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Longitudinal analysis of biomarker 
data from a personalized nutrition 
platform in healthy subjects
Kenneth Westerman1,2, Ashley Reaver1, Catherine Roy1,2, Margaret Ploch1, Erin Sharoni1, 
Bartek Nogal1, David A. Sinclair4,5, David L. Katz3, Jeffrey B. Blumberg2 & Gil Blander1

The trend toward personalized approaches to health and medicine has resulted in a need to collect high-
dimensional datasets on individuals from a wide variety of populations, in order to generate customized 
intervention strategies. However, it is not always clear whether insights derived from studies in patient 
populations or in controlled trial settings are transferable to individuals in the general population. To 
address this issue, a longitudinal analysis was conducted on blood biomarker data from 1032 generally 
healthy individuals who used an automated, web-based personalized nutrition and lifestyle platform. 
The study had two main aims: to analyze correlations between biomarkers for biological insights, 
and to characterize the effectiveness of the platform in improving biomarker levels. First, a biomarker 
correlation network was constructed to generate biological hypotheses that are relevant to researchers 
and, potentially, to users of personalized wellness tools. The correlation network revealed expected 
patterns, such as the established relationships between blood lipid levels, as well as novel insights, 
such as a connection between neutrophil and triglyceride concentrations that has been suggested as a 
relevant indicator of cardiovascular risk. Next, biomarker changes during platform use were assessed, 
showing a trend toward normalcy for most biomarkers in those participants whose values were out of 
the clinically normal range at baseline. Finally, associations were found between the selection of specific 
interventions and corresponding biomarker changes, suggesting directions for future study.

Personalized nutrition approaches have the potential to improve the effectiveness of lifestyle-based disease man-
agement and prevention, being both more efficacious and more motivating to the individual1. Currently, the 
personalized nutrition research landscape is focused on the integration of genetic data2,3. However, recommen-
dations for nutritional interventions based solely on genetic data are limited, as they reflect only an individual’s 
genetic predisposition and fail to incorporate relevant modifiable risk factors within the individual’s surrounding 
environment4,5. Serum biomarkers, on the other hand, are well-suited for personalized nutrition assessment and 
monitoring as they provide real-time snapshots – reflections of an individual’s current metabolic or physiological 
state. Importantly, the information provided by serum biomarkers is easily trackable and readily actionable, as 
these markers change over time in response to nutrition, exercise, and other lifestyle factors.

The shift toward personalized health and medicine requires a parallel shift in measurement paradigms. To 
achieve truly personalized, efficacious recommendations, measurement must become more comprehensive and 
offer complementary views of biological processes. With regard to personalized health, this can be accomplished 
in two ways: (1) with repeated or longitudinal measurements, and (2) with the measurement of a broader range 
of biomarkers. The movement towards systems approaches to healthcare has been termed “P4” medicine (pre-
dictive, personalized, preventive, and participatory), and it is partially defined by this type of comprehensive 
measurement6. Several recent proof-of-concept studies have shown the power of the P4 approach by measuring 
and analyzing very large sets of biomarkers, including “omics” data, to better understand transitions between 
health and disease states and discover new predictive biomarkers7,8. However, the scale of these approaches is 
limited by costly and labor-intensive requirements for data collection, interpretation, and communication with 
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the participating individual(s). To that end, employing algorithmic automation can help make these interventions 
and comprehensive data measurements more scalable.

Combining the power of automation with the concepts of biological and behavioral personalization, we devel-
oped an online platform to produce individually customized nutrition and lifestyle recommendations for healthy 
adults, based on a panel of serum biomarkers. The scalable nature of the platform has allowed us to generate 
longitudinal biomarker data on 1032 generally healthy adults. We sought to investigate the resulting dataset to (1) 
find biological insights and generate hypotheses for future research, particularly those that may be more relevant 
to generally healthy individuals, and (2) assess longitudinal changes in biomarker levels in platform participants 
over time. We describe a series of analyses of this dataset, discovering expected and novel correlations between 
biomarker changes, trends toward normalcy in biomarker levels during use of the platform, and associations 
between specific intervention choices and biomarker changes.

