let Δ denote the 2nd-order 

differential operator (i.e., the Laplacian) with respect to its subscript. The Bayesian 

information matrix then is

(23)

This can be interpreted as a sum of two terms after the “ln” operation:

(24)

where Jp is the a-priori information matrix

(25)

and Jℓ is the contribution from the give image data to the information. It is the expected 

value of the standard Fisher information matrix ℐℓ (γ(s)) with respect to the prior p.d.f. 

p(γ(s)):

(26)

where

(27)

Given the image data, the lower bound in Eq. (22) generally characterizes the minimum 

estimation error any unbiased estimator must make. The decomposition into a-priori and 

data information also nicely illustrates that one can obtain more accurate estimated by either 

assuming stronger prior knowledge about the true filament, or by having a more informative 

(e.g., less noisy) data image. This general lower bound, however, is difficult to concretely 

evaluate due to the CPT term in u(x). The only way of evaluating the lower bound in the 

general case is by applying numerical simulations.

4.2. The B-Spline level-set case

If one assumes that γ(s) is represented by a B-Spline level set, then an analytical expression 

for the lower bound can be derived. By definition, this special bound is larger than or equal 

to the general bound above. The model μ(·) in Eq. (1) is then defined by two level functions, 
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each of which is a B-spline as given by Eq. (4). Accordingly, the B-CRB in Eq. (23) can be 

used to bound the minimum error in the coefficients of the two B-spline functions, i.e., in 

cϕ[k] and cψ[k]:

(28)

where p*(·) is the p.d.f. of the noise model. In our case, it has to be a member of the EF.

For any p.d.f. from the EF, this B-CRB is asymptotically attainable (Wijsman, 1973). It is 

hence tight. We demonstrate this below, where we experimentally evaluate the segmentation 

error and compare it with the theoretical bound.

5. Experimental results

We evaluate the applicability and accuracy of the present method on a number of different 

image types. The tests consider images from phase-contrast, fluorescence, and dark-field 

microscopy with varying numbers of filaments in them. For quantitatively evaluating the 

segmentation accuracy, we use synthetic images, in which the underling shape is known. In 

the following, we will be referring to this true shape as the ground truth. For all tests, we use 

the MATLAB implementation of the algorithm.

To create synthetic benchmark data, we generate random polynomial curves of order 3 in a 

150 × 150 continuous domain. Based on these ground truth filament objects, we simulate an 

expected image using the two imaging models, fluorescence and phase contrast. The 

simulated continuous image is then sampled onto a 150 ×50 discrete pixel grid. The 

fluorescence imaging model is continuous convolution with a Gaussian PSF of σ = 3. 32 

pixel, corresponding to the experimentally measured PSF FWHM = 500 nm (full width at 

half maximum) of the microscope used when imaging 25 nm fluorescent microtubules. The 

phase-contrast imaging model from Yin et al. (2010) is used with parameters measured from 

an image of the back focal plane of the microscope used here (phase ring inner diameter 2 

mm, outer diameter 2.5 mm, back aperture 5.8 mm). After that, we add noise to the image 

using the corresponding noise model (Gaussian or Poisson). We choose filament and 

background intensities β1 and β2 such that a pre-defined signal-to-noise ratio (SNR) is 

achieved. In order to make the SNR values comparable across different noise models, we use 

the distribution-independent definition based on the Bhattacharyya distance ℬ between the 

noise-free image histogram and the noisy image histogram:  (Goudail et al., 

2004). For the fluorescence model, we keep the background fixed at β2 = 10 and vary the 

filament intensity β1 to change the SNR. For the phase-contrast model, we keep the filament 

fixed at β1 = 10 and vary the background intensity β2. In order to test how the algorithm 

behaves when the filament intensity is not uniform, we also generate complete sets of test 

images with linearly shaded intensity of 50% and 70% magnitude along the filament axis. 
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For the 50% shading, the intensity linearly varies along the filament from 1.5 β1 to 0.5 β1, 

such that the average intensity (and hence the average SNR) remains the same. The 70% 

shading case uses a linear intensity gradient from 1.7 β1 to 0.3 β1. Even though it is 

impossible to exhaustively test all possible spatial intensity distributions, this linear test 

assesses how the algorithm behaves when the actual images strongly depart from the 

theoretical assumption of uniform intensity. Some examples of synthetic images for different 

SNR are shown in Fig. 3. All images are stored as 8bit TIFF files. The complete set of 4000 

benchmark images (1000 per case) can be downloaded from the MOSAIC Group’s web site 

mosaic.mpi-cbg.de.

