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Intracerebral hemorrhage (ICH), a common lethal subtype of stroke accounting for
nearly 10–15% of the total stroke disease and affecting two million people worldwide,
has a high mortality and disability rate and, thus, a major socioeconomic burden.
However, there is no effective treatment available currently. The role of mesenchymal
stem cells (MSCs) in regenerative medicine is well known owing to the simplicity of
acquisition from various sources, low immunogenicity, adaptation to the autogenic
and allogeneic systems, immunomodulation, self-recovery by secreting extracellular
vesicles (EVs), regenerative repair, and antioxidative stress. MSC therapy provides
an increasingly attractive therapeutic approach for ICH. Recently, the functions of
MSCs such as neuroprotection, anti-inflammation, and improvement in synaptic
plasticity have been widely researched in human and rodent models of ICH. MSC
transplantation has been proven to improve ICH-induced injury, including the damage
of nerve cells and oligodendrocytes, the activation of microglia and astrocytes, and the
destruction of blood vessels. The improvement and recovery of neurological functions
in rodent ICH models were demonstrated via the mechanisms such as neurogenesis,
angiogenesis, anti-inflammation, anti-apoptosis, and synaptic plasticity. Here, we
discuss the pathological mechanisms following ICH and the therapeutic mechanisms of
MSC-based therapy to unravel new cues for future therapeutic strategies. Furthermore,
some potential strategies for enhancing the therapeutic function of MSC transplantation
have also been suggested.
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INTRODUCTION

Intracerebral hemorrhage (ICH) comprises 10–15% of all strokes;
more than two million patients worldwide per year suffer from
this hemorrhagic type of stroke with a complex pathophysiology
and 1-month mortality of about 70% (Keep et al., 2012; Biffi
et al., 2015; Bosche et al., 2020; Schrag and Kirshner, 2020; Jain
et al., 2021; Rajashekar and Liang, 2021; Witsch et al., 2021).
With the development of medical knowledge, the ICH incidence
showed an increasing trend worldwide (van Asch et al., 2010; Wu
and Anderson, 2020), resulting from the spiraling increment of
older adults; the application of anticoagulants, antiplatelets, and
thrombolytics; and other issues (Carpenter et al., 2016; Wu et al.,
2019). Although significant progress in potential treatment after
ICH models has been developed in preclinical research (Bentz
et al., 2010; Xiong et al., 2014; Alharbi et al., 2016; Chen-Roetling
et al., 2021), the lack of available evidence-based therapeutic
strategies still limits the improvement of ICH prognosis in the
clinical setting, where only active first-stage rehabilitation and
general rehabilitation may lead to a modification of the outcomes
(Saulle and Schambra, 2016).

Stem cell therapy is a promising method that has been
actively applied in preclinical research of neurological diseases
in recent years. Mesenchymal stem cells (MSCs) possess unique
properties, including extensive proliferation and differentiation
potential, simplicity of acquisition from various sources,
low immunogenicity, secretome for extracellular vesicles
(EVs), immunomodulation, and anti-inflammatory properties
(Schipani and Kronenberg, 2008; Zheng et al., 2018; Dornen and
Dittmar, 2021). Until now, MSC therapy has been recognized as
a promising therapy in regenerative medicine research and tissue
engineering (Bentz et al., 2010; Zheng et al., 2018).

Previously, accumulated evidence from preclinical studies
has confirmed the protective effects of MSC therapy after
ICH. However, the exact mechanisms of MSC transplantation
in clinical translation are still undefined. Therefore, here, we
have summarized the mechanisms of MSC application that
facilitate neurological restoration after ICH. Simultaneously,
some current challenges such as ICH-induced mass effect,
iron overload, inflammation, oxidative stress, and limitations of
clinical translation for MSC therapies are also emphasized when
MSC treatment is applied to the ICH.

PATHOLOGICAL CHANGES AFTER
INTRACEREBRAL HEMORRHAGE

The brain injury after ICH, which always manifests a high
risk of ischemia and recurrent bleeding (Baang and Sheth,
2021), is traditionally described as a cascade of disease courses
including two different successive pathological processes: the
primary brain injury stage and the secondary brain injury stage
(Huang et al., 2020). In the first few hours of the primary
brain injury stage after ICH occurs, the blood released from
the ruptured blood vessels develops to form a consistent mass
effect. Hematoma formation induces mechanical dissection and
compression of the brain tissue, leading to high intracranial

pressure forming herniation (Huang et al., 2020), which is
always addressed by advanced surgical techniques in clinical
practice (Tschoe et al., 2020). The secondary brain injury
(SBI) stage is composed of damage caused by hemolytic
products of erythrolysis, excitotoxicity, oxidative stress, and
neuroinflammation-induced neurological deficits (Aronowski
and Zhao, 2011; Babu et al., 2012; Duan et al., 2016; Lan
et al., 2017), accompanied by successive pathological changes,
including hemodynamic change-induced ischemia, enhancement
of cerebral edema, destruction of the blood–brain barrier (BBB),
and direct cellular toxicity (Aronowski and Zhao, 2011; Keep
et al., 2012; Xiong et al., 2014; Chen S. et al., 2015; Mohammed
Thangameeran et al., 2020; Zheng et al., 2022). During this
process, the hemoglobin, heme, and free iron, released from
erythrolysis and other blood derivatives, infiltrate into the
perihematoma, activating microglia/macrophages to accelerate
hematoma clearance displaying neuroprotection (Bosche et al.,
2020; Lua et al., 2021; Wei et al., 2022; Zheng et al.,
2022). Thrombin activation after ICH implies the vasculogenic
edema formation associated with the destruction of endothelial
cells and the BBB (Wilkinson et al., 2018). Perihematomal
edema (PHE), associated with a worse prognosis, has been
recognized as an evident marker of SBI after ICH and a
likely therapeutic pathophysiological target for attenuating SBI
(Brouwers and Greenberg, 2013; Bautista et al., 2021; Chen
et al., 2021). Furthermore, it was displayed that intracranial
hematoma expands to further and adjacent brain tissues through
perivascular spaces, white matter tracts, and their perineurium
(Yin et al., 2013; Fu et al., 2021), particularly if ICH is combined
with an intraventricular hemorrhage (Bosche et al., 2020). All
these pathological changes in the hematoma site make the nerve
fibers distended and distorted and finally disrupted to a point
at which they cannot be rescued. Therefore, the pathological
changes of SBI after ICH induced permanent impairment of brain
tissues, and severe neurological deficits should continuously be
paid close attention to Qureshi et al. (2009) and Wilkinson et al.
(2018).

