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Abstract: In photosynthetic organisms except angiosperms, an alternative electron sink that is
mediated by flavodiiron proteins (FLVs) plays the major role in preventing PSI photoinhibition while
cyclic electron flow (CEF) is also essential for normal growth under fluctuating light. However, the
dynamic changes of FLVs and CEF has not yet been well clarified. In this study, we measured the
P700 signal, chlorophyll fluorescence, and electrochromic shift spectra in the fern Cyrtomium fortune
and the gymnosperm Nageia nagi. We found that both species could not build up a sufficient proton
gradient (∆pH) within the first 30 s after light abruptly increased. During this period, FLVs-dependent
alternative electron flow was functional to avoid PSI over-reduction. This functional time of FLVs
was much longer than previously thought. By comparison, CEF was highly activated within the
first 10 s after transition from low to high light, which favored energy balancing rather than the
regulation of a PSI redox state. When FLVs were inactivated during steady-state photosynthesis, CEF
was re-activated to favor photoprotection and to sustain photosynthesis. These results provide new
insight into how FLVs and CEF interact to regulate photosynthesis in non-angiosperms.

Keywords: energy balancing; ferns; gymnosperms; photoprotection; photosynthesis

1. Introduction

Under natural conditions, light intensity that is exposed to leaves changes dynamically
owing to wind, cloud, and shading from upper leaves or neighboring plants; such light
condition is called fluctuating light (FL) [1]. During FL, electron flow from photosystem II
(PSII) immediately increases upon an abrupt increase in illumination [2]. Concomitantly,
CO2 fixation needs more time to become fully activated [3], leading to the accumulation of
electrons in photosystem I (PSI) electron carriers [4]. If the excess electrons in PSI could not
be consumed immediately, reactive oxygen species would generate owing to the electron
transfer from reduced P700 to O2, causing oxidative damage to the PSI [5–7]. The extent of
PSI photoinhibition that is induced by FL could be affected by the background low light [7],
the intensity of high light [6], and the frequency of low/light cycle [8,9]. Owing to the key
role of PSI in the regulation of photosynthesis, PSI photoinhibition strongly suppresses
CO2 fixation and plant growth [10–14]. Therefore, photoprotection for PSI is fundamental
to plant growth under FL [15,16].

PSI over-reduction occurs only when the rate of electron flow from PSII to PSI exceeds
the rate of electron sink downstream of PSI [16,17]. Therefore, the PSI redox state can
be optimized by donor side regulation and acceptor side regulation [6]. In donor side
regulation, the down-regulation of electron flow at either PSII or the cytochrome b6f
complex can decrease excitation pressure to PSI and thus alleviate PSI over-reduction [17,18].
In acceptor side regulation, the enhancement of the electron sink downstream of PSI
can consume the excess electrons in PSI and thus converts reduced P700 into oxidized
P700 [6,19,20]. Flavodiiron proteins (FLVs) consume the excess reducing power in PSI
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through photo-reduction of O2, showing that FLVs protect PSI through acceptor side
regulation [16,21]. Meanwhile, the alternative electron flow that is mediated by FLVs is
coupled with the formation of ∆pH [16]. As a high ∆pH restricts the plastoquinol oxidation
and thus slows down the electron transport at the cytochrome b6f complex [22,23], FLVs
might protect PSI through donor side regulation. Some studies have proposed that the
functional time of FLVs was shorter than 10 s in the model moss Physcomitrella patens [16,24].
However, we recently found that the gymnosperm species Ginkgo biloba did not generate a
sufficient ∆pH within the initial 10 s after any increase in illumination [25]. Under such
conditions, the operation of FLVs-dependent photoreduction of O2 was crucial for P700
oxidation and PSI photoprotection. These controversial results require further study to
clarify the dynamic change of FLVs activity under FL.

The roles of FLVs in PSI photoprotection have been widely studied in cyanobacte-
ria [26], green algae [27], mosses [16,21,28], and liverworts [29]. However, little is known
about the action kinetics of FLVs in ferns and gymnosperms. In P. patens, leaves were
composed of monolayer cells without stomata. By comparison, stomatal conductance is an
important limitation that is imposed to photosynthesis in ferns and gymnosperms [30,31].
We recently found that decreased stomatal conductance led to stronger and prolonged
PSI over-reduction under FL in tomato (Solanum lycopersicum) and common mulberry
(Morus alba) [32]. To prevent the risk of PSI over-reduction under FL, the FLVs-dependent
electron sink might work longer in ferns and gymnosperms than in P. patens.