All segmentations start from the same initialization with the two level functions ϕ(x) and 

ψ(x) being Euclidean distance functions from two uniformly randomly placed points oϕ and 

oψ in the image domain, respectively. This describes a random filament with one bend, 

illustrating how the topology and geometry of the segmentation can change during algorithm 

evolution. However, since the problem is convex, the result is independent of the 

initialization.

We first provide an illustrative example for better understanding. After that, we demonstrate 

the differences between our present method and other state-of-the-art filament segmentation 

methods. We then quantitatively evaluate the segmentation errors of our proposed method on 

synthetic images with known ground truth. Finally, we show applicability of our proposed 

method to real images.

5.1. An illustrative example

We start with a simple illustrative example to visualize the working of our proposed 

algorithm. We artificially generate an image of two straight filaments with an SNR = 10, 

Gaussian noise, and blur with a Gaussian PSF of σ = 3 pixel. The resulting image is shown 

in Fig. 4a. The evolution of the soft indicator function Hf (x) over the iterations of the 

gradient-descent procedure is shown in Fig. 4b to Fig. 4h, starting from the random 

initialization described above that is far from ground truth.

After 60 iterations, the algorithm has converged to the optimal  shown in Fig. 4h. The 

algorithm converges rapidly and correctly detects the not previously specified number of two 

filaments. The topology of the segmentation changes several times during the process. 

Thresholding  using the post-processing algorithm correctly identifies the two 

filaments. Since we can evaluate the continuous B-spline level functions (and hence also 

) to any precision we want, the segmentation results have sub-pixel resolution.

Additionally, this example illustrates that the final indicator function  is not perfectly 

binary, but continuous in [0, 1]. The value corresponds to a localization “likelihood” of the 

filaments.

5.2. Qualitative comparison with previous methods

We illustrate the behavior of our method by comparing it to existing methods from each of 

the four classes introduced previously: an optimal pixel mask method (Alternating Split-
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Bregman, “ASB”) (Paul et al., 2013), an active contour method (“Act. Contour”) (Goldstein 

et al., 2010), an open-curve fitting method (“SOAC”) (we use the software by Smith et al. 

(2010) of which a later extension to 3D is also available (Xu et al., 2014)), and a semi-

automatic hybrid method (“FIESTA”) (Ruhnow et al., 2011). FIESTA (Ruhnow et al., 2011) 

is a semi-automatic method that uses manual thresholding to circumvent the segmentation 

problem. After thresholding, FIESTA efficiently solves a localization/detection problem. We 

nevertheless show the result here as a benchmark. We use a synthetic image containing a 

single filament, as this is the least common denominator that can be solved by all compared 

methods without additional prior knowledge. The segmentation results are shown in Fig. 5.

While both the pixel-mask method (Paul et al., 2013) and the active contour (Goldstein et 

al., 2010) correctly identify the filament, they represent it as a region of finite thickness, 

rather than as a curve. Additionally, the pixel mask as in Fig. 5a can only provide pixel-level 

resolution. While the open-curve fitting method as in Fig. 5c segments the filament as a 

curve, it is sensitive to noise and ends with a non-optimal solution where the curve fails to 

trace the entire filament. FIESTA Fig. 5d provides the best result from all previous methods, 

providing a geometric curve with sub-pixel accuracy. Our method as in Fig. 5e provides a 

result that is qualitatively as good as that from FIESTA, but solves the full segmentation 

problem without requiring any manual thresholding. It handles local minima well and is 

insensitive to noise because the underlying optimization problem is globally convex.

After highlighting these qualitative differences, we present a quantitative comparison of the 

accuracy of the present method. High accuracy is often desired when monitoring the 

temporal growth dynamics of individual filaments, where already changes of half a pixel or 

less can give rise to polymerization/depolymerization switches, which are biologically or 

biophysically relevant.

