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Quantitative text feature analysis 
of autobiographical interview 
data: prediction of episodic details, 
semantic details and temporal 
discounting
J. Peters1,2, A. Wiehler   2,3,4 & U. Bromberg2

Autobiographical memory and episodic future thinking (i.e. the capacity to project oneself into an 
imaginary future) are typically assessed using the Autobiographical Interview (AI). In the AI, subjects are 
provided with verbal cues (e.g. “your wedding day”) and are asked to freely recall (or imagine) the cued 
past (or future) event. Narratives are recorded, transcribed and analyzed using an established manual 
scoring procedure (Levine et al., 2002). Here we applied automatic text feature extraction methods to 
a relatively large (n = 86) set of AI data. In a first proof-of-concept approach, we used regression models 
to predict internal (episodic) and semantic detail sum scores from low-level linguistic features. Across a 
range of different regression methods, prediction accuracy averaged at about 0.5 standard deviations. 
Given the known association of episodic future thinking with temporal discounting behavior, i.e. 
the preference for smaller-sooner over larger-later rewards, we also ran models predicting temporal 
discounting directly from linguistic features of AI narratives. Here, prediction accuracy was much lower, 
but involved the same text feature components as prediction of internal (episodic) details. Our findings 
highlight the potential feasibility of using tools from quantitative text analysis to analyze AI datasets, 
and we discuss potential future applications of this approach.

Autobiographical memory (AM) is central to our personal identity, and changes in this process characterize 
developmental phases as well as effects of neurological and psychiatric disorders. Recent findings have illustrated 
striking similarities in the neural systems supporting episodic memory and the capacity to mentally project one-
self into the future (episodic future thinking, EFT)1. For example, AM and EFT have been shown to be affected 
(albeit to partly different degrees) in hippocampal amnesia2,3, Alzheimer’s Disease4,5, normal aging6 and traumatic 
brain injury7, highlighting the close association between memory and future event construction1,8.

In addition, EFT impacts directly on other cognitive functions. For example, it has been speculated that EFT 
may facilitate future-oriented choice behavior, i.e. behavior that is advantageous only in the long-run9. One 
way to assess this type of behavior is via temporal discounting. In these paradigms, the relative preference for 
smaller-sooner rewards over larger-but-later rewards is measured10,11. A stronger preference for smaller-sooner 
rewards is taken as a measure of impulsivity, whereas a stronger preference for larger-later rewards is taken to 
reflect more future-oriented preferences. Boyer (2008) originally speculated that the ability to use EFT to project 
oneself into the future may help humans to override a natural tendency to make impulsive and short-sighted deci-
sions, i.e. it may reduce the degree of temporal discounting. Recent years have brought forth increasing empirical 
support for the idea that EFT may, under certain conditions, modulate temporal discounting in this manner12–18. 
These interactions are particularly relevant for psychiatry, since steep discounting is a reliable behavioral marker 
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for a range of disorders of impulse control, including substance abuse and pathological gambling19. Therefore, 
understanding mechanisms of how temporal discounting can be reduced is of high clinical relevance.

Inter-individual differences in AM and EFT are typically assessed using variations of the autobiographical 
interview (AI)20. The AI procedure involves exposing participants to a number of cues referring to future or past 
events, with the instruction to vividly recall (AM) or imagine (EFT) these events. Participants verbally elaborate 
on their memories (AM) or imaginations (EFT) and these narratives are recorded and transcribed. Transcripts are 
then manually scored using established procedures designed to dissociate e.g. episodic from semantic content20. 
Thus, typical outcome measures of an AI study include sum scores of the number of episodic details (often termed 
internal details, as they pertain directly to the central event in question), sum scores for external details (episodic 
details not pertaining to the event in question) and sum scores for semantic details (non-episodic information). At 
present, the AI can arguably be described as the “gold standard” in measuring AM and EFT1,21, as it is widely used 
and AI scores typically show high inter-rater reliability. There are, however, a few shortcomings of the procedure.