Results
Study platform and population.  The full population explored here consisted of apparently healthy indi-
viduals who used a web-based personalized nutrition and lifestyle platform called InsideTracker (see Methods 
section for details). Participants included in this analysis received at least two blood tests along with the associated 
personalized nutrition and lifestyle recommendations. This group consisted of 1032 individuals in total across a 
broad age range (Table 1). Participants were recommended to follow interventions for a minimum of 3 months 
and then retest, however, follow-up testing dates ranged from less than one month post-baseline to 60 months 
post-baseline (Fig. 1).

The recommendations given by the platform stem from a system that synthesizes a broad scientific literature 
base for interventions associated with changes in biomarker levels. Each individual was presented with a variety 
of food, supplement, and lifestyle recommendations, based on their baseline biomarker levels, from which they 
selected a subset to follow. Thus, we looked at the extent to which participants tended to choose truly unique or 
personalized sets of interventions (Fig. 1c). With the exception of a small set of commonly-chosen interventions 
(e.g. oatmeal consumption; list of most common interventions in Supplementary Table S1), the bulk of the selec-
tions consisted of those that tended to be chosen relatively infrequently.

Longitudinal biomarker analysis reveals novel biological correlations.  We explored the set of lon-
gitudinal biomarker data by calculating the correlations between changes in biomarkers (i.e. a positive correla-
tion indicates that changes in one biomarker tend to be in the same direction as those of its partner). Figure 2 
illustrates the strength of Spearman correlations between changes in each pair of biomarkers. We identified 
well-established and physiologically expected correlations (e.g. alanine aminotransferase and aspartate ami-
notransferase) as well as novel and less-explored relationships (see Discussion section for more details).

In order to generate further insights from this analysis, we looked more deeply at the “neighborhoods” of 
specific biomarkers, displayed here in a network format (Fig. 3a,b). Edge weights correspond to the Spearman 
correlation strengths, and are only shown if statistically significant at p < 0.05 after correction for multiple 
comparisons. We focused here on vitamin D and LDL, as they have important implications for a spectrum of 
health-related physiological processes, and are commonly sub-optimal even in otherwise healthy individuals9,10. 
Vitamin D revealed links with biomarkers representing a range of biological processes, including nutrient intake, 
liver function, and lipid metabolism. LDL correlated with markers related to iron storage, lipid metabolism, and 
electrolyte status.

As a further method of probing the correlation structure, we performed hierarchical clustering on the set of 
biomarkers, using a basic distance metric derived from the full pairwise Spearman correlation matrix. There was 
no easily identifiable cut point based on visual inspection of the dendrogram, so a dynamic tree cutting algo-
rithm11 was used to find an optimal set of sub-modules (depicted in network format in Fig. 3c). Some of these 
modules illustrated anticipated relationships, such as a cluster including hsCRP and white blood cells as well as 
another linking classical lipid profile components. However, less intuitive findings also arose, including the clus-
tering of platelets with hormone status and magnesium concentration with biomarkers of muscle and liver stress.

Two potential complicating factors for the relationships discovered here are very long breaks between tests as 
well as sex. We performed sensitivity analyses to understand whether these factors notably affected our conclu-
sions by re-calculating the same longitudinal correlations in stratified datasets. In a group consisting of only indi-
viduals who re-tested within 2 years, the Pearson correlation between correlation coefficients (time-filtered subset 

Male Female

# of participants 672 360

Age (years)

43 (16) 40 (16)

85% White 84% White

6% Asian 10% Asian

Ethnicity

4% Black 3% Black

3% Hispanic 3% Hispanic

2% Indian 0% Indian

BMI (kg/m2) 25.2 (4.3) 22.3 (4.3)

Exercise (hrs/wk) 4.0 (4.8) 4.2 (4.0)

Table 1.  Population demographics. Note: Numeric values are presented as: median (IQR).
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vs. entire population) was found to be 0.987. After stratifying by sex, these equivalent correlations were found 
to be 0.961 for males and 0.878 for females. In addition to these broad similarities, we confirmed that specific 
hypotheses (correlations between biomarker changes) were also largely consistent (see Supplementary Table S3).