5.3. Quantitative evaluation

We use 4000 synthetic images (described above, 100 images per case and SNR) with known 

ground truth to quantitatively evaluate the detection and segmentation accuracy. We first 

evaluate the mean-square error (MSE) in the spline coefficients and compare it with the 

theoretical B-CRB, showing that our method asymptotically approaches the lower error 

bound. Second, we quantify how the error grows as the images depart from the theoretical 

assumption of uniform intensity along the filaments, using both the 50% and 70% shading 

cases. Third, we quantify the influence of the two algorithm parameters (i.e., the scaling size 

h and the regularization coefficient λ) on the accuracy of filament segmentation, and we 

make recommendations for parameter choices.

While measuring the error in the spline coefficients can directly be done using the MSE, 

comparing segmented filaments with ground truth requires more intuitive error metrics: first, 

we use the standard Dice coefficient to quantify the detection quality of the segmentation, 

i.e., how well the filaments were identified. Second, we use the Fréchet distance to quantify 

how accurately the correctly detected filaments were segmented to sub-pixel accuracy. In 

addition, we report the percentage of cases where the filament has been correctly identified 

and no spurious filaments were segmented (i.e., no under- or over-segmentation). These 

error metrics quantify the difference between a segmentation result and ground truth, which 
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is not to be confused with the Bregman divergence used to quantify differences between the 

model image and the data.

The Dice coefficient measures the overlap between ground truth and the obtained 

segmentation as 2TP/((FP + TP) + (TP + FN)), where TP are the true positives, defined here 

as all pixels in the segmentation that are within ± 5 pixel from the ground truth filament. 

Similarly, FN are the false negatives (pixels missed from ground truth to within ± 5 pixel) 

and FP the false positives (pixels of spurious filaments detected farther than 5 pixel from 

ground truth). We use the 5 pixel detection tolerance because the Gaussian PSF has σ ≈ 4 

pixel blur. A Dice coefficient of 0 means that no filament pieces were correctly detected, one 

of 1 means that all filament pieces were correctly detected with no spurious false positives.

For those filaments that were correctly detected within the 5 pixel tolerance, we quantify the 

worst-case segmentation error using the Fréchet distance:

where ca and cb are two parametric curves with parameter t ∈ [0, 1]. The functions ζ and η 
range over all monotone reparametrizations. This is a standard metric to measure the 

similarity between two curves. Identical curves have a Fréchet distance of zero. The Fréchet 

distance can be interpreted as the minimum cord length sufficient to join a point traveling 

forward along one curve and one traveling forward along the other, although the speed of 

travel for either point may not necessarily be uniform. The Fréchet distance is not 

computable for general continuous curves, but can be efficiently computed for curves given 

by polynomials, as is the case here. This discrete Fréchet distance is a metric and is also 

sometimes called coupling measure.

5.3.1. Error in the spline coefficients—We compare the algorithm performance against 

the B-CRB using the synthetic benchmark images of the fluorescence case with both 

uniform and shaded filament intensities. We run our algorithm to derive segmentation results 

for each image. We then compare the coefficients of the final spline level functions (i.e., the 

coefficients of the two spline level functions minimizing the energy) with those of the 

synthetic ground-truth splines. We show the resulting MSE and the theoretical B-CRB for 

the Gaussian noise model in Fig. 6. The result for the Poisson noise model is visually 

indistinguishable and hence not shown.

As shown in Fig. 6, for low SNR the algorithm performs sub-optimally and remains above 

the theoretical B-CRB lower bound. This is due to sub-optimal parameter choices. The 

optimization problem is solved optimally, so no error originates from its solution. Also, the 

imaging model used is the ground-truth model that also generated the synthetic data. The 

sub-optimality for low SNR must hence be due to parameter choices. While the optimal h 
could be 1.7 for example, we restricted ourselves to integer values in our tests, which may 

not be optimal. This shows only at low SNR, since both parameters h and λ affect the 

sensitivity of the method to noise, as shown below.
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For increasing SNR, the algorithm is asymptotically optimal. Some of the error bars extend 

below the bound, because the B-CRB is for the expectation value of the error. Individual 

cases, however, can be below the bound. This is not a violation of the theory as long as the 

mean stays above the bound. In both noise cases, we can observe that the empirical MSEs 

are tight to the theoretical B-CRB. This shows that our method almost achieves the 

theoretical minimum of the estimation error. The asymptotic approach to the bound for 

higher SNR confirms the attainability of the B-CRB predicted by our above theoretical 

analysis.