In angiosperms FLVs are lost during evolution but cyclic electron flow (CEF) around
PSI is conserved to sustain photosynthesis under FL [6,15] and other environmental
stresses [33–37]. There are two major pathways that are responsible for the operation
of CEF, PGR5/PGRL1 and NDH [38–42]. If PGR5/PGRL1-dependent CEF was impaired
in angiosperms such as Arabidopsis thaliana and rice (Oryza sativa), the ∆pH formation
would be suppressed under high light, causing PSI over-reduction and thus resulting in
severe PSI photoinhibition [6,15,43]. Recent studies indicated that CEF was highly activated
upon a transition from low to high light in angiosperms [7,44]. The CEF-dependent ∆pH
formation not only slows down the electron flow at the cytochrome b6f complex but also
enhances electron downstream of PSI through increasing the ATP/NADPH production
ratio [6]. Therefore, CEF strengthens donor side regulation and accelerates acceptor side
regulation, both of which alleviate PSI over-reduction under FL. Opposite to angiosperms,
the single loss of the PGR5/PGRL1 pathway hardly affected photosynthesis and plant
growth under FL in P. patens [21], while double losses of PGR5/PGRL1 and NDH pathways
strongly accelerated PSI photoinhibition and impaired plant growth [28]. These results
indicated that CEF is also indispensable for sustaining photosynthesis and growth under FL
in non-angiosperms. However, the dynamic change of CEF under FL and its relationship to
∆pH formation in non-angiosperms have not yet been clarified. In particular, it is unclear
how CEF and FLVs interact to regulate photosynthesis under FL.

In addition to photoprotection, CEF regulates the energy balancing in response to
a changing environment [45]. Based on the assumption that CO2 diffusion conductance
is higher in P. patens than in ferns and gymnosperms, a relatively lower chloroplast CO2
concentration leads to the increase of photorespiration in ferns and gymnosperms. As the
energy budget that is required by photorespiration should be balanced by CEF, a relatively
lower CEF activity in P. patens can satisfy its low capacity of photorespiration. This note
was supported by a gradual decrease of CEF activity after an increase in illumination
in P. patens [24]. By comparison, the high levels of photorespiration in ferns and gym-
nosperms [31] requires a higher ATP/NADPH production ratio than in P. patens. Therefore,
we speculate that after the transition from low to high light, the changing patterns of CEF
activity in ferns and gymnosperms are different from that in the model moss P. patens.

In this study, we measured the dynamic responses of PSI, PSII, and electrochromic
shift signals under FL in a fern Cyrtomium fortune and a gymnosperm Nageia nagi. The
aims were: (1) to assess how FLVs interact with ∆pH to regulate PSI redox state under FL;
and (2) to examine whether the changing patterns of FLVs and CEF under FL in these two
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species are different from the model moss P. patens. Our results strongly indicate that the
time courses of FLVs and CEF in these two species are different from P. patens but similar to
angiosperms. The specific roles of FLVs and CET under FL are discussed.

2. Results
2.1. Redox Kinetics of P700 after Transition from Dark to Actinic Light

The redox change kinetics of P700 upon transition to actinic light in dark-adapted
leaves is a reliable method to assess the photoreduction of O2 that is mediated by FLVs [46,47].
To confirm the existence of FLVs in Cyrtomium fortunei and Nageia nagi, we first measured
the kinetics of P700 redox after transition from dark to actinic light (1809 photons m−2 s−1)
(Figure 1). Both species showed rapid re-oxidation of P700 in 2 s after actinic light was
turned on. As the Calvin–Benson cycle was highly inactivated after 60 min dark adaptation,
this rapid re-oxidation of P700 was caused by alternative electron downstream of PSI rather
than CO2 fixation and photorespiration. Furthermore, this rapid re-oxidation of P700 was
clearly disappeared when it was measured under anaerobic conditions, which was similar
to the phenotype in mutants that were impaired with FLVs. Therefore, photoreduction of
O2 that was meditated by FLVs contributed to the rapid oxidation of P700 in C. fortunei and
N. nagi during dark-to-light transition.
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Figure 1. Redox kinetics of P700 upon transition from dark to actinic light (1809 µmol photons
m−2 s−1) in leaves of Cyrtomium fortune (A) and Nageia nagi (B) measured under aerobic and anaerobic
conditions. The data are the means of five independent leaves from five independent plants.

