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Phenotyping of immune cell subsets in clinical trials is limited to well-defined phenotypes,

due to technological limitations of reporting flow cytometry multi-dimensional

phenotyping data. We developed a multi-dimensional phenotyping analysis tool and

applied it to detect nitric oxide (NO) levels in peripheral blood immune cells before

and after adjuvant ipilimumab co-administration with a peptide vaccine in melanoma

patients. We analyzed inhibitory and stimulatory markers for immune cell phenotypes

that were felt to be important in the NO analysis. The pipeline allows visualization of

immune cell phenotypes without knowledge of clustering techniques and to categorize

cells by association with relapse-free survival (RFS). Using this analysis, we uncovered

the potential for a dichotomous role of NO as a pro- and anti-melanoma factor. NO

was found in subsets of immune-suppressor cells associated with shorter-term (≤1

year) RFS, whereas NO was also present in immune-stimulatory effector cells obtained

from patients with significant longer-term (>1 year) RFS. These studies provide insights

into the cell-specific immunomodulatory role of NO. The methods presented herein can

be applied to monitor the pro- and anti-tumor effects of a variety of immune-based

therapeutics in cancer patients.

Clinical Trial Registration Number: NCT00084656 (https://clinicaltrials.gov/ct2/

show/NCT00084656).
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INTRODUCTION

Monoclonal antibodies against cytotoxic T-lymphocyte-
associated antigen 4 (CTLA-4), ipilimumab, and programmed
cell death protein 1 (PD-1), pembrolizumab and nivolumab, are
approved for patients with advanced melanoma (1). However,
response rates for ipilumumab and nivolumab in melanoma
patients are 11-22% and 31-44%, respectively (2, 3). Both types
of checkpoint blockade are now Food and Drug Administration-
approved for patients who have undergone surgery for metastatic
melanoma, although it is unclear which patients require
adjuvant therapy and which would benefit from waiting to start
checkpoint blockade until at least one melanoma metastasis is
visible on traditional imaging. Therefore, tools are needed to
assess how effective the therapies are likely to be in different
clinical scenarios.

Peripheral blood contains many types of immune cells that
can be monitored and demonstrate change with therapy. High-
dimensional flow cytometry phenotyping can be performed and
analyzed via clustering algorithms including SPADE (Spanning-
tree Progression Analysis of Density-normalized Events), t-
SNE (t-Distributed Stochastic Neighbor Embedding), and viSNE
(visualization tool for t-SNE) (4–6). However, the outputs of
these algorithms require manual curation based on marker
expression for individual cells. To overcome this limitation,
we phenotyped patient samples prior to and after adjuvant
ipilimumab with a peptide vaccine treatment and developed a
tool called the Multi-Dimensional Phenotyping Analysis Tool in
R (MPATR) to analyze associations between cell phenotypes and
relapse-free survival (RFS). A multi-dimensional flow cytometry
panel was developed to assess the algorithm and test the pro- and
anti-tumor associations of nitric oxide (NO) levels in immune-
suppressive or stimulatory peripheral blood immune cells. NO
levels were measured in a broad range of immune cell subsets
as NO and its metabolites have been shown to be elevated
in immune suppressor cells derived from patients receiving
anti-CTLA-4 therapy (7, 8). While NO has traditionally been
associated with immune-suppressive activity in clinical studies,
we have recently described the evidence for NO-meditated pro-
and anti-tumor function via the activity of myeloid-derived
suppressor cells (MDSCs), dendritic cells (DCs), cytotoxic T cells,
and natural killer (NK) cells (9). The phenotyping tool described
herein allowed for the analyses of high dimensional phenotyping
data of immune cells associated with different levels of NO. This
analysis is readily applicable to clinical trials by allowing for
efficient unsupervised organization of distinct cell phenotypes.

MATERIALS AND METHODS

Patient Samples
Seventy-nine cryopreserved PBMC samples from patients with
resected stage IIIc/IVmelanomawere provided byMoffitt Cancer
Center. Patients were treated with ipilimumab (3-10 mg/kg every
6-8 weeks for 12 months) and 3 separate subcutaneous vaccine
injections, as previously described in the clinical trial publication
(10). The current analyses used matched samples from 35 of
these patients that were taken before and about 13 weeks

after ipilimumab treatment initiation, 9 unmatched samples that
were collected from melanoma patients before immunotherapy,
and 7 PBMC samples that were isolated from normal/healthy
individuals. The clinical responses (RFS and overall survival)
of these patients were recorded in the primary clinical trial
study (10). Collection and handling of all human biological
samples were conducted by following the “good clinical practice”
(GCP) guidelines.

Flow Cytometric Analysis of Peripheral
Blood Samples
PBMCs were obtained from the blood samples by ficoll density-
gradient centrifugation. Patient samples were available from
leukapheresis specimens collected at the time of the clinical
trial. Frozen PBMCs were used in this retrospective study. Two
flow cytometry panels were constructed: myeloid and lymphoid.
PBMCs were stained with the antibodies, after proper titration to
obtain an optimal signal-to-noise ratio (myeloid panel: DAF-FM
[NO marker; Fisher, Hampton, MA], HLA-DR-PE-Cy7, CD33-
APC, CD11b-BV421, CD14-BUV395, CD15-BV510, and CD11c-
PE [BD Biosciences, San Jose, CA]; lymphoid panel: DAF-
FM, along with CD3-BUV395, CD8-BV510, CD11c-PE, CD56-
BV421 [BD Biosciences] and CD4-AF700, CD19-PE-Dazzle,
CD25-PE-Cy7, CD127-APC [Biolegend, San Diego, CA]). All
the antibodies, fluorochromes and controls for the secondary
panel including IFNγ, PD-L1, CTLA4, Arginase 1, FoxP3, TCR-ζ,
and CD69 to measure immunosuppressive/immunostimulatory
properties of the cells are presented in the supplement
(Figures S1–S4, Table S1). Dead cells were excluded with
Zombie NIR (BioLegend) staining. Data acquisition (100,000
live events) was performed by using an LSRII flow cytometer
or FACSymphony (BD Biosciences) and immunophenotypic
analysis by FCS Express 6 software (De Novo Software,
Pasadena, CA). The gates for each phenotype determined by
the unsupervised clustering were utilized to demonstrate the
cell populations in the FCS Express visualization application.
Positive and negative gates for each antibody were set with
fluorescence-minus-one and antibody isotype controls. Rainbow
fluorescent particles (BD Biosciences) were also used to calibrate
the cytometer correctly between all runs, and flow cytometric
compensation beads (Fisher) were used to establish robust
compensation matrices.