First, the multi-step procedure (interview, transcription, scoring) is very time consuming, and this might 
discourage researchers from using the AI in studies with time constraints. Second, the manual scoring procedure 
is subjective. For this reason, typically multiple independent raters score at least a subset of the data, in order to 
ensure the reliability of the rating procedure. Finally, the rich and oftentimes long narratives that participants 
produce during an AI testing session contain a lot of linguistic information that could in principle be analyzed 
in a largely automatic fashion. However, by focusing mainly on manual scoring and the resulting sum scores 
for different detail categories (e.g. internal, semantic, external, see above), it is possible that potentially interest-
ing information is ignored. For example, information regarding emotional valence, word concreteness, sentence 
length and the proportion of specific word types (e.g. adjectives, verbs) are typically not considered directly when 
internal details are scored. The present study provides a first step towards a more automatic and quantitative 
analysis of linguistic content in AI data by extracting low-level linguistic features from AI narratives in a largely 
automatic fashion.

We re-analyzed a large set (n = 86) of previously published AI data22,23 using automatic extraction of low-level 
text features. Text features were computed both manually by cross-referencing words with publicly available lin-
guistic data bases, and using commercially-available quantitative text analysis software, the Linguistic Inquiry 
and Word Count (LIWC) package24. Note that one previous study applied the LIWC to autobiographical memory 
narratives25, but that study focused on differences in emotional content between younger and older adults. In 
addition, two earlier studies examine the use of past-tense verbs in AI tasks in neurodegenerative disorders26 and 
temporal lobe epilepsy27, but did not explore additional text features or comprehensively analyzed detail sum 
score prediction. The first aim of this report is an initial proof-of-concept. We aimed to assess how well AI based 
internal and semantic detail sum scores can be predicted from low-level linguistic features using statistical meth-
ods with a combination of dimensionality reduction and regression techniques with out-of-sample prediction 
(cross-validation). We then also explored whether different features are associated with e.g. internal vs. semantic 
details ratings. In the light of the known associations between EFT and temporal discounting (see above), we also 
used the same regression models to directly predict temporal discounting behavior from linguistic features of AI 
narratives.

Methods
Participants.  We re-analyzed autobiographical interview (AI) data from two datasets. The first dataset (data-
set 1) comprised interview data from n = 46 adolescents (age range: 12–16, 23 male). The second data set (dataset 
2) comprised data from n = 20 pathological gamblers (mean age [range]: 32.9 [19–59], 19 male), and from n = 20 
healthy control participants (mean age [range]: 32.55 [18–58], 19 male). All subjects provided informed written 
consent prior to participation. For minor participants, the parent or legal guardian provided written consent. All 
procedures were approved by the local ethics committee (Hamburg Board of Physicians) and all methods were 
conducted in accordance with the guidelines and regulations of this committee.

Autobiographical Interview.  Data were acquired using a modified version of the Autobiographical 
Interview (AI) Interviews were conducted by U.B. (dataset 1) and A.W. (dataset 2) using a standardized protocol. 
For dataset 1, each participant was first instructed to report 12 personal episodic events (3 events within the next 
6 months, 3 events during the following school year, 3 events within the last 6 months and 3 events during the 
previous school year) from 3 different settings: 4 events related to family life, 4 events related to school life and 
4 events related to their spare time activities). For dataset 2, each participant was instructed to report 5 personal 
episodic events that happened one year ago, and 5 personal episodic events that could happen one year from now. 
For further details on the cue selection procedure, please refer to the original publications22,23.

Verbal cues referring to each event were then presented to each participant, and they were given 3 min to freely 
elaborate on the respective past or future event. Following this, a standard follow-up question was asked depend-
ing on what had been told already (“Can you tell me any more about where and when the event is taking place, 
who is there, how you feel and what you are thinking?”). Verbal reports were digitally recorded, transcribed, and 
then scored according to the original AI manual20,22,23.

Scoring involved the manual classification of each reported piece of information (detail) into one of several 
content categories. Details were scored as episodic internal details if they contained episodic information regard-
ing the cued event, as episodic external details if they referred to episodic information regarding some other 
non-cued event, and as semantic details if they referred to non-episodic factual information. Following the origi-
nal manual20 five subcategories of internal details were differentiated: event details, time details, place details, per-
ceptual details and emotion/thought details. For each participant, a sum score for internal and external episodic 
details was computed as the sum of the details across these categories.
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Temporal discounting.  Temporal discounting refers to the reward devaluation that typically occurs with 
increasing delay. All subjects completed a simple short and adaptive discounting task28 that involved repeated 
choices between a smaller-sooner reward of 20€ available now and larger-but-later rewards available only after 
some delay (2, 7, 14, 30, 90, 180 days). The procedure was adaptive such that the reward amount of the larger-later 
reward was increased following two successive choices of the smaller-sooner reward, and decreased following two 
successive choices of the larger-later reward. Choice data were then fitted with a standard hyperbolic discounting 
function of the form = + ×SV A k D/(1 ). Here, SV is the subjective discounted value of the reward, A is the 
objective reward amount, D is the delay (measure in days), and k is a subject-specific discounting function, where 
greater values reflect steeper discounting and thus more impulsive preferences. Fitting was performed using max-
imum likelihood techniques implemented in Matlab © version R2013a (The Mathworks). Details of the proce-
dure are given elsewhere29. As the resulting single-subject k-parameters are not normally distributed, we applied 
a square-root transformation prior to analyses29,30.