Platform use associates with improvements in biomarker levels in out-of-range partici-
pants.  Next, we investigated the changes that occurred from baseline to follow-up in each biomarker sep-
arately. Results in our entire study population can be found in Supplementary Table S4. As these results are 
complicated by the difficulty of defining “improvement” in individuals with normal biomarker values at base-
line, we focused on those individuals whose baseline values were outside of the clinically acceptable range for a 
given marker. It is more clear in these participants which direction of change constitutes improvement; further, 
these individuals would have received recommendations from the platform targeting that biomarker. A single 
“direction of risk” was defined for each biomarker as the direction in which individuals are most commonly 
found out-of-range (e.g. for blood glucose, an upper rather than lower limit was set). Participants tended to be 
out-of-range for only a few biomarkers each (full distribution in Fig. S1), with 906 individuals out-of-range for at 
least one biomarker. We analyzed the set of 17 biomarkers for which at least 20 participants were out-of-range at 
baseline, and observed substantial changes from baseline to follow-up in almost all markers examined (Table 2). 
As there was no randomization involved in this analysis, we do not infer any causality of platform use or identify 
which of its components may have driven the observed changes. Nonetheless, these observations suggest a poten-
tial influence of the platform on biomarkers in out-of-range individuals.

Changes in weight/body mass index are an important potential explanatory factor of the observed biomarker 
level changes over time. Due to weight data being collected independently of biomarker data, follow-up weights 
were available only for 428 participants and were not always concurrent with the follow-up blood tests, so were 
not analyzed formally with the blood biomarkers. However, for the participants with follow-up weights available, 
we observed a small decrease in mean BMI (mean change of −0.22, p = 0.043 from paired t-test).
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Figure 1.  The InsideTracker platform provides a means to generate longitudinal biomarker measurements 
before and after delivery of a set of personalized nutrition and health recommendations. (a) Graphical 
description of the InsideTracker algorithm and platform. (b) Histogram of time between tests. (c) Histogram of 
intervention choice frequencies.
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Intervention choice data suggests biomarker-specific intervention effectiveness.  We sought to 
find any patterns that may exist between participants’ choice of specific lifestyle and nutrition interventions and the 
observed changes in any out-of-range biomarkers. Because such an analysis requires notable numbers of participants 
to both be out-of-range at baseline and choose a specific intervention, we had potentially low power to detect these 
relationships. So, we chose to focus on vitamin D and LDL, which are commonly out-of-range, and the top ten 
most commonly chosen interventions across all participants (four of which are dietary supplements) (Fig. 4). For 
each combination of biomarker and intervention, we stratified the set of out-of-range participants into those who 
improved over time and those who did not, and subsequently compared the fractions of participants having chosen 
the intervention between groups. Though we lack rigorous measures of adherence, this approach may provide pre-
liminary clues as to which interventions are more effective in affecting change in specific biomarkers.

We observed an overall bias toward improvement in individuals who chose interventions, as seen in the consist-
ently greater improvement proportion across interventions in both vitamin D and LDL. For vitamin D, one specific 
association (vitamin D supplementation) reached nominal significance, suggesting that there was reasonable adher-
ence at least to this particular intervention. For LDL, nominal associations were found with increased consumption 
of oatmeal, green tea, and dairy. None of the associations for any biomarker retained statistical significance after 
Benjamini-Hochberg correction for multiple testing, possibly due to the low effective sample size for this analysis.

Discussion
We describe an analysis of the InsideTracker dataset consisting of longitudinal blood biomarker measurements 
in a generally healthy population. These data straddle the exposure of the participants to a series of nutrition and 
lifestyle recommendations based on baseline dietary behavior, preferences, and health markers. The automated 
and scalable nature of the study platform allowed the generation of data for a relatively large number of partici-
pants, which in turn enabled the systems-level biomarker analysis.
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Figure 2.  Heatmap of the overall correlation matrix. Colors correspond to the magnitude of Spearman 
correlations between changes in each pair of biomarkers. Asterisks indicate multiple test-corrected p < 0.05.
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We took advantage of the longitudinal nature of our data to explore correlations in changes over time between 
biomarkers. There is a precedent for the notion that some biological patterns are revealed only upon changes to 
the system rather than at baseline–this has been explored well in the context of acute challenges to metabolism12,13 
but, in contrast, the study platform recommendations act as a longer-term perturbation. After calculating pair-
wise correlations between changes in biomarkers, we observed both expected and novel connections.