The pathophysiological changes after ICH are mainly
characterized by demyelination and axonal injury.
Oligodendrocytes are the only source of myelin formation,
insulating myelin sheaths for neurons to enhance the propagation
of action potentials and protect the integrity of neurons and
axons (Bacmeister et al., 2020). After ICH, there is a sharp
increase in intracellular Fe2+ released from the hemoglobin
of dead erythrocytes, which destroy oligodendrocytes.
Demyelination and axonal damage are observed at the edge
of the hematoma 6 h after ICH that peaks at the highest level
of impairment at 3 days, and the axonal damage gradually
extends to the adjacent parenchyma over time (Wasserman
and Schlichter, 2008; Fu et al., 2021). Zille et al. (2017) have
verified that the hemin and hemoglobin-induced toxic mediators
from lysed blood after ICH participate in the death of primary
cortical neurons through ferroptosis and necroptosis, rather than
caspase-dependent apoptosis or autophagy in vitro and in vivo.
Moreover, Palumbo et al. (2021) observed a time-dependent
morphological degeneration of axons in hemin-induced primary
cortical neurons, resulting in a declination of the axon area
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and enhancement of axonal swelling and fragment areas
depending on a novel microfluidic device and a deep learning
tool on microscopy. Hemorrhages in the internal capsule block
the axonal transport to induce axonal dysfunction closely
associated with an early decline of motor performance in mice
with ICH (Hijioka et al., 2016). The capacity of proliferation
and differentiation to oligodendrocyte precursors [NG2(+)
Olig2(+)] presented a dramatically increasing trend in the
perihematomal region over the first week, which provided the
valid re-myelination chance on axon tracts in the rat striatum
after ICH (Joseph et al., 2016). Ultrastructural features in mice
with injured striatum after ICH examined by transmission
electron microscopy at 3, 6, and 28 days have demonstrated
remarkable axonal demyelination and degeneration, degenerated
neurons, abnormal synapses, and infiltrating macrophages
engulfing debris of different degenerated cells (Li et al., 2018).
In short, severe destruction of myelin and axons can be seen
clearly in rodents with ICH, contributing to the loss of motor
function. Therefore, viewing the aforementioned accumulating
solid evidence on the ICH, it is critical to point toward the
primary brain injury and the second brain injury to benefit from
controlling the outcomes following brain injury (Figure 1).

DIFFERENT SOURCES OF
MESENCHYMAL STEM CELLS IN
INTRACEREBRAL HEMORRHAGE

Some studies have verified that MSCs can be isolated from
various adult tissues such as the bone marrow, adipose tissue,
synovium, and neonatal tissues, including the umbilical cord
(blood), placenta, amniotic fluid, and amniotic membrane,
and possess the potential of differentiating into diverse cell
lineages and tissues like bone, adipose tissue, cartilage, nerves,
and liver, both in vivo and in vitro (Gao et al., 2018;
Sumer et al., 2018; Mathot et al., 2019; Gong et al., 2021;
Li J. et al., 2021; Li Q. Y. et al., 2021; Ramesh et al.,
2021; Souza et al., 2021; Zhu et al., 2021; Bian et al.,
2022). Others have verified that MSC treatment holding
promise exerts indirect therapeutic mechanisms such as anti-
inflammation (Huang et al., 2019), secretion of growth factors
(Tang W. et al., 2021; Ulpiano et al., 2021), and EVs (Bang
and Kim, 2022), which are associated with the recovery of
damaged tissues. Moreover, caution is generally needed while
using these or similar MSC-related therapeutic approaches
(Molcanyi et al., 2013, 2014; Levy et al., 2020; Kim D. et al.,
2021). The implantation of stem cells was accompanied by
a massive invasion of macrophages into transplantation sites,
reactivation of astrocytes, and activated microglia following
brain injury inflammatory response, in which the survival rate
and integration of implanted stem cells are always impeded
(Molcanyi et al., 2007).

Bone-derived MSCs (BMSCs) are frequently used for treating
brain injuries not only because of the ease of acquisition from
the host but also because of infiltrating capability via the BBB
without disrupting the structure (Kopen et al., 1999; Gao et al.,
2018) to differentiate into neurons or neuron-like cells for tissue

reparation (Wislet-Gendebien et al., 2005; Nagai et al., 2007; Bae
et al., 2011). Various studies have demonstrated that BMSCs
could limit neurological deficits and BBB dysfunction in ICH rats
(Chen M. et al., 2015; Wang et al., 2015).

Neonatal tissue-derived MSCs, including human umbilical
cord MSCs (HUC-MSCs), umbilical cord blood (HUCB-MSCs),
placenta MSCs (HP-MSCs), amniotic fluid (HAF-MSCs), and
amniotic membrane (HAM-MSCs), are another kind of widely
used MSCs, which have been used to treat neurological deficits
in animal models and patients with ICH and displayed apparent
therapeutic effects (Nan et al., 2005; Chang et al., 2016;
Xie et al., 2016).