Text feature extraction.  Computation of text features proceeded in a purely data-driven manner. That 
is, we did not have a priori assumptions about which low-level text features might be informative regarding AI 
details sum scores. Rather, we simply applied two complementary methods to extract a large number of low-level 
linguistic features from the narratives. Since we used regression approaches suitable for collinear data (see below), 
high correlations between some of the variables are not problematic per se.

First, we used custom in-lab Matlab © procedures to cross-reference words with publicly available linguistic 
databases (‘manual feature extraction’). Second, we used commercially available text analysis software (‘Linguistic 
Inquiry and Word Count’, LIWC)31 to obtain additional text features. The two approaches are described in detail 
in the following.

Manual text feature extraction.  Transcripts of narratives were first pre-processed to extract potentially relevant 
text features. The data from each subject were read into Matlab © and separated according to the two experimen-
tal conditions (EFT, AM). Then, individual words and sentences were extracted from the narratives. Words were 
then further analyzed using Webservices provided by the “Projekt Deutscher Wortschatz” (http://wortschatz.
uni-leipzig.de), which is part of the Leipzig Corpora Collection. Each word was converted to base form and 
classified (noun/adjective/verb/other) using the “baseform” webservice (http://wortschatz.uni-leipzig.de/axis/
servlet/ServiceOverviewServlet). For an input of e.g. freundlichste (nicest), this service returns both the baseform 
freundlich (nice) and the classification (adjective). This allowed us to calculate the proportion of nouns, verbs and 
adjectives separately for each condition. Next, we cross-referenced words (both pre- and post- baseform con-
version) with the Berlin Affective Word List – Reloaded (BAWL-R) (Vo et al., 2009). The BAWL-R is a database 
that contains ≈3000 German words (≈2100 nouns, ≈500 verbs, ≈290 adjectives). It provides normative ratings 
for the dimensions valence (−3 [very negative] through 0 [neutral] to +3 [very positive]), imageability (1 [hardly 
imageable] through 7 [highly imageable]), and emotional arousal (1 [low arousal] through 5 [high arousal]) as well 
as a measure of word frequency (frequency/million). Figure 1 illustrates that baseform conversion increased the 
number of words that could be successfully cross-referenced with the BAWL-R database by around 50% in both 

Figure 1.  Baseform conversion substantially increased the number of words successfully cross-referenced with 
the BAWL-R database36 by around 50% for both EFT (left) and AM (right) conditions.

http://wortschatz.uni-leipzig.de
http://wortschatz.uni-leipzig.de
http://wortschatz.uni-leipzig.de/axis/servlet/ServiceOverviewServlet
http://wortschatz.uni-leipzig.de/axis/servlet/ServiceOverviewServlet
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experimental conditions. Based on the BAWL-R data, we calculated mean and variance of valence, arousal and 
imageability ratings for each subject and condition. Note that due to the highly skewed distribution of word fre-
quencies, we used the median rather than the mean as a summary measure for each subject and condition. Based 
on these data, 19 predictors per experimental condition were obtained for each participant. The features are listed 
and explained in Table 1.

Throughout the present paper, we make a simplified distinction between qualitative and quantitative manual 
text features. Quantitative text features refer to those text features that simply score the raw amount of verbal 
material (e.g. number of sentences, number of words, number of adjective etc., see Table 1). Qualitative text 
features, in contrast, refer more directly to word characteristics (e.g. mean word imageability, mean valence, pro-
portion of adjectives etc., see Table 1).