If the filament intensity is not uniform along the filament axis, the SNR is different for 

different points on the filament and the SNR values are to be interpreted as average SNR 

over the entire image. The result accuracy then decreases, as shown by the 50% and 70% 

shading cases in Fig. 6. This is expected. For a 50% intensity shading, the MSE is about 

twice as far from the B-CRB as for uniform filaments. Even for a 70% departure from the 

theoretical assumption of uniformity, the MSE is still acceptable and asymptotically optimal. 

This suggests (albeit a theoretical proof seems out of reach) that while uniformity is a 

necessary mathematical assumption in deriving the optimal algorithm, the algorithm’s 

sensitivity to violation of this assumption is bounded in practice.

5.3.2. Influence of scaling size h and regularizer λ—The present algorithm has two 

parameters: the scale size h and the regularization parameter λ. This generates a 2D 

parameter space h × λ. In order to analyze the influence of these parameters, we repeat the 

above benchmark for many combinations of h and λ, performing a grid search. For each 

parameter set, we measure the Dice coefficient. The result is shown in Fig. 7. The imaging 

model used is that of a fluorescence microscopy (PSF σ = 3. 32) with Gaussian noise of 

SNR = 4.0. For different SNR and different imaging models, this surface may look different. 

It can hence not directly be used to fix standard algorithm parameters.

The fitted smooth colored surface is only added for better visualization. The figure shows 

that mainly the parameter h affects the quality of the segmentation result. For this SNR, h = 

1 is optimal for all tested λ. The performance is robust over a wide range of λ values 

spanning four orders of magnitude. While no standard parameter values can be given, the 

algorithm performance seems to be insensitive to variations of λ. We next investigate in 

more detail the influence of h as a function of image SNR.

5.3.3. Influence of scaling size h for different SNRs—The parameter h is easy to set 

and useful, as it allows tuning the pixel resolution required in the result. To give a better 

feeling for this, we quantitatively evaluate the influence of h as a function of SNR.

We do this using our 2000 synthetic benchmark images with SNR values ranging from 4 → 
30. For each image, we try scaling sizes h ∈ [0, 3] for fixed λ = 10−5, which provides the 

best Dice coefficient at SNR = 4.

For fluorescence images (Fig. 8a to d), h = 1 provides the best results for all tested SNR. 

Theoretically, one would expect that higher SNR allow lower h, hence providing higher-

resolution segmentations. This, however, seems to be robust over the SNR range tested here. 
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For phase-contrast images (Fig. 8e to h), segmentation is generally more accurate, but less 

reliable (smaller percentage of perfect detection). An h = 0 is always the best choice for the 

phase-contrast images.

Comparing to FIESTA (solid black line in Fig. 8a and b), our method generally performs 

equally well, sometimes even with a higher accuracy (i.e., lower Fréchet distance). At low 

SNR, our method shows significantly better detection performance than FI-ESTA with 100% 

of all filaments correctly detected by our method and 73% by FIESTA (see numbers in Fig. 

8b). For FIESTA, we manually tuned the threshold to give the best results, which was then 

used to fit the data for different SNRs. For our method, we manually tune λ and h.

Looking at the segmentation accuracy, the Fréchet distances are around 1.5 pixels for the 

fluorescence images and around 1 pixel for the phase-contrast images. This may seem like a 

low accuracy for a sub-pixel segmentation method. Keeping in mind that the Fréchet 

distance is the maximum distance between the two filaments, it is natural to ask where this 

maximum error occurs. Visually inspecting the results suggests that the error is localized to 

the filament tips. While the lateral tracing of the filaments is sub-pixel accurate, the 

segmentation often misses the exact filament tip location by 1 to 1.5 pixels. Since in biology 

we are often interested in computing the length of a filament from such segmentations, this 

is indeed the relevant error.