2.2. Changes in PSI and PSII Parameters after Transition from Low to High Light

We next measured the kinetics of PSI and PSII parameters under FL. After transition
from 59 to 1809 µmol photons m−2 s−1, the quantum yield of PSI photochemistry (Y(I))
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sharply decreased in both species (Figure 2A). Concomitantly, the P700 oxidation ratio
(Y(ND)) rapidly increased to high levels (>0.8) in 10 s (Figure 2B), leading to low PSI
acceptor side limitation (Y(NA)) (<0.1) (Figure 2C). Therefore, the PSI over-reduction
was obviously prevented in these two studied species after transition from low to high
light. Similar to Y(I), the effective quantum yield of PSII photochemistry (Y(II)) sharply
decreased by transitioning to high light (Figure 2D). The non-photochemical quenching
(NPQ) was rapidly induced and gradually increased to the maximum over time (Figure 2E),
resulting in a low quantum yield of non-regulatory energy dissipation in PSII (Y(NO))
(Figure 2F). After the abrupt increase in illumination, the electron transport rate through
PSI (ETRI) rapidly increased and was nearly maintained stable (Figure 3A). Concomitantly,
the electron transport rate through PSII (ETRII) increased to the peak in approximately 30 s
and gradually decreased during the next 90 s (Figure 3B). Therefore, the alternative electron
flow that was mediated by FLVs was operational within the initial 20 s after transition from
low to high light.
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Figure 2. Changes in the quantum yields of PSI and PSII after transition from 59 (t = 0) to 1809 µmol
photons m−2 s−1 in leaves of Cyrtomium fortune and Nageia nagi. (A) Y(I) represents the quantum yield
of PSI photochemistry; (B) Y(ND), the quantum yield of PSI non-photochemical energy dissipation
due to donor side limitation; (C) Y(NA), the quantum yield of PSI non-photochemical energy dissipa-
tion due to acceptor side limitation; (D) Y(II) represents the quantum yield of PSII photochemistry;
(E) NPQ, non-photochemical quenching in PSII; (F) Y(NO), the quantum yield of PSII non-regulatory
energy dissipation. The data are the means ± SE (n = 5).
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Figure 3. Changes in the photosynthetic electron transport rates after transition from 59 (t = 0) to
1809 µmol photons m−2 s−1 in leaves of Cyrtomium fortune and Nageia nagi. (A) ETRI represents
electron transport rate through PSI; (B) ETRII, electron transport rate through PSII. The data are the
means ± SE (n = 5).

2.3. Changes in ∆pH, gH
+, and CEF after Transition from Low to High Light

As the proton gradient (∆pH) across the thylakoid membranes and the activity of
thylakoid proton conductance (gH

+) play important roles in photosynthetic regulation
under excess light energy, we measured the ECS signals to estimate the kinetics of ∆pH
and gH

+ after transition from low to high light. We found that in C. fortunei and N. nagi, the
values of ∆pH after this light transition for 20 s were significantly lower than those after
this light transition for 60 s and 120 s (Figure 4). These results indicated that C. fortunei
and N. nagi could not generate a sufficient ∆pH at least within the initial 20 s after the
light intensity increased abruptly. Such insufficient ∆pH might be related to the relatively
high gH

+ (Figure 5). After transition from low to high light, gH
+ first decreased and finally

re-increased (Figure 5). Such a re-increase of gH
+ suggested that the Calvin–Benson cycle

was re-activated. To evaluate the kinetics of CEF under FL, we calculated time courses of
the relative proton flux through the thylakoid membrane (vH

+) and the ratio of vH
+/ETRII.

After transition from low to high light, vH
+ and vH

+/ETRII ratio rapidly increased to the
peak in 10 s in both species, followed by the rapid decreases in 20 s and the subsequent
re-increase in 120 s (Figure 6). These results indicated that CEF was highly stimulated
within the first 10 s but rapidly decreased in the subsequent seconds. After the Calvin cycle
was highly activated under high light, CEF was re-activated to sustain photosynthesis.

