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Abstract

Coordinated social behaviour is fundamental for ant ecological success. However, even dis-

tantly-related organisms, such as plants, have evolved the ability to manipulate ant collec-

tive performances to their own advantage. In the parasitic system encompassing Maculinea

butterflies, Myrmica ants, and Origanum vulgare plants, the ant-plant interaction elicits the

release of a volatile terpenoid compound (carvacrol) which is used by the gravid butterfly to

locate the ideal oviposition site. Here we show that this ant-plant association is maintained

by the effect of O. vulgare terpenoids on ant behaviour and that food plants might gain pro-

tection by Myrmica ants by chemically manipulating workers to forage in their surroundings.

The variation in the locomotor ability of three ant species (Formica cinerea, Tetramorium

caespitum, and Myrmica scabrinodis) was studied after treatment with the two major O. vul-

gare terpenoid volatile compounds (i.e., carvacrol and thymol). The brain levels of three bio-

genic amines (dopamine, tyramine and serotonin) were analysed in ants exposed to the O.

vulgare terpenoids by HPLC-ESI-MS/MS. Carvacrol and thymol increased the locomotor

activity of all ant species tested, but if blended reduced the movement propensity of Myrmica

scabrinodis. Dopamine and tyramine production was positively correlated with the worker

locomotor activity. In Myrmica ants, both brain biogenic ammines were negatively correlated

with the aggressive behaviour. Blends of O. vulgare volatiles affected the locomotor ability

while increased the aggressiveness of Myrmica workers by altering the aminergic regulation

in the ant brains. This behavioural manipulation, might enhance partner fidelity and plant

protection. Our findings provide new insights supporting a direct role of plant volatiles in driv-

ing behavioural changes in social insects through biogenic amine modulation.

Introduction

The social organization of ants is based on communication signals which coordinate large

numbers of individuals in collective-decision processes, without a centralised control [1].

Although some decisions are individually made, the majority of choices influencing the colony

success are performed cooperatively. The decision-making occurs in the selection of the most

appropriate food in terms of amount and quality [2], best migration or foraging route [3,4],
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most suitable place where to build a new nest [5,6] as well as decisions to attack either enemies

or competitors [7,8]. This peculiar trait of eusocial organisms, together with the ability to regu-

late the number of individuals performing specific tasks (division of labour), enhances the col-

ony plasticity to react promptly against biotic and abiotic variations [9,10].

Plant chemical signalling can manipulate and influence the decision-making of ants [11–

13]. However, how the manipulation of social activities is achieved is not fully disentangled

and the mechanism is likely to vary in distinct systems. A role of biogenic amines in driving

behavioural changes of both vertebrates [14,15] and invertebrates [16–19], including ants [20–

22], has been demonstrated. Research on ants is still in its infancy, yet some supporting evi-

dence was provided for colonies of the Red Imported Fire Ant, Solenopsis invicta, with a

change in the nest-mate recognition determined by a decrease in the brain level of octopamine

[23], and in Pheidole ants, where the depletion in the serotonin content modulates the trail-fol-

lowing behaviour of workers [24].

In spite of their ecological dominance, ants suffer from social parasitism by several inverte-

brates [1]. Maculinea butterflies are outstanding examples of cheaters employing both chemi-

cal [25] and acoustical [26] strategies to exploit their Myrmica host ants. In this multitrophic

system, the ant-butterfly association is obligately parasitic and involves also the species-specific

plant, used as the egg-laying site by butterfly females. In the case of Maculinea arion, early-

instar butterfly larvae feed on Origanum vulgare, until they drop on the ground where thanks

to chemical mimicry are retrieved by Myrmica foragers and taken into the ant nest. Here M.

arion larvae spend the next ten months consuming the resources of the colony and feeding on

the ant brood until the adult will eventually emerge from the nest [27].

Recently, it has been demonstrated that the interaction between Myrmica ants and O. vul-
gare plants leads to an increased production of the plant volatile monoterpene carvacrol [28].

The release of carvacrol is the indirect signal interpreted by M. arion gravid females to locate

the food plant growing in the vicinity of its Myrmica host colonies, thus providing its brood

with both sequential hosts (i.e., the source of food, shelter and care in the nest) [28,29]. Myr-
mica ants survive longer than other ant species when exposed to carvacrol, by upregulating

specific genes coding for detoxifying enzymes [28]. Therefore, it seems that Myrmica ants ben-

efit from being resistant to carvacrol by occupying a competitor-free spaces surrounding oreg-

ano plants, while parasite larvae increase their chance of encountering ants [28,29].