5.4. Application to microscopy images of biological filaments

We demonstrate the usefulness of our method, and further illustrate the influence of the 

parameters λ and h, using real biological microscopy data from fluorescence, phase-

contrast, and dark-field microscopy. For each case, the same specimen has been imaged on 

the same microscope (Nikon Eclipse Ti) with the same objective (Nikon Plan Fluor 100×, 

NA 1.45 for fluorescence and phase-contrast, NA 0.5 for dark field) and the same camera 

(Andor Zyla 4.2; pixel size 6.4 µm, effective pixel size with the 100× lens 64 nm). This 

ensures comparability of the results. The specimen is a demembranated axoneme from a 

pf2:pf2GFP Chlamydomonas reinhardtii cell (Alper et al., 2013). This particular mutant is 

rescued with a GFP tagged dynein regulation complex (DRC), which localizes along the 

entire length of the axoneme. Thus, these axonemes can be imaged not only by phase 

contrast and dark-field, but also by fluorescence microscopy.

5.4.1. Application of the present method to fluorescence microscopy images
—Segmentation results for the 16bit fluorescence image are shown in Fig. 9. In our method, 

we use the standard fluorescence imaging model with a Gaussian PSF of 500 nm full width 

at half maximum (hence, σ = 3. 32 pixel) and a Poisson noise model. Increasing the scaling 

size h in the present method for fixed λ changes the segmentation. For h = 0 the present 

method segments some of the noise close to the filament. The best result is obtained for h = 

1 (shown). For h = 2, precision starts to be lost.

When using FIESTA (Ruhnow et al., 2011), the threshold for the initial segmentation was 

manually adjusted to 377 (out of 65,535 for this 16bit image).
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The three previous model-based methods perform as expected. Specifically, the method from 

Paul et al. (2013) successfully locates the region containing the filament to pixel-size 

resolution. The closed active contour from Goldstein et al. (2010) provides good outline of 

the filament. The curve-fitting method from Smith et al. (2010) converges in a local 

minimum. All methods are used with their standard parameter settings as provided by the 

original publications.

5.4.2. Application of the present method to phase-contrast microscopy 
images—Segmentation results for 16bit phase-contrast images are shown in Fig. 10. Since 

FIESTA (Ruhnow et al., 2011) does not include a phase-contrast imaging model, we first 

inverted the images before processing them with FIESTA. In our method, we use the 

imaging model for phase-contrast images from Yin et al. (2010) with parameters measured 

from an image of the back focal plane of the microscope and the Phase-3 oil condenser used 

(phase ring inner diameter 2 mm, outer diameter 2.5 mm, back aperture 5.8 mm). In 

addition, we use a Poisson noise model.

Fig. 10 shows the result using the present method with λ = 10−4 and h = 0. Some of the 

background speckles are spuriously detected as short filaments and would have to be filtered 

based on their length in a post-processing step. The FIESTA (Ruhnow et al., 2011) result is 

free from false positives and correctly traces the length of the filament. The results obtained 

with the other methods used the respective standard parameter settings as provided by the 

original publications. The method from Paul et al. (2013) correctly identifies the pixel mask 

containing the filament, but also detects a false positive in the background. Also the method 

from Goldstein et al. (2010) generates artifacts in the back-ground while correctly tracing 

the outline of the filament. The SOAC curve fitting methods from Smith et al. (2010) fails to 

trace the filament, getting trapped in a local energy minimum on the inverted image.

5.4.3. Application of the present method to dark-field microscopy images—We 

repeat the same evaluation and comparison using 16bit dark-field microscopy images of the 

same specimen. While an imaging model for dark-field microscopy exists (Mehta and 

Oldenbourg, 2014), it strongly depends on the geometry of the imaged object. It can hence 

not be formulated as a convolution kernel K, which is why we resort to using the imaging 

model for fluorescence microscopy here with σ = 4 and a Gaussian noise model.

Our present method successfully identifies the filament for all scaling sizes tested (h = 1, 2, 

3). The best result is obtained for h = 2 (shown) and λ = 10−4, as shown in Fig. 11. The 

result from FI-ESTA (Ruhnow et al., 2011) used a threshold of 4000 (out of 65,535 for the 

16bit images). The method from Paul et al. (2013) successfully identifies the region 

containing the filament to pixel-size resolution. The closed active contour from Goldstein et 

al. (2010) also successfully traces the filament boundary with sub-pixel resolution. The 

curve-fitting method from Smith et al. (2010) converges in a local minimum. All methods 

are used with their standard parameter settings as provided by the original publications.