Measurement of pSTAT1
Frozen PBMCs were thawed in a water bath at 37◦C, washed
to remove the freezing media, and allowed to rest overnight
in complete media at 5% CO2 at 37◦C. Stimulation with IFNα

was accomplished by replacing the resting media with fresh
media containing various concentrations of IFNα and incubating
for 15min. The live/dead marker Zombie NIR (Biolegend, San
Diego, CA) was used prior to permeabilization to prevent
inappropriate uptake of the dye. After live/dead staining and
wash, the samples were permeabilized using the FIX PERM cell
permabilization kit methanol modification (Fisher, Hampton,
MA). In short, the cells were fixed and preserved while stored
at −20◦C for a minimum of 2 h then permeabilized for pSTAT1
staining phospho-STAT1 AF4888 (BD Biosciences, San Jose,
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CA) was applied while the cells were being permeabilized for
1 h at room temperature. Samples were read on an LSR II
flow cytometer, and 100,000 live cell events were recorded.
Controls included: flow cytometric compensation beads (Fisher)
to establish robust compensation matrices, fluorescence-minus-
one controls to set negative and positive gates, and isotype
controls for patient variations.

Analyses
Nine pre-treatment only and 35 matched pre-/post-adjuvant
ipilimumab and vaccine treatment PBMC samples from patients
with resected stage IIIc/IVmelanoma were available for statistical
analyses. Another 7 PBMC samples from individuals without
disease were also collected and used as a “normal” quality control
population in each run. In total, there were 44 pre-treatment
samples, 35 post-treatment samples, and 7 normal samples. The
output from the first step of the clustering analysis (SPADE)
created 200 nodes for the 2 different flow cytometry panels
(lymphoid, myeloid). A second clustering analysis generated 200
nodes (cell populations) in which the FSC and SSC areas were
used as additional clustering parameters to sort cells based on
size and granularity. FCS Express 6 was utilized to visualize
the phenotypes. After all the analyses were complete, the flow
cytometry files were re-analyzed to see if the clustering algorithm
can place all the cells in the same nodes (Figure S5). This second
step serves as a quality control measure and allows for the
possibility of the user to superimpose future experiments onto
an existing tree which was not needed in the analyses presented
in this paper. The resulting cell populations were normalized by
the total number of cells per sample and analyzed in log2 scale
before application to parametric tests. Combat, a de-batching
method, was performed to remove potential experimental batch
effects and was followed by visual confirmation using a principal
component analysis. To identify which populations (nodes)
were associated with RFS, 2 sets of analyses were performed:
Cox proportional-hazard model (Cox regression) and Wilcoxon
rank sum test. Cox regression was performed to evaluate cell
populations associated with RFS. RFS was defined as the time
from study enrollment to time of relapse and was censored at
the last clinic appointment. Wilcoxon rank sum test was the
second analysis. Principal Component Analysis (PCA) was used
to analyze the results (11, 12). Partial Least Squares Projection
to Latent Structures (PLS) model was calculated using the cell
count in each node as variables and the RFS as a response
variable (13). Cross-validation was used to estimate the number
of PLS components (14). The weight vector (W1) was used for
depicting the importance for each node (15). The progression
status for each patient was based on a clinically relevant empirical
definition (≤1 year RFS vs. >1 year RFS). We investigated
whether either pre-treatment level, post-treatment level, or the
level of change of each cell population differed between patients
with disease relapse and those without. To identify whether
therapy alone alters percentages of immune cells in the peripheral
blood, the Wilcoxon rank sum test was used. Statistical analyses
were performed in the program Rstudio (16). The output was
utilized as a score to determine which nodes were associated with
RFS suitable for downstream analysis. The same analyses were

performed for the datasets obtained using FSC and SSC in the
clustering algorithm.

RESULTS

Patients with resected stage III/IV melanoma were treated with
ipilimumab plus a peptide vaccine (10). Pre- and post-treatment
peripheral blood mononuclear cells (PBMCs) drawn at week
13 of treatment were available for analysis (9 patients had
pre-treatment samples only, 35 patients had both pre- and
post-treatment samples; Table S2) (10). As a control for this
patient population, we measured interferon response protein
STAT1 phosphorylation levels. As previously shown in the
literature, pSTAT1 levels were higher in melanoma patients
with longer-term RFS (Figure S6, p = 0.001, Wilcoxon rank
sum test) (17). High-dimensional flow cytometry analyses of
patient PBMC samples were performed using lymphoid and
myeloid panels that used DAF-FM as the NO stain (Lymphoid
panel: DAF-FM, CD3, CD4, CD8, CD25, CD127, CD56, CD19,
and CD11c; Myeloid panel: DAF-FM, HLA-DR, CD33, CD11b,
CD14, CD15, and CD11c; Table S1). Additional panels were
constructed without DAF-FM but included IFNγ, PD-L1, CTLA-
4, Arginase 1, FoxP3 for bothmyeloid/lymphoid panels and TCR-
ζ/CD69 in the lymphoid panel (Table S1). Cells were stained,
fixed in 1% paraformaldehyde, and analyzed on an LSR II flow
cytometer (100,000 live events) using standard gates, isotype
control antibodies, and compensation beads to establish criteria
for positive staining and compensation controls. The 488 nm
Blue laser was reserved for DAF-FM, due to its extreme signal
intensity, thus necessitating that the remaining antibodies use
all other available lasers (405 nm Violet, 640 nm Red, 561 nm
Yellow/Green, 355 nm Ultraviolet).

MPATR Algorithm
Nine lymphoid and 7 myeloid markers with and without the
addition of scatter properties of the cells (forward scatter [FSC]
and side scatter [SSC] areas) from the flow cytometry panels
were used in the MPATR algorithm to delineate the phenotypes
of specific cell populations. In the first step, the different
phenotypes of cells were clustered using the SPADE algorithm,
as shown by the SPADE trees generated from a representative
PBMC sample (Figure 1A). The second step was to visualize the
clustering in a user-friendly way, as ascertaining the phenotypes
via traditional clustering analysis is time consuming. Violin plots
were constructed with positive/negative cut-off lines for each
node marker (cell phenotype) in patient samples. The MPATR
application can display the violin plots (arcsinh transformation)
either of each node (cell phenotype) for all the patient samples or
of each patient sample (i.e., PBMC) for all the nodes (Figure 1B,).
Alternate use of red and blue colors were utilized to distinguish
the patient samples in case of “by Node” analysis. This is effective
while scrolling through a large data set. The dotted red and blue
lines denote 95 and 99% cut-offs for negative controls. In the
negative controls, either 5 or 1% of the events are above this value,
respectively. In addition, the application can scale the violin plots
to the number of events in the node/sample (Figure S7). Each
row is labeled by the node/sample number and the number of

Frontiers in Immunology | www.frontiersin.org 3 February 2020 | Volume 11 | Article 164

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Garg et al. Role of NO in Melanoma

FIGURE 1 | The development and integration of the Multi-Dimensional Phenotype Analysis Tool in R (MPATR) algorithm, using patient samples. (A) Phenotypic

clustering by SPADE algorithm is the first step of MPATR to phenotype the cells for nitric oxide. The heirachical phenotypic tree illustrates node specific expression of

an individual markers (red = high expression; blue = low expression), and number of events in a node of a representative PBMC sample. (B) The second step was to

visualize the clustering in a user-friendly way by using violin plots that were constructed with positive/negative cut-offs from a sample for each of the markers. The red

and blue color denotes alternate patient/node in “by node” (phenotype) and “by sample” panel, respectively. Alternate colors are utilized to facilitate visualization.