The observations in this dataset with respect to vitamin D were consistent with existing literature. The rela-
tionship between vitamin D and a range of health parameters has been extensively explored in recent years. 
Although observational studies support an association between higher vitamin D levels and a more favorable lipid 
profile, intervention trials have generally failed to reach the same conclusion14,15. Our results support the obser-
vational associations, and include a longitudinal component–these associations exist not only in cross-sectional 
analyses, but also in medium-term (months to a few years) changes. Though some or all of this effect may be due 
to lifestyle changes rather than a causal role of vitamin D, our results support a need for continued research on the 
connection between vitamin D and health parameters including lipid markers and liver enzymes.

We observed the well-known relationships between LDL and other lipid markers (e.g. total cholesterol, 
HDL-C, and triglycerides). However, we also found a correlation between LDL and multiple biomarkers of iron 
stores. Excess iron directly modulates activities of several key enzymes for cholesterol and triglyceride homeosta-
sis (e.g., 3-hydroxy-3-methylglutaryl coenzyme A reductase, cholesterol 7alpha-hydroxylase, acyl-CoA:choles-
terol acyltransferase, and lipoprotein lipase), which might explain perturbations of lipid metabolism in conditions 
of iron overload16. Additionally, links between excess iron and lipid metabolism have been noted17, and can have 
downstream implications for cardiovascular risk through the oxidation of LDL18.

The clustering analysis reinforced expected biomarker communities, such as those related to inflammation 
and to iron metabolism. However, we note multiple novel findings identified by the network. First, it is established 
that postprandial levels of neutrophils increase after high triglyceride formulas are administered enterally and 
ad libitum19,20; however, there is limited evidence of the connection between plasma triglycerides and neutrophil 
levels outside of the postprandial window, e.g. in relation to hyperlipidemia and atherosclerosis21. Our findings 
may offer support to this relationship, since triglycerides and neutrophils are positively correlated in our pop-
ulation. Additionally, an unexpected finding was the grouping of magnesium levels with biomarkers of muscle 

Figure 3.  Further investigation of the longitudinal correlation network. Connections are displayed in network 
format, with edges corresponding to Spearman correlations with BH-corrected p < 0.05. Edge weights are 
proportional to the correlation strength, and colors correspond to the direction of association (red is positive, 
blue is negative). (a,b) Sub-networks consisting of only nodes connected to vitamin D and LDL, respectively. (c) 
Hierarchical clustering-based community detection results. Edges are as above, with biomarker nodes colored 
according to their identified cluster. See Supplementary Table S2 for full list of abbreviations.
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stress (creatine kinase, ALT, and AST)22. Exercise induces a redistribution of magnesium to tissues where energy 
production is taking place23, and in the post-exercise period, magnesium is mobilized and redistributed back into 
circulation. The amount of muscle damage is a key factor in this release of magnesium24. Although magnesium 
has been linked to exercise performance and recovery, its relationship to muscle damage is not well-established.

The above examples demonstrate the utility of our approach as a hypothesis generation mechanism for 
future research, as it can be used to extract possible mechanisms for relationships between these biomarkers and 
health or disease outcomes in generally healthy individuals. As the amount of participating individuals in the 
InsideTracker program grows, we anticipate the ability to increase the complexity of this approach by examining 
nonlinearities in biomarker relationships and focusing specifically on biomarker changes in clinically important 
ranges.

To understand whether improvements in biomarkers were seen during use of the platform, we assessed longi-
tudinal changes for individuals whose baseline values were out of the clinically acceptable range. This is the group 
of people (for each biomarker) who might best benefit from an improvement and who would have all received 
recommendations tailored toward improvement of the relevant biomarker. We observed notable improvements 
in most of the biomarkers analyzed. Nonetheless, through an observational analysis such as this, one cannot 
establish the causality of platform use on biomarker changes, or resolve which component of the intervention 
may have been related to the results. Weight changes are important to consider as a confounding factor, although 
the small magnitude of the average observed BMI change suggests that weight is only one component driving the 
longitudinal results.