The mechanism that induces Myrmica ants to forage and found their nests in the proximity

of oregano plants is still unknown. Here we show that thymol and carvacrol produced by O.

vulgare act on Myrmica behaviour by modifying the biogenic amine level in their brain, thus

affecting their locomotor activity and the aggressive behaviour. We also tested and compared

the effect of these two monoterpenes on other ant species (Tetramorium caespitum and For-
mica cinerea) and confirmed that behavioural changes are correlated to variation on terpe-

noid-modulated biogenic amines levels.

Materials and methods

Animal material

Colonies of Myrmica scabrinodis, Formica cinerea and Tetramorium caespitum were collected

at the Parco Fluviale Gesso e Stura, North Italy (44˚25’N, 7˚35E, 440 m), where a previous

study on acute exposure of ants to specific O. vulgare volatiles was made [28]. Ant colonies

were collected and reared in plastic boxes (24×24×9 cm). Ants were fed twice a week on a

honey and protein diet [30].

Although our field study did not involve endangered or protected species, the Parco Flu-

viale Gesso e Stura issued the permission to collect ant specimens for each location.
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Chemicals

GC-grade carvacrol and thymol were purchased from Sigma-Aldrich (St. Louis, MO. USA).

Pure standards (dopamine, tyramine, 3,4-dihydroxybenzylamine hydrobromide and seroto-

nin) and formic acid were purchased from Merck (Darmstadt, Germany). Isopropanol, chlo-

roform and acetonitrile were purchased from VWR International (Radnor, PA, USA).

Locomotor activity

Variations in the locomotor activity were evaluated after treatment of the three ant species

with either carvacrol (C) or thymol (T), or either a 3:1 (v/v) (Ct) or a 1:3 (v/v) (Tc) mixture of

carvacrol/thymol. A 477 μg ml-1 solution of the above chemical and mixture was used in order

to provide a final concentration of 0.1 ppm inside the Petri dish (9 cm internal diameter × 1.5

cm height). 20 μL of each solution were poured on a small paper disk (5 mm diameter) which

was left in the centre of a Petri dish. Two controls were used in the bioassays: the first to assess

the effect of the artificial condition (blank) and the second to evaluate the effect of the solvent

(DMSO) on the ant movements.

Afterwards, 18 F. cinerea, 30 M. scabrinodis and 30 T. caespitum ants were randomly chosen

among foraging workers. Due to their different size, three F. cinerea ants (6–7 mm each) and

five workers in the case of M. scabrinodis and T. caespitum (around 4 mm each) were placed

per each Petri dish and allowed to settle for 5 minutes. Ants of each species were tested simul-

taneously in six Petri dishes (4 treatments and 2 controls). Three colonies per ant species were

assayed (N = 9) and a total of 234 workers were observed.

Protocols described by Hojo and colleagues [31] were followed to assess the ant locomotion.

A bisecting line (i.e., one diameter) was drawn on the lid of each Petri plate. The number of

times each ant crossed the solid line was recorded for 1 h by a video camera (Panasonic HC-

4k) and measured by operators who were blind to experimental condition. Ants were not

marked, thus crossings were counted irrespectively of the individual. No deviant behaviour

(e.g., stay still) of any individual was observed during the bioassay.

Aggression bioassays

Aggression bioassays were performed on Myrmica foraging workers of 3 colonies. All ants

were marked on the thorax and allowed to recover before the aggression bioassay was carried

out. Bioassays were performed as described by Csata et al. [32]. Briefly, two transparent plastic

tubes (3 cm long) were joined and separated by a small piece of red plastic foil. One worker

was placed per tube and after one minute the plastic foil was removed.

Individuals of the same colony were treated with either C, T, Ct or Tc. Ants were separated

in a Petri dish each containing a single worker which was treated for 30 min with 0.1 ppm of

the aforementioned compounds. Then bioassays were carried out testing non-nestmate (het-

erocolonial) ants with the following combinations, carvacrol vs carvacrol (CC), thymol vs thy-

mol (TT), carvacrol/thymol vs carvacrol/thymol (Ct-Ct) and thymol/carvacrol vs thymol/

carvacrol (Tc-Tc). Control tests were carried out using ants left in a Petri dish for 30 min with-

out addition of compounds (CTRL). For each treatment, three tests using all possible combina-

tions of the three colonies were replicated three times. Observations started with the first

contact of the workers and lasted for three minutes. All behaviours were recorded, including

biting, pulling, stinging, allogrooming and antennation. The latter two were considered as pos-

itive or neutral interactions, respectively, whilst the other behaviours were categorized as

aggressive. The aggression index (AI) was calculated as the number of aggressive behaviours

divided by the total number of interactions.
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Ant brain dissection and sample preparation