Positive/negative cutoff was demonstrated by blue and red dotted lines (99 and 95% confidence intervals), respectively. The area underneath the curve of the violin

plots represents number of events for the marker. Each row is labeled by the node/sample number and the number of events in that node/sample. (C) Schematic of

the third step of MPATR illustrating the dimension reduction. In this step, the number of events within each node is placed on a worksheet to facilitate downstream

statistical analysis. Each node is associated with a number of events for each sample. With an associated survival time, statistical analysis may be performed.

(D) Flowchart demonstrating all the major steps of MAPTR algorithm to associate phenotypes with outcome (RFS).

events in that node/sample in parenthesis (Figure 1B). The third
step is to perform phenotype dimension reduction (Figure 1C).
This process associates the number of events (cells) with each
node (phenotype) to be used in downstream statistical analyses.
MPATR provides the number of events per node in a summary
table. This output was compiled into a “.csv” file compatible
with excel that the user can visualize a table of columns (nodes)
vs. rows (patient samples). In another column the outcome
variable (RFS) was placed and facilitated statistical analysis. After
this phenotype dimension reduction step, in which the multi-
parameter flow cytometry stain is reduced to the number of
events in a node for a particular sample, statistical analyses
were used to determine which nodes were associated with
RFS (Figure 1D). The visualization tool allows the user to

quickly ascertain the phenotype using traditional flow cytometry
software such as FCS Express. Nodes found in the statistical
analyses were visualized using FCS Express 6, in which the
fluorescence values were obtained from the violin plots and used
for gating (Figures 2A, 3A).

Delineation of the Role of NO Using the
MPATR Algorithm
Four analyses were performed to determine which cell types
associated with NO may contribute to the effect of adjuvant
ipilimumab treatment: (1) pre-treatment nodes associated with
RFS (continuous analysis:Cox Proportional Hazards, COX.1 or
stratified by RFS > 1 year: Wilcoxon, Wilc.1), (2) post-treatment
nodes associated with RFS (continuous analysis: COX.2 or
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FIGURE 2 | Integration of MPATR output for lymphoid markers and delineation of cellular subsets associated with relapse-free survival (RFS) or treatment effects.

(A) Unsupervised gating using the cut-offs for each marker generated from the MPATR violin plots (as shown for node 42) to delineate cellular subsets not easily found

in bivariate plots. (B) Cox.1 analysis: Density plots of CD19+CD25−/lo B cells (node 86 = CD19+CD25−/loDAF-FM−/lo or+/lo, hazard ratio = 1.777, p = 0.034) from

representative short and long RFS samples prior to ipilimumab treatment. (C) Wilc.1 analysis: Representative density plots of CD3+CD8+ effector T cells

(Continued)
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FIGURE 2 | (node 155 = CD3+CD8+CD25−/loDAF-FM+, RFS ≤ 1 year, mean = −8.666, SD = 0.694; RFS > 1 year, mean = −8.066, SD = 0.956, p = 0.035) at

the pre-treatment stage from pateints with short and long RFS. (D) Cox.2 analysis: Naïve or memory CD8+ T cells (node 53 = CD3+CD8+CD127+/loDAF-FM+;

hazard ratio = 2.787, p = 0.047) displayed from both RFS group post ipilimumab treatment. (E) Wilc.2 analysis: Density plots of CD8+ naïve or memory T-cell subset

(node 150 = CD3+CD8+CD127+or+/loCD25−/loDAF-FM+, RFS ≤ 1 year, mean = −6.979, SD = 0.583; RFS > 1 year, mean = −7.421, SD = 0.577, p = 0.037) from

patient samples post treatment. (F) Wilc.3 analysis: A subset of regulatory T cells (node 159 = CD3+CD4+CD127−/loCD25+DAF-FM+, mean = −0.325, p = 0.029)

demonstrating a downward trend after treatment without any association with RFS. (G) Cox.4 analysis: Representative density plots of CD11c+ natural killer cells

(node 42 = CD56+/loCD11c+CD25−/loDAF-FM+, hazard ratio = 1.659, p = 0.018) showing inverse trends from samples of short and long term RFS in reponse to

ipilimumab treatment. (H) Wilc. 4 analysis subset of rare CD4 CD8 double negative T cells (node 185 = CD3+ CD127+or+/loCD25−/loDAF-FM+, RFS ≤ 1 year, median

= 0.510; RFS > 1 year, median = −0.084, p = 0.041) increased after treatment in a subset of short-term RFS patients and decreased in the majority of long-term

RFS patients.

stratified by RFS > 1 year: Wilc.2), (3) pre-treatment nodes that
changed after treatment but were not required to be associated
with RFS (Wilc.3), and (4) the number of events in a node
that changed from pre-treatment to post-treatment that were
associated with RFS (continuous analysis: COX.4 or stratified
by RFS > 1 year: Wilc.4). The output was utilized as a score
to determine which nodes were associated with RFS suitable
for downstream analysis. In the discussion that follows, the
traditional analyses are described, in which only the phenotypic
markers are used for the clustering, in addition to the analyses
that included the scatter properties of the cells (FSC and SSC) in
the clustering tree.