Adipose-derived MSCs (ADMSCs) are also used for
regenerative medicine isolated from adipose tissues, which
are easily accessible and abundant (Gimble et al., 2010). Chen
et al. (2012) found that the transplantation of rat ADMSCs for
treating ICH rats demonstrated the differentiation of neuron-like
and astrocyte-like cells around the injured site and improved the
expression level of vascular endothelial growth factor (VEGF) for
the recovery of neurological function. Yang et al. (2012) employed
the injection of ADMSCs generated from a 65-year-old male
donor’s fat tissue into the right femoral vein of ICH-induced
stroke rats, which suggested that ADMSC transplantation could
facilitate functional recovery of the experimental animals.

Dental pulp stem cells (DPSCs) originate from the neural
crest and exhibit neuro-ectodermal features having multilineage
differentiation potentials, which were first discovered in the
pulp tissue (Gronthos et al., 2000; Pierdomenico et al., 2005).
They are a subpopulation of dental pulp cells (DPCs) owing
to MSC properties, including the similarity of morphology like
fibroblast, adherence, surface marker expression, proliferation,
and colony-forming behavior (Lan et al., 2019). Given the
attractive characteristics of DPSCs such as ease of acquisition,
powerful proliferation ability, and long-time cryopreservation
with no loss of multi-directional differentiation capacity, DPSC
therapy displays an increasing interest in stroke disease in
preclinical and clinical research (Song et al., 2017; Sowa et al.,
2018; Lan et al., 2019; Nito et al., 2022). In a preclinical study,
Nito et al. (2018) have reported that transplantation of human
DPSCs via the femoral vein ameliorates infarct volume and motor
functional deficits in rats following acute cerebral ischemia.
Moreover, the clinical evidence shows that the intracranial
transplantation of autologous DPSCs is safe and feasible in
patients with chronic stroke, and the maximum tolerable dose is
also verified in human subjects, which provides guidance for the
design of future clinical trials (Nagpal et al., 2016).

ADMINISTRATION ROUTES OF
MESENCHYMAL STEM CELLS IN
INTRACEREBRAL HEMORRHAGE

In rodents with ICH, three different ways, including
intracerebral, intravenous, and intra-arterial injection, for
transplantation of MSCs have often been used (Li J. et al.,
2021). Stereotactic intracerebral injection of HUC-MSCs
transduced with hepatocyte growth factor (HGF) into the left
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FIGURE 1 | Proposed schematic diagram linking outcomes after ICH. After ischemic cerebral hemorrhage onset, primary and secondary brain injury is going. The
prior brain injury mechanism starts from an occulted blood vessel. And is followed by blood vessel ruptured, extravasated red blood cells causing dynamic
hematoma expansion, resulting in the adjacent brain tissue immediately compressed, followed by brain tissue damaged finally. This process disrupts the surrounding
brain structures, resulting in early neurological dysfunction. The multiple hemolytic products, including ferrous ions, hemoglobin, heme, and other lytic molecules,
cause secondary brain injury within the period from hours to days after the primary brain injury. During this process, nerve and glial cells suffer from oxidative stress,
inflammation, excitotoxicity, and death signals.

ventricle improved neurological deficits in rats after ICH, which
was due to the improvement of demyelination and axonal
regeneration (Liu et al., 2010). Allogeneic and syngeneic BMSCs
injected intravenously 24 h after stroke in rats ameliorated
the neurological deficits without immunologic sensitization
by enhancing the reactive oligodendrocytes and astrocytes or
axon–glia units to remodel the injured axons and promote
effective reparation of white matter (Li et al., 2006; Rosenzweig
and Carmichael, 2015). However, the experiments of Fischer
et al. (2009) revealed that after intravenous injection of MSCs,
the majority of them were trapped inside the lungs via flow
cytometry to detect labeled cells reaching the arterial circulation
and harvested the lungs, heart, spleen, kidney, and liver.
Additionally, many clinical trials have also verified the safety
and efficient neuroprotective effects of allogeneic and syngeneic
HUC-MSCs, BMSCs, and ADMSCs through intra-arterial
injection for different brain diseases such as ICH, ischemic
stroke, and traumatic brain injury (Li J. et al., 2021). The
adverse events or complications, including microembolisms
and decreased cerebral blood flow due to cell dose and infusion
velocity, were recently reported after intra-arterial cell delivery
in rodent models (Cui et al., 2015). These parameters should
be considered before preclinical studies in rats and clinical
research in patients with stroke. Cui L. L. et al. (2017) found

that MSCs restrained in microvessels occasionally formed
conspicuous cell aggregations, giving rise to local blood flow
interruptions in vivo. Overexpressing integrin α4 (ITGA4)
via lentiviral transfection on MSCs improved transendothelial
migration in vitro and furthered safety by alleviating cell
aggregations and ameliorating the induced cerebral embolism
after intracarotid transplantation of MSCs into rats with stroke
(Cui L. L. et al., 2017). Moreover, although the number of clinical
trials using MSCs for regeneration and immunomodulation
for stroke therapy increases, the fact that the proliferative
and immunomodulatory functions of MSCs decrease with
aging due to the complex ICH environment cannot be ignored
(Li et al., 2017; Fafian-Labora et al., 2019). Furthermore, it
has been verified that the condition of the transplanted cells
impacts the subsequent therapeutic effects. Weise et al. (2014)
have demonstrated that the intravenous administration of
cryopreserved human umbilical cord blood mononuclear cells
(HUCB-MNCs) did not display neurorestorative properties in
spontaneously hypertensive rats with stroke, which suggests that
translating cord blood therapy into clinical stroke trials requires
further knowledge about its precise functions. Moreover, the
immunomodulatory activity of cryopreserved MSCs can be
reduced after thawing when compared to freshly prepared MSCs
(Moll et al., 2016).
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MECHANISMS OF MESENCHYMAL
STEM CELLS IN INTRACEREBRAL
HEMORRHAGE

Ongoing research efforts focus on the potential plasticity and
therapeutic applications of MSCs in regenerative medicine.
Accompanied by the properties of trans-differentiation into
lineages derived from the neuro-ectoderm and migration to
the injured sites, MSCs have been suggested to be a promising
candidate in regenerative medicine (Chen et al., 2008). It is a fact
that MSC therapy has demonstrated its function in improving
ICH-induced neuronal defects, neural network reconstruction,
and neurological functions via anti-inflammation, neurogenesis,
angiogenesis, and anti-apoptosis (Zhu et al., 2021).