To examine the role of ∆pH in photosynthetic regulation under FL, we plotted the
values of ∆pH, NPQ, and Y(ND) after transition from low to high light. Positive relation-
ships between ∆pH and NPQ were found in both species (Figure 7A), indicating that the
gradual increase of ∆pH induced NPQ and thus protected PSII against excess light energy.
However, the dynamic changes of ∆pH hardly affected the values of Y(ND) in both species
(Figure 7B), pointing out that in these two non-angiosperms the PSI redox state under
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FL was not controlled by ∆pH. Therefore, the dynamic formation of ∆pH under FL had
different effects on photoprotection for PSI and PSII in non-angiosperms.
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Figure 4. Changes in the trans-thylakoid proton gradient (∆pH) after transition from 59 to 1809 µmol
photons m−2 s−1 in leaves of Cyrtomium fortune (A) and Nageia nagi (B). All the ∆pH levels were
normalized against the magnitude of ECSST. The data are the means ± SE (n = 5). Different letters
indicate significant differences between the different treatments.
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1809 µmol photons m−2 s−1 in leaves of Cyrtomium fortune and Nageia nagi. The data are the
means ± SE (n = 5).
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3. Discussion

The FLVs-mediated alternative electron sink is operational in photosynthetic organ-
isms except in angiosperms [24,48]. Recent studies have documented the critical roles of
FLVs in cyanobacteria, green algae, mosses, and liverworts under FL [16,26,27,29]. In these
groups, flv mutants showed severe PSI photoinhibition and stunted plant growth if they
are exposed to FL [21,28]. However, little is known about the role of FLVs in photosynthetic
regulation under FL in the residual other two groups of non-angiosperms, ferns and gym-
nosperms. Here, we document that FLVs-mediated photoreduction of O2 contributes to
a rapid oxidation of P700 after any increase in light intensity in Cyrtomium fortune (fern)
and Nageia nagi (gymnosperm) (Figures 1 and 2). Furthermore, we found that the action
kinetics of FLVs activity were largely correlated with the ∆pH formation. In addition,
the role CEF in photosynthetic regulation under FL in them was energy balancing rather
than photoprotection.

Although FLV activity is proven to be the one of most important regulators in non-
angiosperms when exposed to FL, the specific protection mechanisms have not yet been
well clarified. Generally, alternative electron transport that is mediated by FLVs not only
enhances electron downstream of PSI but also contributes to the ∆pH formation across
the thylakoid membranes. Therefore, some scholars propose that the ∆pH-dependent
photosynthetic control at the cytochrome b6f complex is an important mechanism behind
how FLVs oxidize P700 under FL [16]. However, this scheme is now challenged by a recent
study on the gymnosperm Ginkgo biloba [25]. After transition from dark or low light to
high light, G. biloba did not build up a sufficient ∆pH in 10 s but P700 was highly oxidized,
leading to a hypothesis that the ∆pH-dependent photosynthetic control played a minor
role in FLVs-mediated P700 oxidation [25]. In the model moss P. patens, FLVs-dependent
alternative flow was functional in the first seconds up to 10 s but was undetectable during
prolonged illumination [16,24]. If the FLV activity just functioned within the first 10 s after
light abruptly increased, ETRII would get the first peak within the first 10 s. When FLV
activity is inactivated, ETRII will gradually increase owing to the activation of the Calvin
cycle [24]. However, we observed that ETRII peaked after transition from low to high light
for 30 s in C. fortune and N. nagi, followed by the subsequent decrease in 120 s (Figure 3B).
This result indicated that the action time of FLVs in them lasted at least 30 s. Therefore, the
function time of FLVs is likely different among different groups of non-angiosperms.

A question arises why FLVs work longer in C. fortune and N. nagi than in P. patens.
One possible explanation is that the work time of FLVs is influenced by the kinetics of
∆pH formation. Many previous studies on angiosperms have documented that ∆pH
is the key signal determining the redox state of PSI under high light and FL [38]. For
example, if the ∆pH formation was suppressed by the impairment of CEF or enhanced the
activity of chloroplast ATP synthase, PSI over-reduction and severe PSI photoinhibition
would be observed under FL [49,50]. However, these lethal phenotypes can be rescued
by the introduction of FLVs [6]. Furthermore, introduction of FLVs into WT plants of
Arabidopsis thaliana and rice can prevent PSI over-reduction under FL but do not affect
the steady-state photosynthesis [4,51]. Therefore, FLVs activity is particularly seminal
when the ∆pH is low but is dispensable under conditions of high ∆pH. In the present
study, we found that C. fortune and N. nagi needed approximately 30 s to accomplish the
buildup of ∆pH (Figure 4), which was consistent with the duration time of FLVs activity
(Figure 3B). After transition to high light for 120 s, ∆pH was formed sufficiently in C. fortune
and N. nagi (Figure 4). Concomitantly, FLVs was inactivated as indicated by the relatively
low ETRII values (Figure 3B). Therefore, after transition from low to high light, FLVs and
∆pH alternately optimize the PSI redox state in non-angiosperms.