Sample preparation and the dissection of ant brains were performed following the protocols

by Hojo et al. [31]. Briefly, two weeks after freezing at -25˚C, ants were rapidly beheaded

under a dissection microscope using micro-scissors. A small medial-lateral incision was made

directly behind the mandibles and, in order to prevent contamination by retinal pigments,

optic lobes were removed from the rest of the brain. Each sample contained two brains with

each dissection time averaging less than 1 min. Brains were homogenized in 20 μl water solu-

tion containing 0.05% (v/v) formic acid and 1 ng 3,4-di-hydroxybenzylamine (DHBA) used as

an internal standard. After vortex mixing, samples were centrifuged at 10,000 g for 20 min at

4˚C. In order to remove undesirable compounds, a solution of isopropanol/chloroform (1:4, v/

v) was directly added to the supernatant in a 1:1 (v/v) ratio. Samples were centrifuged at the

same conditions described above. The aqueous layer obtained after centrifugation was imme-

diately frozen on dry ice and stored at -80˚C until injection into an HPLC-ESI-MS/MS (1200

HPLC, Agilent Technologies, Santa Clara, CA, USA) for amine quantification.

Isolation and quantification of biogenic amines by HPLC-ESI-MS/MS

Biogenic amines (serotonin, dopamine and tyramine) and the internal standard DHBA were

identified and quantified by liquid chromatography (1200 HPLC, Agilent Technologies, Santa

Clara, CA, USA) equipped with a reverse phase Kinetex F5 Core-Shell LC Column (2,6 μm,

150 mm × 3.0 mm, 100 Å, Phenomenex, Torrance, CA, USA) which was kept at 40˚C during

chromatography. The binary solvent system was: (A) MilliQ H2O containing 0.1% (v/v) formic

acid and (B) MeCN containing 0.1% (v/v) formic acid. The chromatographic separation was

carried out at a constant flow rate (200 μl�min-1) with the following conditions: isocratic gradi-

ent at 3% B for the first 15 min, then 40% B in 5 min, then after 24 min B concentration was

raised to 98%. The concentration of B was then maintained at 98% for 5 min. The initial

mobile phase was re-established for 10 min before the next injection. The ionization of each

amine was performed by electrospray ionization (ESI) operating in positive mode and tandem

mass spectrometry analyses were performed with a 6330 Series Ion Trap LC-MS System (Agi-

lent Technologies, USA). The flow rate of nitrogen was set at 325˚C and 5.0 l�min-1, and the

capillary voltage was set at 1.5 kV. Helium was used as a collision gas. Quantitative analyses

were performed by Multiple Reaction Monitoring (MRM) by monitoring the fragmentation of

quasi-molecular ions for serotonin (m/z: 177.1; 159.9), dopamine (m/z: 154.1; 137.0), tyramine

(m/z: 138.0; 121.0) and DHBA (m/z: 140.0; 123.0). Quantification was performed by internal

standard and external calibration curves with pure standards. Limit of Detections (LOD) and

Limit of Quantification (LOQ) for each compound were determined as described in the com-

plementary guideline of validation of analytical procedures [33] (see S1 Table).

Statistical analysis

Kolmogorov–Smirnov tests were used to assess the data distribution. Aggression indices were

compared using a linear mixed model (LMM) with the colony ID as a random factor and CC,

TT, Ct-Ct, Tc-Tc, CTRL as fixed factors. For locomotor activity (LA) assays, data were ana-

lysed using a linear mixed model with cumulated number of crossings as a response variable,

ant colony as a random intercept, and treatment (CTRL, DMSO, C, T, Ct, Tc) as fixed factors.

Differences in the amount of each biogenic amine was tested by LMM using ant colony as a

random factor and treatments (CTRL, DMSO, C, T, Ct, Tc) as fixed effect. Tukey’s honest sig-

nificant difference (HSD) post hoc was used to test pairwise comparisons. Pearson’s coeffi-

cients were used to test the correlation between chemical and behavioural data. All statistics

were performed using SPSS package ver. 25.
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Results

Oregano terpenoids modulate ant locomotor activity

Sublethal concentrations of carvacrol and thymol triggered a significant variation in the loco-

motor activity (LA) of the three ant species under study (Fig 1).