Linguistic Inquiry and Word Count (LIWC) features.  We also applied a commercially available text analysis 
software that is frequently used in psychological research, the Linguistic Inquiry and Word Count (LIWC). LIWC 
is a dictionary-based method that counts words falling into one of 64 content categories, and normalizes these 
counts by the total length of the texts. These categories include specific word classes (e.g. filler words, numbers, 
pronouns, articles) but also semantic content categories (words related to e.g. leisure, home, school, job, sports, 
TV) as well as cognitive-emotional categories (e.g. positive emotion, negative emotion, anxiety, affect). See results 
section for a complete list of LIWC content categories used in the present study. We used a validated German 
LIWC dictionary31 and separately analyzed EFT and AM data for each participant.

Regression analyses.  To assess the association between text features (i.e. manual features, LIWC features) 
and AI ratings we used regression techniques. Note that prediction focused on internal and semantic details, since 
these AI measures both showed a reasonably high correlation between AM and EFT conditions and substantial 
variance between subjects. In contrast, this was not the case for the external detail sum scores as well as the more 
specific internal details sub-categories (event, time, place emotion, perceptual), which were thus excluded from 
the predictive modeling.

Examination of the covariance structure of the predictor space revealed high co-linearity between some pre-
dictors (see results section). This poses a problem for standard multiple regression, as there is no unique least 
squares solution. We therefore applied regression techniques that can deal with collinear data32.

Principal component regression (PCR).  PCR consists of first performing a principal component analysis (PCA) 
on the data matrix X. In the next step some target vector y is regressed onto a subset of n of these components, 
with n being typically determined via cross validation. PCA is a completely data-driven approach that extracts 
the main axes of variation from a multi-dimensional data set. Often, a relatively small subset of these principal 
directions accounts for the majority of variability in the data, and PCA is thus an effective technique for dimen-
sionality reduction. The resulting component scores, which are linear combinations of the original variables, are 
orthogonal, and PCR thus solves the problem of predictor co-linearity. PCR was performed by first computing a 

Label Description

n_words total number of words per condition (across all cues)

n_sentences total number of sentences per condtion (across all cues)

total_classified_words total number of words successfully classified as verb/adjective/noun

n_adjectives total number of words classified as adjectives

n_verbs total number of words classified as verbs

n_nouns total number of words classified as nouns

p_adjectives n_adjectives/n_words

p_verbs n_verbs/n_words

p_nouns n_nouns/n_words

n_bawl total number of words successfully cross-referenced with BAWL-R 
database post-baseform conversion

n_bawl_pre total number of words successfully cross-referenced with BAWL-R 
database pre-baseform conversion

wps words per sentence: n_words/n_sentences

m_emo mean BAWL-R emotion rating

m_arousal mean BAWL-R arousal rating

m_image mean BAWL-R imageability rating

v_emo variance BAWL-R emotion rating

v_arousal variance BAWL-R arousal rating

v_image variance BAWL-R imageability rating

med_freq median word frequency

Table 1.  Labels and descriptions of manually-derived predictor variables (see ‘manual feature extraction’ 
section in the methods section). Each variable was computed separately for the EFT and AM conditions, 
yielding 38 predictors in total. BAWL-R – Berlin Affective Word List Reloaded.
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PCA using the Matlab function pca. Then a regression analysis using the resulting component scores as predictors 
was implemented using the Matlab functions regress and pcr_sse.

Partial least squares regression (PLS).  PCR uses PCA to construct new orthogonal predictor variables, but it is 
completely data driven – components are constructed without regard to the target data y that one wishes to even-
tually predict. Thus it is possible that information predictive of y ends up in later components that are excluded 
from the PCR. Thus, when, the ultimate goal is prediction, PCR may not be the optimal choice. In contrast to 
PCA, in PLS, components are constructed based on both X and y, that is, components are constructed such as to 
jointly maximize the amount of variance that is explained in X and the correlation of the resulting components 
with y32. We performed PLS using the Matlab function plsregress, which also implements cross-validation.

Alternative regression approaches.  For comparison with PCR and PLS, and to ensure that our results are 
independent of the regression approach adopted, we applied two additional techniques.

Supervised PCR (sPCR).  Supervised PCR33 is a recently proposed extension of standard PCR that involves an 
additional variable selection step. Columns of X that show little correlation with y are excluded before the PCA 
step of PCR. Which predictors are excluded is determined by the inclusion threshold θ. The optimal value for θ is 
again determined by cross-validation (see below).

Ridge regression.  In ridge regression, the parameters of multiple linear regression are shrunk towards zero, with 
the degree of shrinkage being determined by the ridge tuning constant λ, which is determined by cross-validation. 
Shrinkage solves the problem of high variance in linear regression parameter estimates when predictors are highly 
correlated. We used the Matlab function ridge, which also implements cross-validation for the tuning of λ.