After the preliminary analysis where all 200 nodes for each
analysis (800 total for lymphoid and myeloid with/without
FSC/SSC) were analyzed for phenotypes related to RFS in
an unsupervised manner, all phenotypes with a p < 0.05
for each of the analyses were plotted in FCS Express for
visualization purposes using batch techniques. As shown in
Figures 2B,C, examples of relationships included: increases in
the population of cells in melanoma patients prior to treatment
with either decreased RFS (B cells without NO; node 86
= CD19+CD25−/loDAF-FM−/lo or+/lo; Figure 2B) or increased
RFS (Effector T cells; node 155 = CD3+CD8+CD25−/loDAF-
FM+), respectively (Figure 2C). A subset of CD8 naïve or
memory T cells with moderate levels of NO (node 53 =

CD3+CD8+CD127+/loDAF-FM+) were found to be more
prevalent in the short-term RFS samples post treatment
(Figure 2D). A comparable T cell population (node 150
= CD3+CD8+CD127+or+/loCD25−/loDAF-FM+) reproduced
similar trends (Figure 2E). Interestingly, there were changes in
the number of immune cell subsets that were not associated
with RFS. For example, A subset of regulatory T cells (node
159 = CD3+CD4+CD127−/loCD25+DAF-FM+) with a low-
to-intermediate NO level presented a relative downward trend
after treatment without any association with RFS (Figure 2F).
Lastly, we also observed examples where changes in the
numbers of immune cells with therapy were associated with
RFS. An example of this type of population are NK cells
(node 42 = CD56+/loCD11c+CD25−/loDAF-FM+) with an
intermediate level of NO. Patients with shorter RFS had increased
numbers of NK cells in comparison to long-term samples
after treatment (Figure 2G). A similar trend was also noticed
for a rare subset of CD4− CD8− T cells (node185 = CD3+

CD127+or+/loCD25−/loDAF-FM+; Figure 2H). The tables for all
the phenotypes with the associated statistics for the clustering of
lymphoid cells is found in Tables S3, S4 (FSC/SSC clustering).

Next, we delinated the cellular subsets of myeloid
cells that were associated with RFS post ipilimumab
treatment (Figure 3). Relationships included were, increased
number of developing monocytes (node 14 = HLA-
DR+CD33−/lo or+/loCD11b+CD11c+ CD14−/loDAF-FM+)
characterized by the low expression of CD33 and CD14
with moderate levels of NO pre-treatment in patients with
short RFS (Figure 3B). Similarly, mature monocytes (node
167 = HLA-DR+CD33+CD11b+CD11c+CD14+DAF-
FM+) with a moderate NO expression were found in
increased numbers pre-treatment among patients with RFS
≤ 1 year (Figure 3C). Dendritic cells (node 108 = HLA-
DR+/loCD33−/lo or+/loCD11b+CD11c+DAF-FM+) with
intermediate levels of NO increased overall with treatment
and were not associated with RFS (Figure 3D). Monocytes
(node 167 expressing CD14 have decrease in NO in short RFS
patients and increase in NO in long RFS patients (Figure 3E).
In cells of monocytic lineage expressing less CD14 (node 78 =

HLA-DR+CD33+CD11b+CD11c+CD14+/loDAF-FM+/lo) the
difference in NO expression (post-pre) is greater in patients
with shorter RFS (Figure 3F). The phenotypes found in the
unsupervised analysis are presented for the myeloid nodes
[Tables S5, S6 (FSC/SSC)]. A schema for the levels of NO found
in the various clinically relevant cell subsets is presented in
Figure S8A. All the cell types found in this analysis are illustrated
in Figure S8B. There are also cell types that the change in
numbers may be associated with treatment but not associated
with changes in RFS (e.g., Tregs; Figure S8C).

Categories of nodes that were not studied further included
the inability to visually discern the difference between responders
and non-responders from the flow plots and nodes that contained
less than a maximum of ∼200 cells. Addition of FSC/SSC to the
analysis did reveal additional nodes associated with RFS. Cell
subsets such as myeloid-derived suppressor-like cells (MDSC-
like) and Tregs associated with RFS were delineated in the
FSC/SSC clustering analysis that clusters on size and granularity
of the cells (Node 196 and 2, respectively). The resulting immune
cell phenotypes associated with RFS may be split into four
categories based upon the RFS characteristics for each node.
Each node is divided into two groups (strata). A phenotype
(node) from a particular patient is placed in the strata having
greater than the median number of events for the population
(all trial patients) or is placed in the strata having less than
or equal to the number of events in the entire population for
the node. Once these individual cell events are placed into
these two groups, Kaplan Meier plots describe each group as a
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FIGURE 3 | Integration of the MPATR output for the myeloid markers and delineation of cellular subsets associated with relapse-free survival (RFS) or treatment

effects. (A) Unsupervised gating performed through the use of the myeloid marker median fluorescence intensity measurements generated from MPATR violin plots

(as shown for node 167; mature monocytes) to delineate populations that were not easily seen within bivariate plots. (B) Cox.1 analysis: Representative density plots

of a population of developing monocytes (node 14 = HLA-DR+CD33−/lo or+/loCD11b+CD11c+ CD14−/loDAF-FM+, hazard ratio = 3.592, p = 0.013) at pre-treatment

stage of short and long term RFS samples. (C) Wilc.1 analysis: Mature monocytes that are CD33+CD14+ (node 167 = HLA-DR+CD33+CD11b+CD11c+CD14+

DAF-FM+; RFS ≤ 1 year, mean = −8.394, SD = 1.168; RFS > 1 year, mean = −9.340, SD = 1.125; p = 0.028) analyzed at pre-treatment stage in both short and

long RFS samples. (D) Wilc.3 analysis: Density plots of dendritic cells (node 108 = HLA-DR+/loCD33−/lo or+/loCD11b+CD11c+

(Continued)

Frontiers in Immunology | www.frontiersin.org 7 February 2020 | Volume 11 | Article 164

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Garg et al. Role of NO in Melanoma

FIGURE 3 | DAF-FM+, mean = 0.370, p = 0.022) before and after ipilimumab treatment from representative short and long RFS samples. (E) Cox.4 analysis: A

subset of mature monocytes (node 167 = HLA-DR+CD33+CD11b+CD11c+CD14+DAF-FM+; hazard ratio = 0.488, p = 0.021) were analyzed at both stages of

treatment from short and long term RFS samples. (F) Wilc.4 analysis: Whereas, another subset of mature monocytes (node 78 = HLA-DR+CD33+CD11b+CD11c+

CD14+/loDAF-FM+/lo; RFS ≤ 1 year, median = −1.289), (RFS > 1 year, median = −0.243; p = 0.037) demonstrated a unique trend of NO expression at post

ipilimumab therapy with samples of long RFS.