Promoting Regenerative Repair and
Structural Remodeling
Many secreted trophic molecules as components of their
secretome from MSCs transplanted by orthotopic and caudal
vein injection facilitated the endogenous reparatory mechanism,
which ultimately improved the recovery of neurological function
after stroke (Smith and Gavins, 2012; Shichinohe et al., 2015;
Karagyaur et al., 2021). MSC transplantation is promising for
promoting angiogenesis. It has been found that HA-MSCs
upregulated the human placental endothelial cells (hPECs)
viability due to its crucial angiogenic potential (Pfeiffer
et al., 2019). Furthermore, HP-MSCs significantly increased the
viability, migration, and network formation of endothelial cells,
exerting angiogenic potential depending on released angiogenic
factors in vitro, such as VEGF, angiogenin, IL-6, IL-8, and matrix
metalloproteinase (MMP)-1 and 2 (Konig et al., 2015). Moreover,
HPMSCs have also been found to promote neovascularization
in vivo (Kinzer et al., 2014; Tuca et al., 2016; Ertl et al., 2018).

Following administration via different routes, they migrate
to the damaged tissues or organs, where they might face
severe surroundings coupled with death signals because of
the disordered formation between the cells and matrix.
Preconditioning with various physical, chemical, and biological
factors; genetic modification; and optimization of MSC culture
conditions are pivotal strategies to facilitate their functions
in vitro and in vivo, which will contribute to improving the
efficacy of MSC administration in regenerative medicine (Hu and
Li, 2018; Zhao et al., 2019).

Preconditioning HUCB-MSCs with hypoxia remarkably
enhances their proliferative capacity and the expression of the
neural gene GFAP in vitro (Kheirandish et al., 2017). Although
hypoxia reduces the cell viability and proliferation of MSCs
initially, the following reoxygenation process improves their
rehabilitation, and the approach of hypoxia and reoxygenation
(H/R) promotes the expression of pro-survival genes and the
release of various trophic factors in MSCs (Kim et al., 2015). On
account of the advantages of H/R, current studies have focused on
optimizing oxygen concentrations to promote the cell activities
and therapeutic effects of MSCs. Recently, the potential of
electroacupuncture (EA) in promoting neurofunctional recovery
through the NT4/5-TrkB-CREB signaling pathway has been

identified (Ahn et al., 2016). The combined function of EA
and transfected MSCs with modified TrkB gene (TrkB-MSCs)
has been investigated in mice with stroke (Ahn et al., 2019).
Ahn et al. (2019) found that EA can remarkably enhance the
survival and differentiation of grafted TrkB-MSCs to neuronal
cells via the BDNF/NT4-TrkB-CREB signaling pathway. EA
directly upregulated the gene expression of plasticity-related
gene 5 (PRG5), which is a critical neurogenesis factor, and also
upregulated the protein expression of postsynaptic density 95
(PSD95) and synaptophysin (SYP). Moreover, EA downregulated
the expression of neurogenesis inhibitory molecules, including
NogoA, lysophosphatidic acid, and RhoA, to improve the
proliferation and differentiation of endogenous neural stem cells
and synaptic plasticity in stroke rats (Tan et al., 2018; Yang
et al., 2022). Deng et al. (2021) have reported that EA promoted
differentiation of transplanted MSCs into neuron-like cells and
expressions of BDNF and NGF proteins displaying therapeutic
efficacy in ICH rats. Furthermore, Zhang et al. (2015) suggested
that the combination of direct stereotactic intracerebral injection
of HUC-MSCs and minimally invasive hematoma aspiration
was better than either therapy alone in reducing neuronal
damage and improving neuronal functions. Although some
benefits of pre-conditioning MSCs have been reported in animal
experiments, the experiments of Mello et al. (2020) presented
a warning conclusion that intravenous administration of HUC-
MSCs decreased the hematoma volume in moderate collagenase-
induced brain hemorrhage in rats but failed to reduce the
hematoma volume, and continuous neurological impairments
can be observed in animals with a severe ICH.

Brain-derived neurotrophic factor (BDNF), recognized as
a nerve growth factor and released from MSCs, has been
widely researched in different brain diseases, including stroke,
neurodegenerative diseases, and others (Ko et al., 2018; Kim H. J.
et al., 2021; Sharma et al., 2021). BMSCs overexpressing glial
cell-derived neurotrophic factor (GDNF) and placental growth
factor (PlGF) display better neuroprotective effects in the rodent
model of ICH and cerebral ischemia (Liu et al., 2006; Yang
et al., 2011). It has been proved that overexpressing BDNF of
HUCB-MSCs induced their neural differentiation via the TrkB-
mediated phosphorylated ERKs and β-catenin in the developing
brain (Lim et al., 2011). Moreover, others also found that
HUCB-MSCs and their secreted BDNF exert therapeutic effects
in intraventricular hemorrhage and ameliorate neuronal loss
and neurocognitive deficits via the BDNF-TrkB-CREB signaling
pathway (Ko et al., 2018). Zhang et al. (2018) have demonstrated
a pronounced downregulation of microRNA-21 (miR-21) in ICH
patients’ blood and brain tissue. Therefore, they treated ICH rats
with the modified MSCs overexpressing miR-21 and observed
improved MSC survival that could be conveyed to neurons
depending on influent exosomes derived from MSCs, alleviating
the neuronal injury by targeting transient receptor potential
melastatin 7 (TRPM7) (Zhang et al., 2018). MiR-126-modified
MSCs also alleviated the neuronal apoptosis in collagenase-
induced ICH rats’ injured brain tissues (Wang et al., 2020).
The expression level of growth-associated protein 43 (GAP-43),
which is not only known as a growth cone-specific protein
to developing neurons but also recognized as a novel axonal
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phosphoprotein, which has a synchronous effect on BDNF, was
highly upregulated on immature growing axonal terminals along
with enhancement of synaptic plasticity, but its downregulation
suggested the formation of matured synaptogenesis (Gupta
et al., 2009; Morita and Miyata, 2013). Cui J. et al. (2017)
have reported that MSCs can enhance the expression level of
GAP-43 to ameliorate neurological deficits and improve axonal
regeneration via the ERK1/2 and PI3K/Akt signaling pathways in
rats with ICH. Taken together, it is suggested that MSC therapy
can enhance improvement of the axonal damage and synaptic
plasticity to some extent, whereas GAP-43 and BDNF may be
taken into account as the potential therapeutic target after ICH
for MSC treatment.