Single or mixed compounds increased LA in F. cinerea with respect to controls (Fig 1A;

F18,5 = 28.641; P < 0.001). Movements were enhanced especially when ants were treated with

Tc and, to a lesser extent, with C and T. Although increased, LA of workers exposed to a blend

with a larger amount of Ct did not vary significantly from controls (S2 Table). Differences in

the LA were also found in treated and untreated T. caespitum workers (Fig 1B; F18,5 = 13.658;

P< 0.001). Overall, treatments elicited an increase in ant movements, but this variation was

significant only in response to Tc. A different response was found when LA was assayed in M.

scabrinodis. Treatments affected the movements of M. scabrinodis (Fig 1C; F18,5 = 19.268;

P< 0.001) and exposure to C and T induced an LA increase in workers. In contrast, both Ct

and Tc caused a significant decrease in ant movements.

Oregano terpenoids modulate brain biogenic amine content

Treatments with C and T significantly affected the brain content of dopamine in F. cinerea
(Fig 2A: F18,5 = 63.744, P< 0.001), T. caespitum (Fig 2B: F18,5 = 58.104, P<0.001) and M. scab-
rinodis (Fig 2C: F18,5 = 6.500, P = 0.006).

Tyramine brain content was also significantly affected by Oregano terpenoids in F. cinerea
(Fig 3A: F18,5 = 15.799, P< 0.001), T. caespitum (Fig 3B: F18,5 = 27.315, P< 0.001) and M.

scabrinodis (Fig 3C: F18,5 = 5.963 P = 0.008).

Irrespectively of the species, brain dopamine and tyramine contents were similarly affected

by treatments, as they both increase or decrease in response to the same compound (all ant

species Pearson correlation; ρ = 0.97, P < 0.001).

In F. cinerea, the highest dopamine content was found after Tc treatment. C and, to a lesser

extent T and Ct, triggered increased dopamine levels (Fig 2A; S3 Table). A similar pattern was

found for tyramine level, which was correlated to dopamine content (Pearson correlation; ρ =

0.96, P< 0.001). Significant changes in tyramine content were only reported between treat-

ments and controls (Fig 3A; S3 Table).

Fig 1. Ant locomotor activity. Data are expressed as the frequency of crossing the bisector traced on the Petri lid, taken as a proxy for worker locomotor activity

affected by treatments (C: carvacrol; T: thymol; Ct: 3:1 (v/v) carvacrol/thymol; Tc: 1:3 (v/v) carvacrol/thymol) and controls (CTRL and DMSO) on Formica cinerea (A),

Tetramorium caespitum (B) and Myrmica scabrinodis (C). Boxplots show median, quartile, maximum and minimum values; different letters indicate significant

differences (Tukey’s HSD post hoc, P< 0.05; S2 Table).

https://doi.org/10.1371/journal.pone.0209047.g001
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In T. caespitum, C and Tc caused the largest increase in the dopamine and tyramine levels

(Figs 2B and 3B), which showed a significant correlation (Pearson correlation ρ = 0.98,

P< 0.001). T and Ct triggered a lower but significant effect, with respect to controls (Fig 2B;

S3 Table).

In M. scabrinodis, the levels of brain dopamine and tyramine varied consistently (Pearson

correlation. ρ = 0.99, P< 0.001). With respect to controls, C and T triggered an increase of

both dopamine and tyramine (Figs 2C and 3C; S3 Table). Although not significant, an average

decrease in tyramine is elicited by exposure to the two blends (Fig 3C; S3 Table).

The locomotor activity of all ant species was strongly correlated with changes in the dopa-

mine (Pearson correlation; ρ = 0.94, P< 0.001) and tyramine (Pearson correlation; ρ = 0.91,

P< 0.001) levels.

In contrast to dopamine and tyramine, no significant variation in the serotonin brain con-

tent was reported in all ant species (S1 Fig).