Cross-validation.  We used leave-one-out cross validation to quantify the out-of-sample prediction accuracy 
of all regression models, as well as to tune model hyper-parameters (e.g. the shrinkage parameter λ in ridge 
regression). To this end, models were fit to the data of all but one participant. We then calculated the root mean 

squared cross validation error (RMSE) across subjects as =
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 where ŷi  and yi are the predicted 
and actual data for the i-th subject. For the case of PCR and PLS, this procedure was repeated for a range of mod-
els with different numbers of included components in order to identify models maximizing out-of-sample predic-
tion (i.e. minimizing over-fitting the training data).

Results
Autobiographical memory interview data.  Figure 2a–c shows histograms of the distributions of ratings 
for internal, semantic and external details. Overall, internal details ratings (t85 = 5.0057, p < 0.001) and exter-
nal details ratings (t85 = 2.236, p = 0.028) where higher for AM than EFT, whereas semantic details ratings were 
higher for EFT than AM (t85 = 2.5189, p = 0.014). All ratings were significantly correlated between conditions 
(Fig. 2d–f).

Figure 2.  Autobiographical interview (AI) data. Distributions of internal and semantic detail sum scores for 
each condition (blue – autobiographical memory [AM], red – episodic future thinking [EFT]) are shown in top 
row, and sum score correlations between AM and EFT are shown in the bottom row. From left to right: internal 
episodic details, semantic details, external episodic details.
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Text feature data.  We used two types of extracted text features (see methods section for details). First, text 
features were manually extracted using custom Matlab © code, in combination with research-dedicated word 
databases (see Methods section for details and Table 1 for an overview of manually computed features). Second, 
we used commercially available software (Linguistic Inquiry and Word Count, see methods section) to derive 
dictionary-based word counts for 64 content categories.

Data correlation structure.  Figure 3 depicts the Pearson correlation matrix of the entire set of 166 pre-
dictor variables (19 manual features + 64 LIWC features per condition). Substantial collinearity between some 
variables is evident, in particular between the different variables measuring text quantity. Also, many measures 
showed considerable consistency across the two conditions (note the diagonal in the lower quadrant of the cor-
relation matrix with generally positive correlation values). These correlations were highest for variables related 
to material quantity (number of words, number of sentences). But also, more qualitative measures such as the 
degree to which particular word classes were used (e.g. proportion of adjectives/verbs/nouns) as well as words per 
sentence and average BAWL imageability ratings were positively correlated between conditions. Together, these 
data suggest that both quantitative and qualitative aspects of the narratives were correlated between conditions. 
The correlation between manually derived text features and LIWC features was generally quite low, suggesting 
that the two types of features were not redundant.

Interestingly, proportion of adjectives was positively correlated with most measures of raw material quantity, 
suggesting that the proportion of adjectives tended to increase with increasing lengths of the narratives - sub-
jects producing longer narratives also incorporated a relatively greater number of adjectives in those narratives. 
Similarly, words per sentence was positively correlated with most measures of quantity, such that subjects produc-
ing longer narratives also produced relatively longer (and potentially more complex) sentences.

Principal component analysis and regression.  We next performed a principal component analysis 
(PCA) on the data to address the multi-collinearity problem (see Fig. 1). Figure 4 illustrates predictor loadings 
of the first 10 principal components, and also illustrates the loading similarity between conditions. Similarity 
between conditions was most pronounced for the first few components, and decreased with increasing compo-
nent number.

We next used principal component regression (PCR) to predict different measures using the extracted text 
features. In particular, we set up five analogous PCR models, all of which used the entire data matrix X for predic-
tion. Model 1 and 2 predicted AM internal (episodic) and semantic details sum scores, respectively, models 3 and 
4 predicted EFT internal and semantic details sum scores, and model 5 predicted square-root-transformed dis-
count rates. As the PCA components used for prediction are solely based on the data, they were identical across 
models. This approach enabled us therefore to assess whether e.g. internal vs. semantic details scores were associ-
ated with different text features. Figure 5 (top row) shows the regression coefficients for the first 10 PCs for each 
model. Internal and semantic details for AM and EFT were all positively and significantly (i.e. the 95% CI did not 
include 0) associated with the 1st PC (which predominantly reflects text quantity, see Fig. 4). In contrast, e.g. the 
2nd and 5th components (both reflecting more qualitative aspects of the narratives, see Fig. 4) were significantly 
positively associated with internal but not semantic details for both AM and EFT. PCR models with 5 components 
also produced the lowest cross validation error, i.e. best out-of-sample prediction (Fig. 5).