The corticospinal tract (CST) is the sole descending fiber
bundle responsible for conducting the electrical activity, where
the axons from nerve cells immediately contact spinal motor
neurons through the synaptic connections, associating with the
experienced voluntary movement in people and motor function
in animals. Critically, early motor dysfunction after stroke
attributes to the destruction of the framework and function of
axons due to the hemorrhage of the caudate nucleus disrupting
the CST in the internal capsule (Hijioka et al., 2016; Jang et al.,
2018; Chen W. et al., 2019), where the injury lasted for at least
5 weeks, suggesting that the structural integrity of the CST
has sustained damage in ICH (Ng et al., 2020). Meanwhile,
the longitudinal pathological alterations in the cervical portion
of the spinal cord of the CST in mice with ICH were also
confirmed by confocal microscopy and transmission electron
microscopy (Ng et al., 2020). In short, nerve regeneration after
ICH mainly depends on axonal sprouting of existing surviving
nerve cells, new forming synapses, synaptic plasticity, and nerve
growth factors such as BDNF and GAP-43. Many studies have
verified that MSCs can facilitate neurogenesis based on their
characteristics of differentiation, secretion, and axonal plasticity,
which ameliorate worse outcomes after brain injury. MSCs may
also hinder hematoma expansion and decrease acute mortality
during the hyperacute course in rats with ICH by improving
the endothelial integrity to cerebral vasculature and enhancing
the tight junction protein levels, including zona occludens-1
(ZO-1) and occludin (Choi et al., 2018). Pretreatment of HP-
MSCs with apocynin, an NADPH oxidase inhibitor, enhanced
the endovascular integrity of cerebral vasculature, demonstrating
therapeutic efficacy in the ICH acute stage (Min et al., 2018).
Meanwhile, the experiments conducted by Wang et al. (2020) also
reported that miR-126-modified MSCs diminished the mRNA
expression of protease-activated receptor-1 and MMP-9 while
enhancing the ZO-1 and claudin-5 expression levels for the
repairment of BBB in the ICH rats.

Anti-inflammatory and
Immunomodulatory Properties of
Mesenchymal Stem Cells
Except for its role in regenerative medicine, MSC therapy
has also been experimentally investigated in other indications,
including its immunomodulatory capabilities (Diehl et al., 2017).
It has been known that MSCs prevent T-cell response indirectly

through the modulation of dendritic cells and directly by
suppressing the natural killer cell function of CD8+ and CD4+
T cells. Specifically, they can well restrain or regulate immune
responses in complex interactions of T and B lymphocytes,
dendritic, and NK cells (Wang and Zhao, 2009). Their
immunosuppressive effects of T lymphocyte proliferation, rather
than induction of apoptosis, are not only based on soluble factors
including transforming growth factor beta 1 (TGFβ1), hepatocyte
growth factor (HGF), and other mediators but also depend on
direct interactions of cells (Di Nicola et al., 2002; Krampera
et al., 2003; Le Blanc et al., 2003). A preclinical investigation
was performed by Azevedo et al. (2020) to observe the potential
functions of MSCs on CD4 T cells, and the data suggested
that MSCs induced CD4 T cells into Treg-like cells via TGF-β
and/or programmed death-1 (PD-1)/programmed death ligand
1 (PD-L1) pathways. It has been verified that PD-L1 decreased
the infiltration of CD4+ T cells to the brain and resulted in
upregulation of Th2 and Treg cells but downregulation of Th1
and Th17 cells through the mTOR pathway by in vitro and
in vivo experiments (Han et al., 2017). Moreover, other studies
have also proved similar results in the ICH rodent model, a well-
defined B10.D2 [H-2(d)) donor to BALB/c (H-2(d)] recipient
mice model and experimental autoimmune neuritis (EAN) rat
model (Fujiwara et al., 2014; Ding et al., 2016; Han et al., 2017).

There is a well-acknowledged fact that neuroinflammation
aggravated the progress of ICH-induced brain damage.
Thus, the strategy for regulating the immunoreaction could
attenuate ICH-induced brain injury. The remarkable properties
of anti-inflammation and immunomodulation make MSC
transplantation an appropriate therapeutic candidate for
responding against inflammatory diseases like ICH through
regulating microglia and neutrophils while enhancing the
protective function of anti-inflammatory cytokines and
inhibiting the disadvantages of pro-inflammatory cytokines. Kim
J. M. et al. (2007) found that ADMSC transplantation for the rats’
ICH model could alleviate the acute inflammation and chronic
brain degradation to improve long-term functional recovery.