5.4.4. Application to images containing multiple filaments—Often images contain 

an unknown number of filaments. We show the application of our method to 16bit 

fluorescence images containing a number of fluorescently labeled filaments. We use the 
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same fluorescence imaging model as above and do not previously specify the number of 

filaments in the image. Our present method detects them automatically and without manual 

tuning of any threshold parameter. We start from the same initialization as before, i.e., a 

single curved filament. The segmentation results are shown in Fig. 12.

We test two images that contain two and six filaments, respectively. We show the results for 

the default parameters h = 1 and λ = 10−5. The first image (a) contains two purified 

pf2:pf2GFP axonemes (Alper et al., 2013). The second image (b) shows six fluorescently 

labeled microtubules (Gell et al., 2010). This image has much lower SNR, yet the 

microtubules are correctly segmented.

This demonstrates that our method combines the benefits of multiple existing methods. It 

provides sub-pixel geometric curve descriptions of the filaments, automatically detects the 

number of filaments in an image, does not rely on manual thresholding, works for different 

imaging models and microscopy modalities, and provides globally optimal results under the 

postulated model that asymptotically achieve the Bayesian Cramér-Rao lower bound in the 

spline coefficients.

6. Conclusions

We have presented a new algorithm to solve the filament segmentation problem for curved 

one-dimensional filaments in two-dimensional digital images. The presented method has 

only two parameters and does not require prior knowledge about the number of filaments in 

the image. It provides segmentation results with sub-pixel accuracy as open polynomial 

curves. This enables high-resolution studies of filament dynamics and provides access to 

spatial and temporal derivatives of the curve and its time evolution. Open curves are 

represented by a vector level-set, which enables topological changes during contour 

evolution. The method is flexible to accommodate different noise models and image-

acquisition models. The segmentation result is guaranteed to be optimal for the given model. 

This is the result of a convex formulation of the underlying optimization problem, using 

Bregman divergences to measure the similarity between images, and a GLM model for the 

image pixel statistics. In other words, our method exploits prior knowledge about the 

physical properties of the imaging system in order to improve segmentation quality. Note 

that the geometric and photometric problems are likely not jointly convex, but separately 

convex, which is enough for convergence. If needed, a jointly convex formulation could 

possibly be derived extending recent works (Brown et al., 2012).

We provided an efficient algorithm to compute the optimal filament segmentation under the 

postulated models. The algorithm combines the analytical energy gradients with a fast 

convolution-based gradient evaluation. We have also for the first time shown an information-

theoretic lower bound on the segmentation error in filament segmentation. No algorithm can 

possibly do better than this bound given the information in the image. We have shown that 

for the specific bound of B-spline level sets, the presented algorithm is asymptotically 

optimal for high SNR. For low SNR, the presented algorithm is not the best one could do, as 

it remains slightly above the theoretical bound. This, however, is due to parameter choices, 
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as discussed. Quantifying the residual fitting un-certainty could, for example, be done using 

particle filters in an outer loop, as previously described (Cardinale et al., 2009).

Comprehensive simulations were conducted to illustrate the major differences with prior 

works, show main features of our method, quantitatively evaluate the performance on 

synthetic images, and demonstrate applications on real biological images. The benchmarks 

have also identified recommended choices for the algorithm parameters h and λ: for 

fluorescence images with SNR between 4 and 30, one should set h to 1, for phase-contrast 

image h = 0. The λ value is largely inconsequential. A default value of 10−5 should yield 

good results.

The time required by the algorithm to segment an image depends on the image size and on 

how far the initialization is form the final segmentation. It does not depend on the number of 

filaments in the image. The current MATLAB implementation processes a 512 × 512 pixel 

8bit image in about 30 seconds using MATLAB 2013b on a single core of an Intel Core i7 

2.2 GHz processor.

In its current form, the method has a number of limitations. Probably the most restrictive one 

is that filament crossings and overlaps are not allowed. This is an inherent limitation of the 

two-component vector level-set description of filaments. Handling crossing filaments would 

require using more than two level functions (three to allow single crossings, four for tripple 

points, etc.). Currently, the method is also limited to 2D images. Segmenting filaments in 3D 

images would require the use of three level functions. A limitation of the current theoretical 

derivation is that the intensities of the filaments and the background are assumed to be 

uniform. As we have shown, however, the segmentation is still asymptotically optimal even 

when these assumptions are not fulfilled, with a bounded increase in the error. Intensity 

variations along a filament could then be read out during post processing and used as 

biological readouts, but the tips of the filaments may be inaccurately estimated, especially 

when the filaments get dimmer towards the tips.