function of relapse free survival. This analysis is done to explore
which phenotypes may be useful as predictive biomarkers in
future studies. First, there may be a cut-off that can be utilized
for potential biomarkers (Node 42–NK cells positive for DAF-
FM, Figure 4A and Node 78–Monocytic cells positive/low for
DAF-FM, Figure 4B). NK cells positive for NO are associated
with increased RFS. Monocytic cells positive or low for nitric
oxide are associated with increased RFS but the magnitude of
the effect appears to be less than for the NK cell population.
Second, the variables (# of events in a node) is continuous such
that the immune cell phenotype present may be indicative of
biology but may not be useful for exact cut-off biomarkers (Node
196 FSC/SSC–MDSC-like cells positive for DAF-FM, Figure 4C;
Node 155–Effector T cell positive for DAF-FM, Figure 4D).
Increased numbers of MDSC staining positive for NO are
associated with decreased RFS whereas increased numbers of
Effector T cells positive for NO are associated with increased
RFS. A third category is when the Kaplan Meier curves separate
after a certain period of time, or a group of patients appear to
derive long term benefit (>2 years). Phenotypes in this category
include Node 185–CD4−CD8− αβ T cells positive for DAF-FM
(Figure 4E), node 2 FSC/SSC–Treg negative/low for DAF-FM
(Figure 4F) and node 53–CD8 naïve/memory T cells positive
for DAF-FM (Figure 4G). Immature αβ T cells are associated
with decreased RFS whereas this one Treg population may
be associated with increased RFS. A fourth category includes
cell phenotypes (nodes) that were associated with RFS with a
continuous variable (# events/node) but the survival curves did
not demonstrate a difference in RFS (Node 86–B lymphocytes
with negative or very low levels of DAF-FM found prior to
therapy, Figure 4H). In general, effector cells with higher levels
of NO appear to be associated with increased RFS, whereas
suppressor cells associated with higher NO and likely increased
NO expression levels with treatment appear to be associated with
decreased RFS.

A subset of seven samples pre and post treatment (4/RFS >

1,000 days, and 3/RFS < 365) were analyzed to investigate the
immunostimulatory/inhibitory markers on these cells other than
NO found within specific nodes. Consistent with the literature,
NK cell, αβ T cells both express CD3ζ. Whereas, CD4+ and
CD8+ memory T cells express CD69 (Figure S9). NK cells also
express CD3ζ and lower levels of CD69 (Figure S10). In a Treg
population that had decreased levels of NO after treatment
TCRζ also decreased in expression (Figure S11). Myeloid subsets
such as MDSC and DCs exhibited decreased Arginase 1 with
treatment in patients with long RFS (Figure S12). PD-L1 was
found on the surface of dendritic cells in a patient that had
poor RFS (Figure S13). In mature monocytes, PD-L1 levels
minimally increase pre/post treatment, but NO levels increased
after treatment in patients with long RFS (Figures S14A–C).

Higher NO levels pre-treatment were associated with poor RFS
and no subsequent changes with therapy in either Arginase 1 or
PD-L1 (Figures S14D–F).

The MPATR approach was extremely useful to assess the role
of NO by each individual phenotype (node) and to have the
ability to superimpose new samples onto an existing clustering
tree (Figure S5). To assess the immune populations as a whole
and to investigative how NO is associated with RFS, we utilized
PCA and PLS models (18). Robust PCA models were identified
for the samples collected prior to therapy and for a post-pre set
of lymphoid nodes (Figures S15, S16).

Detailed description of nodes associated with PCA analysis
were tabulated in Tables S7A–D. The PLS model was utilized to
associate the linear combination of these principal components
associated with good overall survival and robust models were
identified for pre and post data sets (Figures S17, S18). In
these models, NO prior to therapy was associated with cells
that can manifest a NO burst responsible for tumor control
(i.e., effector T cells), but NO in inhibitory cell types or
persistent NO stimulation is associated with worse prognosis
(Figures S15–S18) as is also shown in Figure 4. Description of
nodes associated with PLS models tabulated in Tables S8A–D.
The classical thinking that NO merely serves an inhibitory role
in melanoma needs to take into account the role of NO in
eliminating foreign cells (e.g. bacteria) in the immune response
as is found in the classical infectious disease literature (19, 20).

DISCUSSION

Clustering analyses were performed to identify the pro- and
anti-tumor activities of NO in patients undergoing ipilimumab
therapy. Multiple clustering programs are available that allow
visualization of clustering and the ability to cluster across
publically available databases (21–24). The MPATR pipeline
approach grants the user the ability to cluster, visualize specific
cellular subsets across patient populations in an easy-to-
use interface (violin plots and data matrix output), and to
superimpose new samples onto existing clustering analyses.
All of these items together are not available via available
current clustering or visualization algorithms, such as CCAST,
Citrus, tSNE, and viSNE, Cytobank, Cytosplore, and Immport-
Galaxy (21–28).

The generation of violin plots as PDFs for each node permits
the unsupervised gates to be plotted in flow cytometry analysis
software such as FCS Express 6. As an example, in this study,
rare phenotypes such as a subset of CD8+ NK cells (Table S4,
FSC/SSC node 117) and CD4−CD8− αβ T cells (Table S3, nodes
185 and 36) were easily found in an unsupervised manner
(29, 30). In addition, MPATR’s “dimension reduction” summary
table output provides a quantitative construct of relative node
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FIGURE 4 | Kaplan Meier survival curves illustrating types of relationships between immune cell subsets and relapse free survival. Each node is divided into two

groups or strata. A node from a particular patient is placed in the strata having greater than the median number of events for the population (all trial patients) or is

placed in the strata having less than or equal to the number of events in the entire population for the node. Once these individual cell events are placed into these two

groups, Kaplan Meier plots describe each group as a function of relapse free survival. (strata = ≤ median number of events/node, >median number of events/node).

Discussion of these different groups can be found in results. (A,B) Utilization of the number of immune cells as a cut-off for predicting response. (A) Node 42

(Continued)
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FIGURE 4 | Lymphoid–NK cells (post-pre). (B) Node 78 Myeloid–Monocytes (post-pre). (C,D) Number of immune cells known to be associated with biology but may

not be useful as a biological cut-off without additional information. (C) Node 196 Myeloid FSC/SSC–MDSC (post-pre). (D) Node 155 Lymphoid–Effector T cells (pre).

(E,F) The survival curves separate after a prolonged period of time. (E) Node 185 Lymphoid–αβ T cells (post-pre). (F) Node 2 Lymphoid FSC/SSC–Tregs (post-pre).

(G) The survival curves merge after a prolonged period of time indicating that relapse may be prolonged in these patients [Node 53 Lymphoid–CD8 memory/naïve T

cells (post)]. (H) The survival curves show no difference, but there is a difference in the continuous variable (non-dichotomized) that may necessitate a different cut-off

value for biomarker determination [Node 86 Lymphoid–B Lymphocytes (pre)].

density and allows the user to troubleshoot the data by finding
batch effects and examining file integrity of the flow cytometry
files for immunologists and physician scientists. Mathematical
properties of the clustering results in either truncating zeros
or nodes with extremely high values. Although identification
of specific issues must be performed by those experienced
with the relevant techniques, MPATR allows immunologists and
physician scientists to determine whether there is an issue with
their dataset (truncation of data and inappropriate compensation
matrix applied to the data), prompting them to obtain advice if
needed. The MPATR method was used in the current study to
analyze the distribution of NO in immune cell subsets obtained
from patients undergoing adjuvant ipilimumab therapy.