Oregano terpenoids induce M. scabrinodis aggression

Aggression behaviour was assessed in M. scabrinodis workers only, because this species is

directly involved in the associations with O. vulgare plants and in the interaction with the

Fig 2. Dopamine content. Effects of treatments (C: carvacrol; T: thymol; Ct: 3:1 (v/v) carvacrol/thymol; Tc: 1:3 (v/v) carvacrol/thymol) and controls (CTRL and DMSO)

on dopamine contents in ant brains of Formica cinerea (A), Tetramorium caespitum (B) and Myrmica scabrinodis (C). Values are expressed as pmol dopamine per ant

brain. Boxplots show median, quartile, maximum and minimum values; different letters indicate significant differences (Tukey’s HSD post hoc, p< 0.05; S3 Table).

https://doi.org/10.1371/journal.pone.0209047.g002

Fig 3. Tyramine content. Effects of treatments (C: carvacrol; T: thymol; Ct: 3:1 (v/v) carvacrol/thymol; Tc: 1:3 (v/v) carvacrol/thymol) and controls (CTRL and DMSO)

on tyramine contents in ant brains of Formica cinerea (A), Tetramorium caespitum (B) and Myrmica scabrinodis (C). Values are expressed as pmol tyramine per ant

brain. Boxplots show median, quartile, maximum and minimum values; different letters indicate significant differences (Tukey’s HSD post hoc, p< 0.05; S3 Table).

https://doi.org/10.1371/journal.pone.0209047.g003

Plant modulates ant behaviour through aminergic regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0209047 December 26, 2018 6 / 12

https://doi.org/10.1371/journal.pone.0209047.g002
https://doi.org/10.1371/journal.pone.0209047.g003
https://doi.org/10.1371/journal.pone.0209047


Maculinea butterfly parasite. The level of aggression varied with exposure to different treat-

ments (Fig 4: F45,4 = 8.031, P = 0.007).

Aggression was significantly lower when heterocolonial ants were treated with CC, whilst

TT caused a reduction in the antagonist behaviour, which was not significantly different from

the control tests (Fig 4; S4 Table). Exposure to Ct-Ct and Tc-Tc significantly increased the

aggression of M. scabrinodis, when compared to C and T treatments (Fig 4; S4 Table). Changes

in the worker aggression were negatively correlated with dopamine (Pearson correlation ρ =

-0.93, P< 0.001) and tyramine (Pearson correlation ρ = -0.90, P< 0.001).

Discussion

The results of this work show that C and T modulate the locomotor activity of some ant spe-

cies. Treatments with either C, T, or mixed solutions differently affected ant movements. F.

cinerea and T. caespitum workers generally increased their propensity to move in response to

Tc, whereas the increase in M. scabrinodis movements only occurred when either C or T were

administered alone.

In general, an increased locomotor activity is used as a proxy for ant escaping behaviour,

whereas its reduction indicates an enhanced partner fidelity [31]. The dissimilar response of

ant species to O. vulgare terpenoids might be linked to their different success in detoxifying

Fig 4. Aggression index. Aggression index between heterocolonial M. scabrinodis workers treated with different

compounds or pure air (CTRL: non-treated; CC: carvacrol vs. carvacrol; TT: thymol vs. thymol; Ct-Ct: 3:1 (v/v)

carvacrol/thymol vs. 3:1 (v/v) carvacrol/thymol, and Tc-Tc 1:3 (v/v) carvacrol/thymol vs. 1:3 (v/v) carvacrol/thymol).

Data are expressed as number of aggressive behaviours on the total number of interaction (see methods for details).

Boxplots show median, quartile, maximum and minimum values; different letters indicate significant differences

(Tukey’s HSD post hoc, p< 0.05; S4 Table).

https://doi.org/10.1371/journal.pone.0209047.g004
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these plant volatiles. Both T and C can be detrimental for insect [34] and C has been uses as

insecticide [34–36], fungicidal [34,37] and acaricide [35], although the mechanism of its action

is still unclear [37–39]. Myrmica ants are able to adapt and survive to environmental doses of

C by upregulating genes (e.g., acetylcholinesterase, glutathione S transferase and CYP4509E2)

whose products bind and detoxify this monoterpene, by making the colonies more resistant

than other common ant species [28]. On the contrary, F. cinerea and T. caespitum did not

show any significant upregulation of detoxifying genes when exposed to C and died soon after

the treatment [28]. Hence, the increased locomotor activity here reported for F. cinerea and T.

caespitum upon treatment with C and T can be considered as a countermeasure to enhance

their chances to survive.

Interestingly, a reduction in the locomotor activity is observed only in M. scabrinodis as a

response to terpenoid blends (i.e., Ct, Tc). In natural environments, T is always released by O.

vulgare [40] whilst C primarily occurs as a response to the ant-plant interaction [28]. There-

fore, blends of the two terpenoids are mainly emitted when oregano plants respond to the pres-

ence of ants. The release of C and T mixtures is more than a generic deterrent signal [41]

causing the dispel of some ant species and act as chemical cue manipulating the behavior of

Myrmica ant. C and T blends not only decrease the M. scabrinodis locomotor ability (Fig 1),

but also modulate and enhance another crucial behavioural trait, such as the worker aggres-

siveness (Fig 4).