Beyond the direct effects of the recommendations provided by the platform, two other factors may contrib-
ute to the results observed. First, improvements could simply result from the participants being informed of 
problematic biomarkers, inspiring lifestyle changes independent of any recommendations received. The fact that 
choosing any set of interventions at all correlated with greater biomarker improvements in vitamin D and LDL 
in out-of-range participants (Fig. 4) suggests that this phenomenon likely does not fully explain the observed 
changes, though this pattern did not hold in other biomarkers such as HDL (data not shown). Second, the 
observed effect may reflect a statistical regression to the mean, which would occur due to our non-random selec-
tion of participants based on baseline values25. Because these baseline values are subject to random variation (e.g., 
due to technical variability in test results), the chosen subset of participants would be expected to show improved 
follow-up test values simply by chance. Though this may also explain some of the observed effect reported in 
Table 2, the numerous biomarker changes observed in the full population (Supplementary Table S4), many of 
whom had baseline values that were normal or at the opposite end of the spectrum, do not support this effect 
being the primary explanatory factor.

To take advantage of our access to chosen interventions, we could assess whether particular interventions were 
strongly associated with changes in specific biomarkers. With a focus on vitamin D and LDL, we compared pro-
portions of participants choosing a series of interventions in those who did and did not show biomarker changes 
in the desired direction. As expected, vitamin D improvement did associate nominally with choice of vitamin 
D supplementation as an intervention. We also observed nominal associations between LDL improvement and 
choice to consume more oats, green tea, and dairy, all of which were no longer statistically significant after mul-
tiple hypothesis test correction. There is a precedent in the literature for consumption of both oatmeal and green 

Biomarker
Baseline median 
(IQR)

Follow-up median 
(IQR) P-value Sample size

Out-of-range 
threshold

Vitamin Da 23.7 (6.05) 32.4 (15) <0.001 383 <30

LDL 149 (27) 139 (41.5) <0.001 303 >130

Creatine kinase 353 (213.5) 241 (253) <0.001 227 >230

Glucose 105 (7) 97 (14) <0.001 77 >100

HDL 42.9 (8) 45 (11.5) <0.001 215 <50

Cholesterol 221 (33) 217 (47) <0.001 349 >200

ALT 43 (20.5) 30 (18.5) <0.001 59 >46(M); >29(F)

Triglycerides 191 (58.75) 144.5 (108.8) <0.001 88 >150

Cortisol 24.3 (3.7) 19.9 (9) <0.001 51 >22

Ferritin 8 (4.5) 20.5 (22.5) <0.001 30 <20(M); <10(F)

hsCRP 4.9 (3.16) 2.5 (4.4) <0.001 55 >3

AST 51 (13) 30 (12) <0.001 29 >40

Testosteroneb 219 (62) 406 (337) <0.001 25 <250(M); <0(F)

Eosinophils 267.5 (103.5) 234 (131.8) <0.001 40 >200

Mean corpuscular hemoglobin concentration 31.1 (0.95) 32 (2.8) 0.066 36 <32

Sex hormone binding globulin 64 (38) 64 (34) 0.132 325 >40

Free testosteroneb 9.9 (4.4) 10 (4) 0.161 296 <46(M); <0(F)

Table 2.  Change in biomarker levels for participants out-of-range at baseline. aP-values for vitamin D were 
calculated after an adjustment of 2.5 mg/dL down for tests taken during the summer (see Methods). bAnalyses 
were stratified by sex for testosterone and free testosterone, but an insufficient amount of females were out-of-
range for either marker in our dataset. Results shown for these two markers are based on males only.
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tea and reduction of LDL levels, though the evidence is mixed with respect to dairy26–28. We note that this analysis 
is meant for hypothesis generation only, as we lack metrics of intervention adherence in this dataset.