Even though NO has been classically associated with
aggressive melanoma growth, NO can show both pro- and anti-
tumor effects in a concentration- and context-dependent manner
(9, 31–34). For instance, suppression of T cells by MDSC was
found to be dependent on the MDSC’s NO content (9, 35). We
have recently reported that MDSC-produced NO can interfere in
the cancer cell antigen presentation from DCs to T cells via the
Jak-STAT pathway (36). On the other hand, NO production may
also serve macrophage-mediated control of melanoma tumors
(9, 37, 38) and plays a vital role in the regulation of T-cell
functions, their differentiation, and cell death (39). In our studies,
we have observed different levels of NO in a wide variety of
immune cells that are associated with increased or decreased
RFS, depending on cell type. For instance, CD8+ NK cells and
monocytes positive for DAF-FM staining were associated with
anti-tumor activities at either pre-treatment or post-treatment
stages. The numbers of effector T cells as a group changed
with therapy but were not associated with RFS. However, as
demonstrated in Figure 2C (lymphoid node 155) there was one
subset of effector T cells associated with RFS. Levels of TCR-ζ
were increased in effector T cells with increased RFS (Figure S9)
consistent with the literature that downregulation of the TCR-ζ
is associated with immune escape (40). CD69+CD8+ memory T
cells generated beforemelanoma inoculation play a critical role in
tumor surveilance (41). Whereas in the late phase of an immune
response, depletion of CD69 levels in CD4T cells resulted in
reduced production of high-affinity antibodies and long-lived
plasma cells in bone marrow (42). CD69+ memory CD8+ and
CD4+ T cells were found in PBMC populations analyzed from
patients with long RFS (>1,000 days) prior to and after therapy,
respectively (Figure S9). On the other hand, intermediate levels
of NO in B cells, double-negative αβ T cells, CD8+ naïve or
memory T cells, MDSCs, immature monocytes, and DCs were
pro-tumor in nature and associated with short-term RFS.

Another class of immune cells that have had contradictory
reports as to whether they correlate with ipilimumab efficacy are
Tregs (43–47). More recently, depletion of Tregs was found to

be important in CD8+ T-cell-inflamed tumors (48). In addition,
other recent studies have demonstrated overall decreases in
Tregs after ipilimumab treatment, but there is significant overlap
between the 2 groups (49). We identified 2 different Treg subsets
by employing our automated phenotyping algorithm MPATR:
one with a moderate NO (lymphoid node 159) level and the other
one with a low/negative NO level (node 2 FSC/SSC lymphoid).
The moderate NO population changed after treatment, yet no
correlation with response was shown. In contrast, the small
subset of Tregs with low/negative NO levels were associated
with longer term RFS after 2 years. This population of
CD3+CD4+CD25+CD127neg/low was confirmed to be FOXP3+

Tregs by flow cytometry in a subset of 14 samples (Figure S11,
Table S9). Thus, by employing the MPATR algorithm with DAF-
FM as an additional marker, we were able to identify a dichotomy
between the two distinct Treg subsets in regards to how their
NO levels correlated with RFS. Similarly, attempts have been
made to evaluate the biomarker potential of Teff, yielding no
conclusive results to date (2, 49, 50). UsingMPATR, we found one
node of Teff cells with intermediate levels of NO are associated
with increased RFS (lymphoid node 155), whereas Teff with
low/negative NO level (lymphoid node 107) that had changed
following treatment did not show any association with RFS.
Interestingly, recent studies have demonstrated the importance
of memory and NK cells in high-dimensional analysis, but the
numbers overlapped between responders and non-responders
(26). In this study, NK cells were associated with increased RFS,
but NK subsets were also found that have no such relationship
(Table S3). Chronic stimulation of NK cells is known to cause
increased expression of stimulatory markers such as CD69 with
decreased NK cell activity (Figure S10) (51). We also found
evidence NK cells with elevated DAF-FM, CD69, and TCR-ζ in
a PBMC sample with poor RFS (<1 year; Figure S10).

As expected, we found that B cells associated with response
have low levels of NO. It is possible that they may be serving a
regulatory role, even though they do not express high levels of
CD25 (52).

TheMPATR algorithm also demonstrated a similar dichotomy
in the role of NO for myeloid cells. Traditionally, monocytic
accumulation in the tumor and blood has been associated
with decreased survival (53–55). More recently, peripheral
blood monocyte levels have been found to overlap between
responders and non-responders in stage IV melanoma patients
(56). In our studies we also saw this overlap, but levels of
NO may distinguish different cell populations (Figure S8A).
For instance, monocytes with negative or low levels of NO
(myeloid FSC/SSC node 185) were only associated with treatment
changes, whereas monocytes with intermediate levels of NO
(myeloid node 78) were associated with increased RFS. It
was recently described via a high dimensional mass cytometry
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screen that CD14+HLA-DR+ monocytes are associated with
improved overall survival to anti-PD1 immunotherapy (57).
Levels of nitric oxide has the potential to identify those
patients with high monocyte counts and poor response
to therapy.

Lastly, MDSCs are immature myeloid cells that function to
inhibit other immune cells, such as lymphoid cell populations
(58). MDSC have a wide range of phenotypes but are known to
be HLADRneg/low, CD33neg/low/+ depending on level of maturity
but there is still ongoing research as to how to fully characterize
these cells (59–61). Interestingly, cells with the MDSC phenotype
were found in a distinct node when we also clustered on the
size and granularity of the cells. Treatment with ipilimumab
has been shown to decrease a subset of MDSC (monocytic)
and increase CD8 memory T cells (49). In our studies, MDSC
followed this trend of increasing in patients who had shorter-
term RFS. Interestingly, theMDSC populations were easily found
when FSC and SSC were taken into account by the clustering
algorithm. Post treatment reduction of myeloid Arginase 1 levels
association with long RFS (Figure S12) is consistent with the
long held belief that increased Arginase 1 and elevated NO levels
contributes to cancer immune escape (61–63).