There are a number of directions along which future work could improve on the present 

framework. An obvious thing to do would be to extend to more than two level functions in 

order to handle crossing filaments and higher-dimensional images. Extending the method to 

allow for shaded fore- and background intensities in a theoretically optimal way is less 

straightforward and requires more research in convex relaxation theory. A more short-term 

goal could be to include a line search over h in a scale-space pyramid (i.e., automatically 

repeating the segmentation for successively lower h) to find the optimal h that leads to the 

lowest global energy minimum in each case. Together with a default value for λ, this would 

effectively render the algorithm parameter-free.

We provide an open Matlab implementation of the presented algorithm as a reference. In 

addition, the algorithm has also been implemented in Java, as part of the open-source 

MOSAIC-suite plugin for the user-friendly image-analysis environments ImageJ (Schneider 

et al., 2012) and Fiji (Schindelin et al., 2012). Both implementations are freely available 

from the MOSAIC Group’s web site mosaic.mpi-cbg.de. The main contributions of the 

present paper were to: (1) show an information-theoretic lower bound on the segmentation 

Xiao et al. Page 26

Med Image Anal. Author manuscript; available in PMC 2016 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



error for filaments, providing a baseline against which algorithms can be compared; (2) 

introduce the vector level-set idea for filament segmentation, uniting the advantages of both 

region-segmentation and curve-fitting methods; (3) showing that the resulting optimization 

problem can be solved efficiently and in a globally optimal way; (4) providing a practical 

framework for filament segmentation across different imaging modalities and noise models.
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Fig. 1. 
Vector level-set representation of open curves. (a) Two example level functions ϕ and ψ, 

each shown as a colored surface. Color is the z value (height). The bold black line shows the 

closed curve defined by {x: ϕ(x) = 0}. The second level function ψ (with meshgrid) is then 

used to define the open curve {x: ϕ(x) = 0 and ψ(x) > 0}. (b) The so-defined open curve is 

represented by its indicator function Hf (Eq. (3)).
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Fig. 2. 
A B-spline surface with different scaling sizes h. The scaling size h allows tuning the 

geometric resolution of the spline, providing regularization against noise. It defines the node 

spacing in units of pixels with h = 0 (a) placing a spline node into every pixel, h = 1 (b) into 

every other pixel, and so on (c)–(d).
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Fig. 3. 
Examples of synthetic benchmark images showing random filaments with known ground 

truth. (a)–(e) Five different SNR values using the fluorescence imaging model (Gaussian 

noise, σ = 3. 32 pixel) with uniform filament intensity. (f)–(g) Images from the fluorescence 

imaging model (Gaussian noise, σ = 3. 32 pixel, SNR = 10.5) with linearly shaded filaments 

of 50% and 70% shading, respectively. (h)–(j) Three different SNR values using the phase-

contrast imaging model (Poisson noise). The complete set of 4000 benchmark images can be 

downloaded from the MOSAIC Group’s web site mosaic.mpi-cbg.de.
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Fig. 4. 
Evolution of Hf (x) during gradient descent. (a) A test image of size 100 × 100 pixel with 

SNR = 10, Gaussian noise, and Gaussian blur with σ = 3 pixel. (b)–(h) Snapshots of Hf (x) 

at iterations 1, 5, 10, 15, 20, 40, 60, starting from a random initialization far from ground 

truth.
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Fig. 5. 
Qualitative comparison of different methods on an example synthetic image (Gaussian noise 

with SNR = 4, Gaussian PSF with σ = 3. 3 pixel). (a)–(e): the segmentation results produced 

by ASB (Paul et al., 2013), Active Contours (Goldstein et al., 2010), SOAC (Smith et al., 