Compared with FLVs, CEF plays a weaker role in photoprotection for PSI under FL in
the model moss P. patens [21]. In P. patens, single impairment of the PGR5/PGRL1 pathway
hardly affected the PSI activity and plant growth under FL [21], while double impairment
of the PGR5/PGRL1 and NDH pathways largely reduced biomass production [28]. Here,
we found that in C. fortune and N. nagi, CEF was stimulated in the first 10 s after an
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abrupt increase in illumination (Figure 6B), which was accompanied by an insufficient
∆pH (Figure 4). Therefore, CEF probably helped the rapid formation of ∆pH under FL in
them, which was similar to the phenotypes in angiosperms. Such CEF-dependent ∆pH
formation favored the induction of NPQ and thus contributed to photoprotection for PSII
(Figure 7A). However, unlike the importance of CEF in regulating the PSI redox state under
FL in angiosperms, the PSI redox state was not influenced by ∆pH because of the weak
correlation between P700 oxidation and ∆pH (Figure 7B). Therefore, in the presence of
FLVs, the rapid oxidation of PSI in C. fortune and N. nagi was independent of the transient
stimulation of CEF.

After transition to high light for 120 s, the relatively stable ETRII was accompanied
with the re-increase of CEF activity (Figure 6B). This re-increase of CEF activity contributed
to the maintenance of ∆pH under constant high light, which balanced the energy budget for
primary metabolism. The CEF activity can be regulated by adenylate status. Generally, CEF
is activated when the stromal ATP level is low, but it is downregulated when the ATP level
increases [52]. Within the first 10 s after transition from low to high light, the low stroma
ATP level initiated the transient stimulation of CEF. Subsequently, the operation of FLVs
activity increased the stroma ATP level and thus slowed down the CEF activity. Under
steady state photosynthesis, the full activation of CO2 assimilation and the inactivation of
FLVs activity decreased the stroma ATP level, which induced the re-activation of CEF to
maintain normal adenylate status. Therefore, the dynamic change of CEF activity under FL
further explains why CEF is essential for sustaining photosynthesis in non-angiosperms.

In summary, we examined the kinetics of FLVs activity and CEF after transition from
low to high light in the fern C. fortune and the gymnosperm N. nagi. We found that within
the first 30 s after light abruptly increased, FLVs were functional to avoid PSI over-reduction
under conditions of insufficient ∆pH. The functional time of FLVs in C. fortune and N. nagi
was much longer than those in the model moss P. patens. CEF was strongly activated
within the first 10 s after the light abruptly increased, which played a major role in energy
balancing rather than the regulation of the PSI redox state. When FLVs were inactivated
during steady-state photosynthesis, CEF was re-activated to favor photoprotection and
sustain photosynthesis. These results provide new insights into how FLVs and CEF interact
to regulate photosynthesis in non-angiosperms.

4. Materials and Methods
4.1. Plant Materials

A fern species Cyrtomium fortunei J. Sm. (Dryopteridaceae) and a gymnosperm species
Nageia nagi (Thunberg) Kuntze (Podocarpaceae) were chosen in this study. The plants were
grown in a greenhouse at the Kunming Botanical Garden, Yunnan, China (102◦44′31′′ E,
25◦08′24′′ N, 1950 m of elevation). The light conditions were 40% full sunlight (the maxi-
mum value was 800 µmol photons m−2 s−1), day/night air temperatures 30/20 ◦C, and
a relative humidity of approximately 60–70%. The plants were grown in plastic pots. To
prevent any water and nutrient stress, the plants were fertilized and watered regularly.
Photosynthetic measurements were conducted on mature but not senescent leaves.