The decrease in the ant propensity to move is consistent with field data demonstrating that

Myrmica workers forage closed to O. vulgare plants more frequently than other ant species

[28]. The co-occurrence of Myrmica and oregano plants has been previously explained [28] as

a benefit for Myrmica ants to colonise an enemy-free space [42]. However the exploitation of

the ground underneath the plants rises the risk of Myrmica colonies to be parasitized by Macu-
linea larvae, overall reducing the evolutionary advantage of colonising this niche [28]. Our

results provide hints on how these complex dynamics might persist, suggesting that Myrmica
ants are indeed manipulated (i.e., no net evolutionary advantage is expected) and workers are

induced by the plant volatiles to stay and patrol the oregano surroundings [13,43].

On the plant side, the ability to attract a species which is not phytophagous [44] and to

increase its chemical aggressiveness at the cost of a slight variation in the volatile emission

could represent an advantageous strategy to get further protection against herbivores. There

are several associations where ant pugnacity is exploited by plants as a defence against enemies

(e.g. herbivores, encroaching vegetation) [45,46]. Recently, it has been demonstrated that the

plant-ant interaction Acacia-Pseudomyrmex is not an entirely mutualistic association, but defi-

nitely an example of “partner manipulation” [47]. Through the manipulation of the worker

digestive activity the Acacia makes the ants strictly dependent, thus enhancing partner fidelity

and protection.

A similar scenario has been described by Hojo and co-workers [31] studying a lycaenid

larva and its “supposed” mutualistic associated ants. The butterfly larva secretes manipulative

drugs which lower the attendance ant locomotor activity and enforce ant aggressive behaviour

through dopaminergic regulation.

The role of dopamine in modulating insect movements and aggression has been shown in

Drosophila melanogaster [17,48] and some monoamines are also known to be involved in the

response to biotic and abiotic stress, including the variation of environment temperatures

[49], population density [50] and food and water availability [51]. Biogenic amines, like dopa-

mine, may function as neurotransmitters, neuromodulators, or neurohormones; however,

studies showing a direct causal role of these molecules in mediating the behavioural plasticity

are rare [19], mainly performed on invertebrates [20], and especially in social insects [52].
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A wide variation of biogenic amine effects has been reported [20], showing how complex is

the neurochemical mechanisms underlying social behaviours in ants and making any generali-

sation difficult. In contrast, the correlation between the biogenic amine levels and the ant loco-

motor behaviour we found is consistent throughout the three ant species. Our results show

that dopamine levels, which are known to be directly correlated to the complexity of behavioral

repertoire [53,54], and the tyramine content rise as the locomotor ability increases. This corre-

lation suggests a widespread (across the ant species) and crucial role of dopamine and tyra-

mine in modulating ant moving propensity, whereas serotonin appears not to be involved.

Furthermore, our findings concur with the general knowledge [20,55] that, unlike other

Hymenoptera, the ant aggression is not modulated by the serotonergic system.

Although further fieldwork experiments are needed and the mechanism through which

plant volatiles can modulate biogenic amines content in ant brains is not yet clear, our study

provides evidence of an interspecific behavioural manipulation through neurogenic dopamine

and tyramine regulation.

Conclusions

Ants represent a good model system for neuroethological studies because of their relatively

simple neural architecture. Our work provides new insights on the role of plant terpenoids in

dopamine and tyramine modulation for the regulation of the locomotor activity and aggres-

siveness of ant workers, supporting a direct function of biogenic amines in the control of

behaviour and colony organization. In the Maculinea-Myrmica-Origanum system the two

plant monoterpenes, C and T, play crucial roles by modulating ant behaviour, through aminer-

gic regulation, and fostering bi-level interspecific associations. Understanding how the flow of

information among distinct biological levels works will be a fundamental challenge to better

understand the interplay between different trophic levels [56,57].

It is increasingly clear that several interactions which have been considered to be mutualis-

tic in the past, are nowadays revised as potentially parasitic because the ant partner is not

receiving an actual reward but it is rather manipulated [31, 47]. In the future, the identification

of specific neural networks on which biogenic amines act and the identification of genes

involved in the development of these neurons, along with ethological studies, will be pivotal to

understand how behavioural manipulation is widespread and actually achieved in plant-ant

interactions.
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