We acknowledge multiple limitations associated with this observational study. Though the sample size was the 
largest to our knowledge containing the same combination of data types, it was still relatively small to detect more 
subtle correlations between biomarkers, such as those of lower magnitude, those that only appear in some subset 
of the overall population, or nonlinear relationships. Furthermore, the population was self-selected and required 
a financial investment, which may be associated with an unusually high level of adherence to recommendations. 
Additionally, our dietary habits, exercise, and lifestyle questionnaire has not been validated externally, and no 
validated measure of compliance was available for use in this population. Future research in this area should 
include a larger group of participants, weight measurements concurrent with biomarker measurements, and a 
more heterogeneous population.

In conclusion, we have used a rich longitudinal dataset of clinical biomarkers to uncover novel biological 
relationships while validating known ones. Furthermore, we have demonstrated that the personalized health 
platform described here associates with improvements in health parameters and shows promise for the validation 
of biomarker-intervention associations in a “real world” setting. By tracking a variety of biomarkers in free-living 
individuals, this platform provides a novel resource for exploration and hypothesis generation. With the advent 
of personalized health platforms such as the one described here, new efforts should be devoted to understanding 
the efficacy of their individual components while incorporating the valuable insights of participants.

Methods
Dataset.  We conducted an observational analysis of data from Segterra, a company established in 2009 that mar-
kets and sells InsideTracker (insidetracker.com), a personalized lifestyle recommendation platform. The platform 
provides serum biomarker testing, analysis, and recommendations for improving out-of-range serum biomarkers. 
New users were continuously added to the InsideTracker database from January 2011 to September 2017.

Description of algorithm-based recommendation platform.  The web-based platform was accessible 
through a computer, tablet, or mobile device. Its core was a database of over 1500 lifestyle-focused recommenda-
tions curated from peer-reviewed, scientific publications. Each participant’s recommendations were individually 
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Figure 4.  Associations between intervention choice and biomarker changes. All individuals out-of-range for 
vitamin D (a) and LDL (b) at baseline are stratified based on the presence or absence of improvement from 
baseline to follow-up test. The y-axis corresponds to the percentage of each group (improved/not improved) 
having chosen the intervention. The x-axis corresponds to the 10 most commonly chosen interventions across 
all participants. Asterisks indicate nominal significance (uncorrected p < 0.05, Chi-square test).
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generated by a rule-based algorithmic expert system that used serum biomarker levels, demographic information, 
dietary restrictions, physical activity, dietary supplement regimen, and lifestyle parameters as inputs.

When participants logged into the InsideTracker platform, they had access to their blood work results as well 
as their suggested recommendations. Participants received the recommendations as short text descriptions that 
included the action with instruction on frequency, amount, and execution, where applicable. Exercise recom-
mendations were provided with frequency and intensity instructions, food recommendations were provided with 
frequency, serving size, and recipes, supplement recommendations were provided with dosage and time of day 
instructions, and lifestyle recommendations were provided with detailed implementation descriptions specific 
to the recommended action. Each recommendation included a link to the PubMed webpage of the primary pub-
lication that supported the recommendation, as well as a grade indicator (one to five stars) that communicated 
the scientific quality of each recommendation. The grading system was calculated using a formula designed to 
minimize bias through use of the following criteria: number of supporting studies and their population sizes, 
impact factor of the journal, year of publication, study design, magnitude of effect of the intervention on a specific 
biomarker, and study outcome.

Participants created an action plan by selecting 5 out of a maximum of 20 suggested recommendations. An 
engagement tool encouraged compliance by sending reminders on a regular basis, and participants were encour-
aged to retest their biomarker panel every 3–6 months.

Recruitment of participants.  Recruitment of participants aged 18 or older and residing in North America 
was conducted through company marketing and outreach. Participants were subscribing members to the 
InsideTracker platform, and provided informed consent to have their blood test data and self-reported infor-
mation used in an anonymized fashion for research purposes. Research was conducted according to guidelines 
for observational research in tissue samples from human subjects. Eligible participants completed a question-
naire that included age, ethnicity, sex, dietary preferences, physical activity, and exposure to sunlight. This study 
employed data from 1032 participants that met our analysis inclusion requirements, namely having at least two 
measures of at least one of the 40 biomarkers, with the follow-up blood test at least 30 days after the baseline test. 
The platform is not a medical service and does not diagnose or treat medical conditions, so medical history and 
medication use were not collected.