In summary, this paper has two major conclusions. First,
MPATR is a method that can be used by physician scientists
and translational immunologists to profile phenotypes among
immune cell populations. The MPATR pipeline is the first
major step toward moving these methods into the hands of
the general immunology community. The primary purpose of
this method in the current form is to facilitate correlative
studies for immune based therapies in clinical trials. For the
first time we present a graphical user interface for analyzing
flow cytometry data that was designed by a physician scientist
specifically for use in analyzing correlative data from clinical
trials. The user of these methods must still be mindful of issues
such as overfitting and reduced signal-to-noise ratio for nodes
that have minimal cell events. Second, and more importantly
for the current audience, we applied the MPATR pipeline to a
set of samples derived from patients undergoing anti-CTLA-4
adjuvant therapy. In doing so we observed that effector cells
of the immune system with elevated levels of NO may be
beneficial for long relapse-free-survival whereas NO production
by suppressor cells of NO may be deliterious for relapse-free
survival. As with any analysis of this type, this is the first
step and we plan to validate these findings in the future in
additional clinical specimens. The same type of analysis may be
performed on other patient datasets to decipher the immune
cell milieu of both the peripheral blood and, potentially, also
the tumor microenvironment. We believe that the approach
to the analysis, which has revealed trends demonstrating the
dichotomy of NO associated with pro-/anti-tumor effects to
immune-based therapy, is relevant to the translational medicine
community at large and may be readily applied to clinical trials
by allowing for efficient unsupervised organization of immune
cell phenotypes.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available upon
reasonable request to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Scientific Review Committee Moffitt Cancer
Center, USF-IRB deemed the research non-human subjects
research as the samples were de-identified prior to this endeavor.
The patients signed consent for trial for exploratory immune
experiments. Written informed consent for participation was not
required for this study in accordance with the national legislation
and the institutional requirements.

AUTHOR CONTRIBUTIONS

SG, MO, AGMM, AWM, AA, and JM participated in the
designing and/or interpretation of the reported experiments or
results and participated in the acquisition and/or analysis of
data. YC, AB, JJM, and JM provided administrative, technical,
or supervisory support. YC, BC, and BS were responsible for
the statistical analysis. JM and JK designed the flow cytometry
panels. JM designed the algorithm and with help from ZC and
AB implemented it in R. All authors participated in revising
the manuscript.

FUNDING

JM receives support from the Donald A. Adam Comprehensive
Melanoma Research Center at Moffitt Cancer Center and
is an Assistant Professor in the USF Morsani College of
Medicine Department of Oncologic Sciences. The research was
supported in part by the National Cancer Institute, part of
the National Institutes of Health, under grant number P50
CA168536, Moffitt Skin Cancer SPORE Career Enhancement
Project, and the Institutional Research Grant number 17-173-
22 from the American Cancer Society and Dr. Miriam and
Sheldon G. Adelson Medical Research Foundation to JJM. This
work has been supported in part by the Flow Cytometry Core
at the H. Lee Moffitt Cancer Center & Research Institute, a
comprehensive cancer center designated by the National Cancer
Institute (P30-CA076292).

ACKNOWLEDGMENTS

Sonya J. Smyk, Moffitt Cancer Center, provided editorial support.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2020.00164/full#supplementary-material

Frontiers in Immunology | www.frontiersin.org 11 February 2020 | Volume 11 | Article 164

https://www.frontiersin.org/articles/10.3389/fimmu.2020.00164/full#supplementary-material
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Garg et al. Role of NO in Melanoma

REFERENCES

1. Sharma P, Allison JP. The future of immune checkpoint therapy. Science.

(2015) 348:56-61. doi: 10.1126/science.aaa8172

2. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven

biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev

Cancer. (2016) 16:275-87. doi: 10.1038/nrc.2016.36

3. Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab

or monotherapy in untreated melanoma. N Engl J Med. (2015) 373:1270-

1. doi: 10.1056/NEJMc1509660

4. Ge Y, Sealfon SC. flowPeaks: a fast unsupervised clustering for flow cytometry

data via K-means and density peak finding. Bioinformatics. (2012) 28:2052-

8. doi: 10.1093/bioinformatics/bts300

5. Amir el ED, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC,

et al. viSNE enables visualization of high dimensional single-cell data and

reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. (2013) 31:545-

52. doi: 10.1038/nbt.2594

6. Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV, Linderman MD,

et al. Extracting a cellular hierarchy from high-dimensional cytometry

data with SPADE. Nat Biotechnol. (2011) 29:886-91. doi: 10.1038/

nbt.1991

7. Gebhardt C, Sevko A, Jiang H, Lichtenberger R, Reith M, Tarnanidis K, et al.

Myeloid cells and related chronic inflammatory factors as novel predictive

markers in melanoma treatment with ipilimumab. Clin Cancer Res. (2015)

21:5453-9. doi: 10.1158/1078-0432.CCR-15-0676

8. Umansky V, Utikal J, Gebhardt C. Predictive immune markers in advanced

melanoma patients treated with ipilimumab. Oncoimmunology. (2016)

5:e1158901. doi: 10.1080/2162402X.2016.1158901

9. Yarlagadda K, Hassani J, Foote IP, Markowitz J. The role

of nitric oxide in melanoma, Biochim Biophys Acta. (2017)

1868:500-9. doi: 10.1016/j.bbcan.2017.09.005

10. Sarnaik AA, Yu B, Yu D, Morelli D, Hall M, Bogle D, et al. Extended

dose ipilimumab with a peptide vaccine: immune correlates associated

with clinical benefit in patients with resected high-risk stage IIIc/IV

melanoma. Clin Cancer Res. (2011) 17:896-906. doi: 10.1158/1078-0432.CCR-

10-2463

11. Joliffe IT, Morgan BJ. Principal component analysis and

exploratory factor analysis. Stat Methods Med Res. (1992)

1:69-95. doi: 10.1177/096228029200100105

12. Bro R, Smilde AK. Principal component analysis. Anal Methods. (2014)

6:2812-31. doi: 10.1039/C3AY41907J

13. Wold S, Ruhe A, Wold H, Dunn WJ III. The collinearity problem in

linear regression. The partial least squares (PLS) approach to generalized

inverses. SIAM J Sci Statist Comput. (1984) 5:735-43. doi: 10.1137/09

05052

14. Wold S. Cross-validatory estimation of the number of components in

factor and principal components models. Technometrics. (1978) 20:397-

405. doi: 10.1080/00401706.1978.10489693

15. Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J

Chemomet. (2002) 16:119-28. doi: 10.1002/cem.695

16. Team R. Rstudio: integrated development for R. Boston, MA (2015).

17. Simons DL, Lee G, Kirkwood JM, Lee PP. Interferon signaling patterns

in peripheral blood lymphocytes may predict clinical outcome after high-

dose interferon therapy in melanoma patients. J Transl Med. (2011)

9:52. doi: 10.1186/1479-5876-9-52

18. Kaczorowski KJ, Shekhar K, Nkulikiyimfura D, Dekker CL, Maecker H, Davis

MM, et al. Continuous immunotypes describe human immune variation

and predict diverse responses, Proc Natl Acad Sci USA. (2017) 114:E6097-

106. doi: 10.1073/pnas.1705065114

19. Hibbs JB Jr. Infection and nitric oxide. J Infect Dis. (2002) 185(Suppl. 1):S9-

17. doi: 10.1086/338005

20. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in

inflammatory diseases. Inflammopharmacology. (2007) 15:252-

9. doi: 10.1007/s10787-007-0013-x

21. Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen

J, et al. ImmPort, toward repurposing of open access immunological

assay data for translational and clinical research. Sci Data. (2018)

5:180015. doi: 10.1038/sdata.2018.15

22. Holt T, Pezzotti N, van Unen V, Koning F, Esiemann E, Lelieveldt B,

et al. Cytosplore: Intereactive Immune Cell Phenotyping for Large Single-

Cell Datasets. Comput Graph Forum. (2016) 35:171-80. doi: 10.1111/cgf.