4.2. P700 Redox Kinetics Measurements

The redox kinetics of P700 was measured using a Dual-PAM 100 measuring system
(Heinz Walz, Effeltrich, Germany) by illumination on dark-adapted leaves. After the
inactivation of the Calvin–Benson cycle by dark adaptation for at least 60 min, intact leaves
were illuminated at 1809 µmol photons m−2 s−1 for 5 s under atmospheric air conditions at
approximately 25 ◦C [46].

4.3. P700 and Chlorophyll Fluorescence Measurements

P700 and chlorophyll fluorescence were measured simultaneously at 25 ◦C using a
Dual-PAM 100 measuring system (Heinz Walz, Effeltrich, Germany). A saturating pulse
(20,000 µmol photons m−2 s−1, 300 ms) was used to measure the maximum fluorescence



Cells 2022, 11, 2768 10 of 13

intensity (Fm) and the maximum photo-oxidizable P700 (Pm) after dark adaptation for
at least 15 min. Subsequently, 15 min illumination at 759 µmol photons m−2 s−1 was
conducted to activate photosynthetic electron sinks, and then light intensity was changed
to 59 µmol photons m−2 s−1 for 5 min. Afterwards, light intensity abruptly increased to
1809 µmol photons m−2 s−1. During the follow-up 2 min, P700 and chlorophyll fluorescence
parameters were recorded.

The chlorophyll fluorescence parameters were calculated as follows: the quantum
yield of PSII photochemistry, Y(II) = (Fm’ − Fs)/Fm’; non-photochemical quenching in PSII,
NPQ = (Fm − Fm’)/Fm’; the quantum yield of non-regulatory energy dissipation in PSII,
Y(NO) = Fs/Fm. Fm and Fm’ were the maximum fluorescence intensity and were recorded
after dark and light acclimation, respectively. Fs is the pre-trigger fluorescence intensity.
The PSI parameters were calculated as follows: the quantum yield of PSI photochemistry,
Y(I) = (Pm’− P)/Pm; the quantum yield of PSI non-photochemical energy dissipation due to
donor side limitation, Y(ND) = P/Pm; the quantum yield of PSI non-photochemical energy
dissipation due to acceptor side limitation, Y(NA) = (Pm − Pm’)/Pm. The photosynthetic
electron transport rate was calculated as ETRI (or ETRII) = PPFD× Y(I) [or Y(II)]× 0.84× 0.5,
light absorption is assumed to be 0.84 of the incident irradiance, and 0.5 is the fraction of
absorbed light reaching PSI or PSII.

4.4. Electrochromic Shift (ECS) Analysis

The ECS signal was monitored using a Dual PAM-100 that was equipped with a
P515/535 emitter-detector module by recording the change in absorbance at 515 nm [53].
Before the ECS measurement, a single turnover flash (ECSST) was measured after dark-
adaptation for at least 60 min [54]. Subsequently, photosynthetic induction was conducted
at 759 µmol photons m−2 s−1 for 15 min. Afterward, the leaves were illuminated at 59 µmol
photons m−2 s−1 for 5 min, and then the ECS signal was recorded after transition to
1809 µmol photons m−2 s−1 for 10 s. Subsequently, the leaves were repeatedly acclimated
to 59 µmol photons m−2 s−1 for 5 min, and then the ECS signal was measured after
transition to 1809 µmol photons m−2 s−1 for 20 s. Similar ECS signals were measured
after transition from 59 to 1809 µmol photons m−2 s−1 for 30 s, 40 s, 50 s, 60 s, and
120 s. The ECS dark interval relaxation kinetics (DIRKECS) were used to calculate the
activity of chloroplast ATP synthase (gH

+) and proton gradient (∆pH) across the thylakoid
membranes [55,56]. All the ∆pH levels were normalized against the magnitude of ECSST.
The relative proton flux through the thylakoid membrane (vH

+) in the light was calculated
from the maximal drop in the ECS signal (ECSt) during a 300-ms DIRKECS and the value
of gH

+: vH
+ = ECSt × gH

+ [56,57]. The relative CEF activation state was estimated by the
vH

+/ETRII ratio.

4.5. Statistical Analysis

Paired t-tests were used to determine whether significant differences in gH
+ and ∆pH

existed between the different treatments (α = 0.05). The software SigmaPlot 10.0 was used
for graphing and fitting.
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