Recent studies have confirmed that MSCs are effective
modifiers maintaining a resting microglial phenotype, preventing
microglial activation by downregulating pro-inflammatory
cytokines/chemokines and upregulating hypoxia-inducible factor
1-alpha (HIF-1α) and growth factors including VEGF, BDNF,
GDNF, stromal-derived factor-1 (SDF-1), and erythropoietin
(EPO) following stroke (Wei et al., 2012; Yan et al., 2013). Other
studies have shown that hypoxic preconditioning augmented
MSC survival and tissue-protective capability, displaying better
therapeutic efficacy than the single MSC transplantation by
improving the miR-326/PTBP1/PI3K-mediated autophagy and
alleviated microglial activation to downregulate IL-1β and
TNF-α expression levels and microglial pyroptosis after ICH (Liu
et al., 2021a,b). Human ADMSCs improved the neurological
deficits in the ICH mice model by suppressing the acute
inflammation mediated by the CD11+CD45+ subpopulation
of cells (Kuramoto et al., 2019). In the rat middle cerebral
artery occlusion (MCAO) model, microglial activation and their
pro-inflammatory phenotype were significantly downregulated
by interferon-γ (INF-γ)-activated MSCs, along with the
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improvement in oligodendrogenesis by the upregulation of
neuron-glial antigen 2, a hallmark protein of oligodendrocyte
progenitor cells, for promyelination and minimizing the infarct
and penumbra (Tobin et al., 2020). The microglial activation is
mainly regulated by CX3CR1, and some studies have verified
that MSCs are known to polarize M1 macrophages to M2
phenotypes via CX3CR1 (Min et al., 2016; Li et al., 2019).
Du et al. (2020) found that in the global cerebral ischemia
mice, downregulated CX3CR1 remarkably alleviated microglial
activation and peripheral inflammatory responses, including
the downregulation of IL-6, IL-1β, and TNF-α in the serum,
which promoted the differentiation and maturation of mature
oligodendrocytes from oligodendrocyte progenitor cells in
the striatum, cortex, and hippocampus and thus, attenuated
further dysfunction of myelin from ischemia-induced brain
injury. Similarly, Hamzei Taj et al. (2018) found that after
transplantation of genetically modified IL-13-engineered MSCs
(IL-13-MSCs) for knock-in fluorescent protein reporter mice
(CX3CR1eGFP/+ CCR2RFP/+), the brain-resident microglia can
be recognized from freshly infiltrated macrophages after stroke.
The results suggested that the graft of IL-13-MSCs switched
the microglia/macrophages into an alternative activation state
(an anti-inflammatory and neuroprotective phenotype) by
significantly increasing Arg-1 and decreasing MHC-II expression
after 14 days of ischemia (Hamzei Taj et al., 2018). Engineered
MSCs have also been applied in malignant glioma tumor models
(Sun et al., 2011). The exosomes derived from the miR-146a-5p-
rich BMSCs could reduce neuronal apoptosis and inflammation
via inhibiting microglial M1 polarization by downregulating
the expression of IL-1 receptor-associated kinase 1 (IRAK1)
and nuclear factor of activated T cells 5 (NFAT5) (Duan et al.,
2020). Furthermore, miR-183-5p is also implicated in brain
injury and found to be decreased in db/db rat brain tissues after
ICH (Ding et al., 2021). It has been verified that EVs derived
from BMSCs repressed the inflammatory response through the
microRNA-183-5p/PDCD4/NLRP3 pathway (Ding et al., 2021;
Nakano and Fujimiya, 2021).

Astrocytes, one of the primary components of glial cells,
have also been confirmed to have a reparative function
in the injured brain tissue after ICH (Zhang et al., 2006;
Chen et al., 2020b), although adequate research is not
recorded. After transplantation of MSCs in ICH mice, astrocytes
underwent astroglial–mesenchymal phenotype switching and
became capable of proliferating and were protected from
apoptosis via downregulation of p-MST1 and p-YAP (Chen
et al., 2020b). Together, the Hippo pathway-mediated favorable
impacts of MSCs can be recognized as a unique therapeutic
target in ICH injury (Chen et al., 2020b). Experiments performed
by Chen et al. (2020a) also found that transplanting BMSCs
led to an elevation of glial fibrillary acidic protein (GFAP), a
biomarker of astrocytes, and the level of expression and improved
astroglial–mesenchymal phenotype switching and anti-apoptotic
abilities through the Cx43/Nrf2/HO-1 axis. Interestingly, Donega
et al. (2014) reported that MSCs transplanted via intranasal
administration for the hypoxic–ischemic (HI) neonatal mice
model migrating specifically toward the lesion site successfully
downregulated the expression level of GFAP while decreasing

the formation of glial scars, which is a crucial step for
promoting neurogenesis. Chen et al. (2020a) maintained that
astrocytes serve as the primary defense system, just like a
double-edged sword for responding to ICH injury. Fortunately,
the graft of MSCs for ICH-injured mice exerting anti-
inflammatory and angiogenic properties significantly alleviated
the dysfunction of cognition, movement, and hematoma volume,
which corresponded with previous studies (Bedini et al.,
2018). Comprehending how to enlarge the advantages and
minimize the disadvantages of reactive astrocytes is the critical
challenge in improving ICH-induced brain injury. Another
factor is IL-33, a member of the IL-1 family having pro-
inflammatory and anti-inflammatory properties displaying a
double-edged sword function that improves wound healing by
enhancing M2 macrophage polarization, collagen accumulation,
and angiogenesis in the wound sites (Schmitz et al., 2005; He
et al., 2017). It is mainly expressed in microglia, astrocytes, and
oligodendrocytes in the central nervous system (CNS), leading
to severe pathological changes in mucosal organs (Schmitz
et al., 2005). Chen Z. et al. (2019) found that IL-33 attenuated
neurological deficits, neuronal degeneration, and secondary brain
injury by a favorable regulation of ICH-induced microglial
responses, which led to microglial polarization from M1 to
M2; thus, IL-33 maybe another novel therapeutic target for
ICH intervention.