Interestingly, the 1st and 2nd PCs also showed a significant negative association with square-root transformed 
discount rates (95% CIs for both regression coefficients were <0). Out of sample prediction, again estimated using 

Figure 3.  Pearson correlation matrix of all predictor variables, separated according to experimental condition 
(Autobiographical Memory [AM], Episodic Future Thinking [EFT]). See Fig. 4 for a complete listing of 
predictor variables.
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leave-one-out cross-validation, revealed lowest prediction error for the two-component PCR model. However, 
note that overall prediction accuracy of temporal discounting was only marginally better than the 0-component 
(i.e. intercept only) model.

Alternative regression approaches.  For comparison, we repeated the prediction analyses of AI details 
sum scores using 1) Ridge regression, 2) supervised PCR and 3) PLS (see methods section for details). Best fitting 
hyper-parameters for these models (e.g. shrinkage parameter λ for ridge regression, cut-off parameter θ for sPCR) 
where again determined by LOO cross-validation, and are listed in Table 2. As expected, absolute differences 
between the regression approaches were small32. RMSE for the best fitting model of each class is plotted in Fig. 6. 
For the ridge regression model, Fig. 7 plots λ against the cross-validation error (RMSE).

Figure 4.  PCA coefficients per predictor and experimental condition for the first ten principal components 
of the data matrix plotted in Fig. 3. Note that coefficients for EFT and AM conditions are plotted next to each 
other to illustrate the similarity in loadings across conditions for the first few components. Note that “manual 
features” refer to those text features that were extracted manually (see Table 1 for details). “LIWC features” 
are those text features that were extracted using a German version of the Linguistic Inquiry and Word Count 
Software31.
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Comparison of LIWC and manual features.  We then examined the added value of LIWC vs. manual 
features in predicting internal detail sum scores. To this end, we compared PLS models that were trained on 
either all features, only LIWC features or only manual features, and compared the prediction accuracies in terms 
of RMSE. As can be seen from Fig. 8, prediction using the combined feature set was better than prediction using 
either feature set alone, as indexed by a lower cross-validation error. This was the case for both prediction of AM 
internal details scores (Fig. 8a) and EFT internal details scores (Fig. 8b).

Effects of the size of the test data set.  Finally, we explored how reducing the amount of available test 
data affects prediction accuracy. To this end, we systematically varied the amount of test data used for prediction 
(but not the amount of training data). For simplicity, the following analyses used only the manual text features, 
and not the LIWC features. Given the similar results for the different regression approaches in the previous sec-
tions, we focussed on 2-component PLS models. Also, we used AM data for predicting AM ratings and EFT data 
to predict EFT ratings. Thus, for EFT and AM each, a separate 2-component PLS model trained on the respective 
feature sets and was used for prediction. We then varied the amount of test data used for prediction. Note that this 
resembles a situation where one has a model trained on a large data set, but would like to more efficiently predict 
AM/EFT in a subsequent shorter test session.

We first computed all manual features (see Table 1) separately for each cue (see section “Autobiographical 
Interview” in the methods section). Second, we fit 2-component PLS models to the data from all but one subject 
(leave-one-out cross-validation, see methods section). However, unlike the previous analyses, were we averaged 
the root mean squared cross-validation error (RMSE) across subjects (see methods), we now first averaged the 
cross-validation error across all possible subsets of test data of a given size. For each subject and test data size 
(i.e. 1 to 5 event cues), we averaged the cross-validation error across all possible test data subsets, and then com-
puted the RMSE across subjects. The result is plotted in Fig. 9: the RMSE decreased from 1 to 3 cues, but for 
n ≥ 3 event cues, no further improvement in prediction was observed. This was the case for both AM and EFT 

Figure 5.  Regression coefficients (+/− 95% confidence intervals) from a regression of internal (black) and 
semantic details ratings (red) onto the first ten principal components of text features (see Fig. 4).

PCR Ridge
Supervised 
PCR PLS:

n λ θ n n

EFTinternal details 5 80 46 9 2

AMinternal details 5 62 51 4 3

Discounting sqrt(k) 2 1168 51 4 1

Table 2.  Hyper-parameters of the best-fitting regression models as determined by leave-one-out cross-
validation (n – number of components included in the model, λ – ridge shrinkage parameter, θ – sPCR cut-off 
parameter).
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data. Note that overall, prediction accuracy was lower than in the previous models, because in this analysis only 
condition-specific data were used for prediction.