2010), FIESTA (with threshold manually adjusted to 140 out of 255 for the present 8bit 

images) (Ruhnow et al., 2011), and our present method. (f)–(j): Corresponding 

magnifications of the regions in the yellow boxes above. For FIESTA, the following settings 

were used: FWHM = 1100 nm, relative intensity threshold 160%, smooth after tracking, 

correct for focus drift, Track especially curved filaments = 30%. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 6. 
Quantitative evaluation of the mean-square error (MSE, Eq. (21)) in the level-function spline 

coefficients (mean ± standard deviation) for different SNR and different linear intensity 

gradients along the filaments, in comparison with the theoretical Bayesian Cramér-Rao 

Bound (B-CRB) of the error. 100 random synthetic filament images are processed for each 

data point with λ = 10−5 and h = 0 in all cases. Only the result for Gaussian noise and the 

fluorescence imaging model is shown. The result for Poisson noise is visually 

indistinguishable and hence omitted.
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Fig. 7. 
Dice coefficient from ground truth for different scaling sizes h ∈ [0, 4] and regularizer 

coefficients λ = [10−7, 10−3], increasing 10-fold at each step, shown for the case of 

fluorescence imaging with Gaussian noise of SNR = 4.

Xiao et al. Page 36

Med Image Anal. Author manuscript; available in PMC 2016 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Detection accuracy (Dice coefficient) and segmentation accuracy (Fréchet distance) for all 

tested cases. All values are given as mean ± standard deviation vs. SNR when using the 

correct noise and imaging models. The numbers near the symbols are the percentage of 

cases in which the correct filament was correctly detected to within ± 5pixel. Only these 

cases are taken into account when computing the Fréchet distance. For the present method, 

we use a constant λ = 2. 5 · 10−3 for all cases and vary h as indicated in the legends. For 

FIESTA, we use a manually optimized relative threshold of 160% in all cases, tuned for the 
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lowest SNR and then applied across all SNR. Other FIESTA settings were: track filaments 

only, smooth after, PixelSize = 100 nm/pixel, FWHM = 1100 nm, area = 100 pixel, correct 

for focus drift, track especially curved filaments = 30%. Missing symbols are those cases 

where no acceptable segmentation within ± 5 pixel from ground truth was found.
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Fig. 9. 
Application to a fluorescence image of a demembranated axoneme from a pf2:pf2GFP 

Chlamydomonas reinhardtii cell. (a) Segmentation result using the present method with h = 

1 and λ = 10−5. (b) Segmentation result using FIESTA (Ruhnow et al., 2011) with threshold 

377 (out of 65,535 for the present 16bit image). (c)–(e) Segmentation results using the 

methods from Paul et al. (2013), Goldstein et al. (2010), and Smith et al. (2010) with their 

standard parameters, respectively.
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Fig. 10. 
Application to a phase-contrast image of a demembranated axoneme from a pf2:pf2GFP 

Chlamydomonas reinhardtii cell. (a) Segmentation result using the present method with λ = 

10−4 and h = 0. (b) Segmentation result using FIESTA (Ruhnow et al., 2011) on the inverted 

image with relative threshold = 156%, FWHM = 100, track curved filaments = 30%, drift 

correction on, 64 nm/pixel. (c)–(e) Segmentation results using the methods from Paul et al. 

(2013), Goldstein et al. (2010), and Smith et al. (2010) with their standard parameters, 

respectively.
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Fig. 11. 
Application to a dark-field microscopy image of a demembranated axoneme from a 

pf2:pf2GFP Chlamydomonas reinhardtii cell. (a) Segmentation result using the present 

method with h = 2 and λ = 10−4. (b) Segmentation results using FIESTA (Ruhnow et al., 

2011) with threshold 4000 (out of 65,535 for this 16bit image). (c)–(e) Segmentation results 

using the methods from Paul et al. (2013), Goldstein et al. (2010), and Smith et al. (2010) 

with their standard parameters, respectively.
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Fig. 12. 
Application of the present method to two fluorescence microscopy images containing 

multiple filaments: (a) two purified pf2:pf2GFP axonemes (Alper et al., 2013); (b) six 

GMPCPP-stabilized microtubules, in vitro polymerized from a mixture of Rodamine-labeled 

and unlabeled pig brain Tubulin (1:3) imaged by fluorescence microscopy (Gell et al., 2010). 

We use the default parameters h = 1 and λ = 10−5.
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