MSCs display immunomodulatory functions by secreting
multifunctional paracrine signaling factors, including cytokines,
growth factors, and chemokines, the combined effect of which
regulates the cellular immune function (Zhang et al., 2013; Zhao
et al., 2013; Liu et al., 2014; Zhou et al., 2019). Transplanted
MSCs by intravenous infusion can infiltrate through the BBB
and express a protein marker phenotype for neuronal cells (Chen
et al., 2001). It has been widely accepted that the functional
benefits derived from MSC grafts arise from their improvement
of the trophic support and anti-inflammatory effect, thereby
controlling the potentially toxic environment (Caplan and
Dennis, 2006; Hess and Borlongan, 2008). Some investigations
suggested that the bystander mechanism of MSC protective
functions depends on some soluble factors, including IL-10,
indoleamine 2,3-dioxygenase (IDO), PGE2, TGF-β1, TNF-α, and
TNF-α-stimulated gene/protein 6 (TSG-6) (Nemeth et al., 2009).
Cell-secreted EVs commonly encapsulate these different kinds of
molecules, and according to the dimension and origination, they
are called exosomes, microvesicles (MVs), and apoptotic bodies.
TSG-6, an anti-inflammatory factor, can restrain neutrophils
infiltrating into the inflammatory region, display functions
on resident macrophages through interaction with the CD44
receptor, and block the NF-κB signaling pathway (Chen M. et al.,
2015). Tang B. et al. (2021) reported that TSG−6 derived from
BMSCs moderated reactive astrocytes by downregulating the
NF−κB signaling pathway to attenuate BBB dysfunction after
ICH. The BMSC transplantation from the jugular vein alleviated
the inflammatory response via decreasing the pro-inflammatory
cytokines and alleviated BBB dysfunction in ICH-bearing rats by
releasing TSG-6, downregulating the expression levels of iNOS,
MMP-9, and peroxynitrite [ONOO (-)] (Chen M. et al., 2015).
Recently, researchers have confirmed in the monkey that the
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treatment with intravenous infusions of MSC-derived EVs (MSC-
EVs) alleviated injury-induced hyperexcitability and regulated
the relationship between excitation and inhibition around
the injured ventral premotor cortex for reducing pathological
changes (Medalla et al., 2020). In addition, MSC-EVs increase
the conversion from M1-like pro-inflammatory phenotypes to
anti-inflammatory M2 phenotypes to trigger the macrophage
polarization by downregulating IL-23 and IL-22 (Li J. et al., 2021).

Reducing Oxidative Stress
The antioxidative characteristics of MSCs have been verified in
an Escherichia coli-induced acute lung injury (ALI) in the mouse
model (Shalaby et al., 2014). In the pathophysiological condition
of ischemia diseases, including ischemic stroke and heart disease,
the PI3k/Akt pathway participating in angiogenesis, oxidative
stress, and survival of the MSC graft could be further enhanced
by preconditioning of MSCs with pharmacological factors, such
as statins (Samakova et al., 2019), which can further their survival
capacity and properties of secretome, paracrine, and autocrine
secretion (Hu and Li, 2018; Samakova et al., 2019).

Despite various pieces of preclinical research evidence
concerning the mechanisms of MSCs against ICH, there is

still a need for further investigation about its therapeutic and
preventive role to promote its use as a clinical therapy (Figure 2)
since not all the promising MSC techniques have been proved
clinically beneficial in a randomized controlled trial (RCT)
(Fernandez Vallone et al., 2013; Azad et al., 2016; Squillaro et al.,
2016; Levy et al., 2020).

CLINICAL TRIALS AND LIMITATIONS OF
MESENCHYMAL STEM CELL-BASED
THERAPIES IN CLINICAL TRANSLATION
FOR INTRACEREBRAL HEMORRHAGE

Multiple or ongoing trials have been performed that use MSCs.
To date, clinical trials of MSC-based therapies for stroke first have
focused on assessing safety and efficacy. A significant concern is
the risk of tumor formation, and understanding the underlying
biology is critical to avoid such adverse effects (Jandial and
Snyder, 2009). An open-label, observer-blinded RCT of a long-
term follow-up study had verified significant functional recovery
after intravenous autologous MSC transplantation based on the
modified Rankin Scale (mRS) score along with no difference in

FIGURE 2 | Mechanisms of MSCs application in ICH. The interactions between MSCs and tissue environments have occurred via two effective mechanisms
cell-to-cell communication and cell-to-extracellular vesicles communication. MSCs interact with the adjacent cells, including the immune cells, nerve cells, glial cells,
and endothelial cells, promoting regenerative repair and structural remodeling of damaged tissue. MSCs generate the extracellular vesicles (EVs) that contain lipids,
proteins, microRNAs (miR), and cytokines representing an efficient way to transfer functional cargoes between each other. Biological processes are positively
modulated, including autophagy, pyroptosis, apoptosis, angiogenesis, inflammation, cell plasticity, cell migration, and oxidative stress. These communications
differentiate MSCs into replacement cell types and modulate immune cell responses.
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TABLE 1 | Application of MSC-based therapy for ICH involved in clinical trials.