Discussion
The ability to remember the past and to project oneself into the future is a core human cognitive capacity that is 
impaired in a range of psychiatric and neurological disorders. Memory and prospection processes are typically 
measured using variations of the Autobiographical Interview (AI), a procedure that combines verbal event elabo-
ration with a manual rating procedure to quantify the episodic and semantic content of the narratives20. Here we 
explore for the first time methods to analyze AI data using automatic extraction of low-level linguistic features. In 
a first proof-of-concept approach, we applied regression techniques to predict standard AI details sum scores for 
internal (i.e. episodic) and semantic details from these low-level text features. Our findings suggest that AI detail 
sum scores can be predicted with reasonable accuracy from basic linguistic text features, with prediction accuracy 
averaging at about 0.5 standard deviations across analyses. Additional analyses show that different linguistic text 
features are associated with episodic and semantic information.

Figure 6.  Comparison of regression techniques. Plotted are cross-validation errors (root mean squared error, 
RMSE) for four different techniques (Ridge – Ridge regression, PCR – Principal Component Regression, sPCR 
– supervised principal component regression, PLS – Partial Least Squares), predicting internal details ratings 
for EFT (black circles, solid lines) and AM (white circles, dashed lines). Prediction accuracy was very similar for 
the different approaches.

Figure 7.  Cross-validation results for the ridge regression models. Cross-validation errors (root mean square 
error, RMSE) for EFT (solid line) and AM (dashed line) are plotted as a function of the ridge shrinkage 
parameter λ. Values of λ yielding the lowest RMSE are marked using vertical lines.
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First, our analyses of a relatively large number of AI interviews (n = 86) show that subject’s event elaborations 
for past (AM) and future events (EFT) are correlated, not only in terms of the detail sum scores, but also in terms 
of lower-level text features: both quantitative (e.g. words per sentence, total number of words) and qualitative 
characteristics of the narratives (e.g. proportion of adjectives, mean word imageability) were significantly corre-
lated between conditions. In particular, the significant correlations of measures such as average word imageability 
ratings or word class proportions suggest that these features might capture meaningful between-subject variabil-
ity. The results from principal component regression models used to predict internal and semantic details sum 

Figure 8.  Comparison of the effects of training with different classes of features on cross-validation errors (root 
mean square error, RMSE) for prediction of AM internal details (a) and EFT internal details (b) using partial least 
squares (PLS). black: only linguistic inquiry and word count (LIWC) features used for training, red: only manual 
features used for training, blue: all features used for training. See methods section for details on these different 
feature sets. RMSE was lowest when using all features for prediction, and highest when using only LIWC features.

Figure 9.  Effects of varying the amount of test data on prediction accuracy of a 2-component partial least 
squares (PLS) model. The X-axis depicts the number of event cues in the test data (see methods section). The 
Y-axis depicts the cross-validation error (root mean square error, RMSE). Solid line: prediction of EFT internal 
details EFT. Dashed line: prediction of AM internal details. Note that this analysis used the EFT text features to 
predict EFT details scores, and AM text features to predict AM details scores and that only manual features and 
not LIWC features (see methods) were used.
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scores from AM and EFT revealed very similar patterns for the two experimental conditions. Taken together, 
these results support previous findings of a close association between AM and EFT1.

Second, results from the PCR show that generally, both episodic (internal) and semantic details scores from 
the AI are strongly correlated with the raw quantity of verbal material produced by participants (first principal 
component). PCR revealed additional more qualitative components (e.g. the 2nd principal component with high 
loadings on word imageability and valence) that where associated with episodic rather than semantic detail rat-
ings. That is, use of more positive-valenced words and highly imageable words was correlated with greater epi-
sodic but not semantic details sum scores. Taken together, these findings suggest that AI sum scores do not solely 
capture variance due to narrative quantity, but also variance due to the quality of the elaborations. This supports 
previously reported dissociations between episodic and semantic memory and future thinking in different patient 
groups and age groups that have typically not reported group differences in narrative quantity2–4,34. We show that 
although narrative quantity is associated with both internal and semantic detail sum scores, narrative quality, as 
measured by linguistic text features, independently contributes to variability in these AI sum scores.