Biomarker collection and analysis.  Blood samples were collected and analyzed by Clinical Laboratory 
Improvement Amendments (CLIA)–approved, third-party clinical labs (primarily Quest Diagnostics and 
LabCorp). Participants were instructed to fast for 12 hours prior to the phlebotomy, with the exception of water 
consumption. Results from the blood analysis were then uploaded to the platform via electronic integration with 
the CLIA-approved lab. Participants chose a specific blood panel from 7 possible offerings, each comprising some 
subset of the biomarkers available. Due to the variation in blood panels offered, the participant sample size per 
biomarker is not uniform.

Biomarker dataset preparation.  In our raw dataset, occasional outlier values were observed that were 
deemed implausible (e.g. fasting glucose <20 mg/dL). To remove anomalous outliers in a systematic way, we 
developed a basic method for determining “plausibility cutoffs” based on the existing repository of blood bio-
marker data from the National Health and Nutrition Examination Survey (NHANES I, II, III, and continuous 
NHANES, spanning 1971–2014). For each biomarker, 0.5 and 99.5 percentiles were used as the outer limits for 
acceptable values. Participants whose baseline or follow-up values were outside this range were removed from the 
analysis of that particular biomarker.

Correlation network construction.  In order to determine which biomarkers tend to change together, 
a pairwise Spearman correlation test was performed for each pair of biomarkers in the dataset. The number of 
available observations differed for each test, because not all biomarkers examined were measured for each partic-
ipant at each time point. Significance tests were performed for each correlation and participant to a correction for 
the 780 comparisons using the Benjamini-Hochberg procedure29. Network visualizations were constructed using 
the Cytoscape program (version 3.2.1)30, including only those edges representing correlations with p < 0.05 after 
multiple test correction.

To find correlation network submodules that may represent biological phenomena of interest, a hierarchical 
clustering analysis was performed. The distance metric was calculated as dij = 1 − |corij|. The dynamic tree cutting 
algorithm of Langfelder and Horvath was used as an unbiased method of selecting communities from the resulting 
dendrogram11. This and all subsequent analysis was performed using the R statistical program (version 3.3.2)31.

Longitudinal analysis.  Longitudinal changes in biomarkers between baseline and follow-up were assessed 
using the Wilcoxon signed-rank test for paired samples. For a subsequent analysis, the data were filtered to include 
only those participants whose baseline value was outside the clinically acceptable range for each biomarker. Though 
values can be too high or too low, here a single “direction of risk” was chosen as the most common direction in which 
individuals tend to be out-of-range, and the corresponding cutoffs used were based on those employed by Quest 
Diagnostics (Table 2). In the filtered analysis, only biomarkers with at least 20 participants out-of-range at baseline 
were included, and p-values shown have not been corrected for multiple hypothesis tests.

To account for the seasonal fluctuation in vitamin D levels, we performed a simple adjustment by regressing 
all vitamin D levels in our population (baseline and follow-up tests) on a binary “summer” variable (denoting lab 
tests taken from June through September). This showed an average increase of 2.5 mg/dL in vitamin D during 
the summer, which we used as an adjustment factor before significance testing of vitamin D in both the full and 
out-of-range analyses.



www.nature.com/scientificreports/

9SCIeNTIFIC RePorTS | (2018)8 : 14685 | DOI:10.1038/s41598-018-33008-7

Intervention choice and biomarker change analysis.  To understand whether specific interventions 
were associated with changes in specific biomarkers, proportions of participants with an improving biomarker 
over time were calculated after stratifying by whether a given intervention was chosen. Statistical significance 
of these proportions was tested using a Chi-square test, with p-values calculated by Monte Carlo simulation. 
This process was performed for vitamin D and LDL across the 10 most frequently chosen interventions, with 
“improvement” defined as an increase of any magnitude in vitamin D or a decrease in LDL. Those participants 
who did not choose any intervention were included in the group not choosing each intervention. To increase the 
available sample size, the entire population (not just those out-of-range) was used in this analysis.

Data Availability
The full set of biomarker change correlations has been made available in the Supplementary Information files. 
Specific components of the raw dataset are available upon reasonable request from the corresponding author.
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