Trial ID no. Phase Cell type Route Status Outcome measures Allocation Location

NCT03371329 1 BMSCs IV
ITV

Completed 1. Occurrence of adverse events
2. Changes in neurological function
test

Non-randomized United States

NCT02795052 Not applicable BMSCs IV Recruiting 1. ADL
2. Neurologic functioning

Non-randomized United States and United
Arab Emirates

NCT04074408 2 HUMSCs ITC Recruiting 1. Frequency of dose limiting adverse
events
2. mRS to measure the prognosis
3. NIHSS to measure stroke recovery

Randomized China

NCT01389453 2 HUMSCs IV Withdrawn 1. NIHSS and FIM
2. Motor evoked potential and
sensation evoked potential inspection
3. MRI

Non-randomized China

NCT02283879 1 HUMSCs IV Unknown 1. Safety evaluation through vital
signs, the results of clinical lab tests
and adverse events
2. Improvement of infarct size
measured by brain MRI
3. Modified Barthel index
4. NIHSS

Randomized China

NCT01714167 1 BMSCs IC Unknown 1. Change from baseline in NIHSS at
12 months

Non-randomized China

IV, intravenous; ITV, intraventricular; ITC, intracavitary; IC, intracerebral; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; MRI, magnetic
resonance imaging; FIM, function independence evaluation; ADL, activities of daily living.

adverse events (Lee et al., 2010), and other clinical trials have
also suggested the safety and feasibility of MSC administration
in ischemic stroke (Bhasin et al., 2011, 2013). After searching the
clinical trials on MSC therapy for ICH on the official website,
the results display nearly six related projects (clinicaltrials.gov)
(Table 1). The table shows that the clinical trials of the MSCs on
ICH are rudimentary, and some of them with unknown causes
have passed their completion date.

Compared with the effective positive results in preclinical
research, including reducing the extent of damage, inflammation
response, and free radicals, as well as reversing markers
of neurodegeneration, therapeutic effects of MSC-based
administration in clinical studies have shown to be unsatisfactory
(Fernandez Vallone et al., 2013; Azad et al., 2016; Squillaro et al.,
2016; Gutierrez-Vargas and Cardona-Gomez, 2020). Previously,
the inadequate quality of preclinical tests has been recognized as
a major reason for explaining the failure of translation from the
preclinic research into the clinical setting (Cui L. L. et al., 2019).

Although an increasing number of investigations for early
phase clinical studies of cell therapy have been conducted in
stroke and other brain diseases, the convincing evidence of
effectiveness is still far deficient (Kode et al., 2009; Moniche
et al., 2012; Hess et al., 2017; Li J. et al., 2021). It is thought-
provoking that current clinical studies of cell therapy for stroke
are in the early stage of clinical trials, which fail to elucidate
the critical therapeutic effects. Nevertheless, remarkable design
differences between preclinical and clinical studies were detected,
including cell immunogenicity, cryopreservation, cell type,
recipient comorbidities, recipient sex and age, cerebral vessel
occlusion modalities, the time window of cell transplantation,
delivery route, and methodological limitations, which may affect
clinical translation (Cui L. L. et al., 2019; Dabrowski et al., 2019).

Future research should focus on applying proper biomarkers so
that research investigators can estimate or discover biological
targets to optimize efficacy during clinical trials. For the progress
of preclinical to clinical translation, an iterative process between
the clinic and the laboratory is necessary to improve the ways
for MSC-based treatment and ultimately accomplish the expected
results.

CONCLUSION

Remarkable development has been made in understanding the
underlying mechanisms of ICH-induced brain damage during
the past two decades (Balami and Buchan, 2012; Fang et al.,
2013; Chen S. et al., 2015; Duan et al., 2016; Bobinger and
Burkardt, 2018). Most significantly, various studies have proved
that MSCs can secrete various neurotrophic, angiogenic, and
immunomodulatory factors displaying potential functions in
the injured brain (Chen et al., 2008; Bedini et al., 2018;
Galipeau and Sensebe, 2018). The neuroprotection of MSCs
has been wholly verified in many studies. Improving the
therapeutic effects and immunomodulatory properties of MSC
application could give investigators the potential targets in the
following research work.

It has been confirmed that numerous signaling molecular
pathways are related to secondary brain damage with
inflammatory responses (Zhou et al., 2014; Zhu et al.,
2019). Although some promising results of modulation of
immunologic response after ICH have been revealed in
some studies, it is also critical to conduct extended trials for
further verification. There are still several issues that should
be addressed. Although animal models have been commonly
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used for inquiring into the ICH mechanisms associated with
etiology and pathophysiology, advanced animal models are
still lacking. Since rodents are endowed with extraordinary
spontaneous rehabilitation of sensorimotor deficits and limited
evidence for cognitive disorders, recent commonly used animal
models did not well recapitulate the synthetic etiology of
spontaneous ICH in humans (Zille et al., 2022). Therefore, some
researchers suggested that the multiple common risk factors
within models (including hypertension and anticoagulants)
are included to perfectly imitate the clinical scenario. Due
to the varied therapeutic response of different species, it is
critical that potential therapies be investigated in at least
two species, rather than two rodents, which ameliorates
the limitations of a single species and widely enhances
the applicable reliability of valid mechanisms (Hemorrhagic
Stroke Academia Industry Roundtable Participants, 2018).
Second, the pathological mechanisms in human ICH disease
cannot be completely simulated and displayed in experimental
models. Due to the paucity of translational animal models
in preclinical research, large animal models were used
to investigate pivotal pathophysiological parameters. Using
1.5T MRI, including structural as well as perfusion and
diffusion, weighted neuroimaging reflected the critical aspects
of human ICH disease and can be comparatively researched
in different aspects of human ICH, including hematoma
expansion, white matter injury, and hematoma evacuation
(Boltze et al., 2019). Third, many studies on ICH-induced brain
injury only focus on single-factor intervention. Therefore, to
potentially exploit agents with multiple targets or improve
the multidirectional development of drug therapy, strategies
need to be well researched in further work. Last but not
least, the choice of sources, quantity, and quality of MSCs are
critical challenges for MSC therapy and a topic of concern
for future research. Several questions related to the safety,
efficacy, and critical mechanisms of MSC infusion therapy
because of different aspects of cell dosage, cell source or
the approaches of cell transplantation, and timing prior to
clinical trials still exist and need to be further verified and

elucidated (Kode et al., 2009; Singh et al., 2016; Yong et al.,
2018).
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