We compared a number of different regression approaches in terms of prediction accuracy. These analyses 
confirmed that the performance of the different regression techniques was very similar. Of note, the relatively new 
approach of supervised principal component regression (sPCR)33 performed quite well in particular for the EFT 
condition, which might be of interest for future studies.

In the light of the known association between EFT and temporal discounting12,14–16,18,22,35, we also explored 
the extend to which discounting behavior can be directly predicted from AI text features. The first two princi-
pal components from the text feature data were significantly associated with square-root-transformed discount 
rates (i.e. the 95% confidence intervals did not include 0). This is of interest, since these are the same compo-
nents that also showed an association with internal (i.e. episodic) details. Yet, for prediction of discount rates, 
the out-of-sample prediction accuracy of the best 2-component PCR model was low and only marginally better 
than an intercept-only model. Despite the square-root-transformation, the distribution of discount rates was still 
somewhat skewed, and this association may in part be driven by a relatively small number of participants with 
relatively high discount rates. We previously reported a reliable association between discounting and EFT inter-
nal details scores in the adolescent subsample of the present data set22. Although more data are clearly required, 
together, these findings suggest that temporal discounting might be more directly related to AI details scores than 
the text feature data examined in the present study.

We also assessed the added value of LIWC features and manually computed word features in prediction of 
AI data. Our findings suggest that the use of a combination of dictionary-based methods such as the LIWC and 
word-feature methods (e.g. the manual feature extraction methods employed here) may yield better prediction accu-
racy for AI detail scores than either feature class alone. Future studies on quantitative text analysis might benefit 
from complementing dictionary-based methods such as the LIWC with additional text features such as those exam-
ined in the present study (e.g. proportions of different word classes; imageability, valence and arousal scores, etc.).

Finally, by systematically varying the size of the test data sets, we could show that increasing the test data size 
beyond n = 3 event cues per participant and condition may not further improve prediction accuracy. This might 
be of interest for future studies employing the methods described here for a semi-automatic analysis of novel AI 
data sets. There may be an upper limit for our feature-based prediction approach that is reached with considerably 
smaller test data sizes than typically used in studies employing the AI.

We acknowledge that attempts were made in the context of the AI to differentiate between different types 
of content of the narratives. Internal details sum scores are derived from separate, theory-driven detail counts 
pertaining to perceptual, emotional, spatial, temporal or event information20. However, for the present study we 
focused on the most widely used outcome measures of the AI (internal vs. semantic details), partly because the 
variance in some of the more specific detail categories tends to be quite low. This makes these more specific out-
come variables less suitable for between-subject prediction. However, it would be interesting for future studies to 
explore the degree to which the different subtypes of internal details map onto different linguistic profiles.

One important limitation of the present approach (and of quantitative text analysis approaches such as LIWC 
in general) is that these approaches focus solely on word-level information. That is, semantic differences between 
sentences such as “I felt very stressed that day” (internal detail) and “I always feel very stressed” (semantic detail) 
are ignored by such automatic approaches. The same holds for the difference between internal and external 
details, which during AI scoring depends on semantics. In our approach, these different types of AI details can in 
principle only be dissociated indirectly via a differential association with lower-level linguistic features, but never 
based on sentence semantics. It is likely that this exclusive use of word-level information leads to the prediction 
accuracy bounding at around 0.5 standard deviations.

Although the vast majority of studies using the AI are conducted in English speaking subjects, we analyzed 
German AI data. A validated LIWC dictionary was used31 and measures such as valence, arousal and imageability 
were extracted from a large published German word data base36. A translation of the present approach to English 
language AI data would likely be of considerable interest, but also require additional programming efforts.

The present analyses constitute one of the first steps towards a more automatic analysis of AI data25. We focused 
on exploring the association between the commonly used AI details sum scores and automatically extracted text 
features. A number interesting research questions remain that were beyond the scope of this initial proof-of-concept 
report. First, we pooled data across three very different subject groups covering a considerable age range. Exploring 
how linguistic features vary as a function of factors such as age25, clinical status26,27 or a range of other psychological 
constructs would be of considerable interest. Second, a comprehensive comparison of feature scores between AM 
and EFT was beyond the scope of the present paper, but might reveal interesting differences in how memory and 
future imaginations are processed. It would also be of considerable interest to further explore how such potential 
differences change e.g. across the life-span25,37 or as a result of neurological or psychiatric disease.
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