12893

23. Kotecha N, Krutzik PO, Irish JM. Web-based analysis and publication

of flow cytometry experiments. Curr Protoc Cytom. (2010) 10:10.17.1–

24. doi: 10.1002/0471142956.cy1017s53

24. Shekhar K, Brodin P, Davis MM, Chakraborty AK. Automatic classification

of cellular expression by nonlinear stochastic embedding (ACCENSE).

Proc Natl Acad Sci USA. (2014) 111:202-7. doi: 10.1073/pnas.13214

05111

25. Anchang B, Hart TD, Bendall SC, Qiu P, Bjornson Z, Linderman M, et al.

Visualization and cellular hierarchy inference of single-cell data using SPADE.

Nat Protoc. (2016) 11:1264-79. doi: 10.1038/nprot.2016.066

26. Subrahmanyam PB, Dong Z, Gusenleitner D, Giobbie-Hurder A, Severgnini

M, Zhou J, et al. Distinct predictive biomarker candidates for response to anti-

CTLA-4 and anti-PD-1 immunotherapy in melanoma patients. J Immunother

Cancer. (2018) 6:18. doi: 10.1186/s40425-018-0328-8

27. Anchang B, Do MT, Zhao X, Plevritis SK. CCAST: a model-

based gating strategy to isolate homogeneous subpopulations in a

heterogeneous population of single cells. PLoS Comput Biol. (2014)

10:e1003664. doi: 10.1371/journal.pcbi.1003664

28. Qiu P. Toward deterministic and semiautomated SPADE analysis. Cytometry

A. (2017) 91:281-9. doi: 10.1002/cyto.a.23068

29. Ohkawa T, Seki S, Dobashi H, Koike Y, Habu Y, Ami K, et al. Systematic

characterization of human CD8+ T cells with natural killer cell markers in

comparison with natural killer cells and normal CD8+ T cells. Immunology.

(2001) 103:281-90. doi: 10.1046/j.1365-2567.2001.01248.x

30. Fischer K, Voelkl S, Heymann J, Przybylski GK, Mondal K, Laumer M, et al.

Isolation and characterization of human antigen-specific TCR alpha beta+

CD4(-)CD8- double-negative regulatory T cells. Blood. (2005) 105:2828-

35. doi: 10.1182/blood-2004-07-2583

31. Grimm EA, Sikora AG, Ekmekcioglu S. Molecular pathways: inflammation-

associated nitric-oxide production as a cancer-supporting redox mechanism

and a potential therapeutic target. Clin Cancer Res. (2013) 19:5557-

63. doi: 10.1158/1078-0432.CCR-12-1554

32. Sikora AG, Gelbard A, Davies MA, Sano D, Ekmekcioglu S, Kwon J, et al.

Targeted inhibition of inducible nitric oxide synthase inhibits growth of

humanmelanoma in vivo and synergizes with chemotherapy. Clin Cancer Res.

(2010) 16:1834-44. doi: 10.1158/1078-0432.CCR-09-3123

33. Thomas DD,Wink DA. NOS2 as an emergent player in progression of cancer.

Antioxid Redox Signal. (2017) 26:963-5. doi: 10.1089/ars.2016.6835

34. Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol.

(2015) 6:334-43. doi: 10.1016/j.redox.2015.08.009

35. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, et al.

Myeloid suppressor lines inhibit T cell responses by an NO-dependent

mechanism. J Immunol. (2002) 168:689-95. doi: 10.4049/jimmunol.168.2.689

36. Markowitz J, Wang J, Vangundy Z, You J, Yildiz V, Yu L, et al. Nitric

oxide mediated inhibition of antigen presentation from DCs to CD4(+)

T cells in cancer and measurement of STAT1 nitration. Sci Rep. (2017)

7:15424. doi: 10.1038/s41598-017-14970-0

37. Abe K, Harada M, Tamada K, Ito O, Li T, Nomoto K. Early-appearing

tumor-infiltrating natural killer cells play an important role in the

nitric oxide production of tumor-associated macrophages through their

interferon production. Cancer Immunol Immunother. (1998) 45:225-

33. doi: 10.1007/s002620050437

38. Tendler DS, Bao C, Wang T, Huang EL, Ratovitski EA, Pardoll DA, et al.

Intersection of interferon and hypoxia signal transduction pathways in nitric

oxide-induced tumor apoptosis. Cancer Res. (2001) 61:3682-8.

39. Niedbala W, Cai B, Liew FY. Role of nitric oxide in the

regulation of T cell functions. Ann Rheum Dis. (2006) 65(Suppl.

3):iii37-40. doi: 10.1136/ard.2006.058446

40. Baniyash M. TCR zeta-chain downregulation: curtailing an

excessive inflammatory immune response. Nat Rev Immunol. (2004)

4:675-87. doi: 10.1038/nri1434

41. Park SL, Buzzai A, Rautela J, Hor JL, Hochheiser K, Effern M, et al. Tissue-

resident memory CD8(+) T cells promote melanoma-immune equilibrium in

skin. Nature. (2019) 565:366-71. doi: 10.1038/s41586-018-0812-9

Frontiers in Immunology | www.frontiersin.org 12 February 2020 | Volume 11 | Article 164

https://doi.org/10.1126/science.aaa8172
https://doi.org/10.1038/nrc.2016.36
https://doi.org/10.1056/NEJMc1509660
https://doi.org/10.1093/bioinformatics/bts300
https://doi.org/10.1038/nbt.2594
https://doi.org/10.1038/nbt.1991
https://doi.org/10.1158/1078-0432.CCR-15-0676
https://doi.org/10.1080/2162402X.2016.1158901
https://doi.org/10.1016/j.bbcan.2017.09.005
https://doi.org/10.1158/1078-0432.CCR-10-2463
https://doi.org/10.1177/096228029200100105
https://doi.org/10.1039/C3AY41907J
https://doi.org/10.1137/0905052
https://doi.org/10.1080/00401706.1978.10489693
https://doi.org/10.1002/cem.695
https://doi.org/10.1186/1479-5876-9-52
https://doi.org/10.1073/pnas.1705065114
https://doi.org/10.1086/338005
https://doi.org/10.1007/s10787-007-0013-x
https://doi.org/10.1038/sdata.2018.15
https://doi.org/10.1111/cgf.12893
https://doi.org/10.1002/0471142956.cy1017s53
https://doi.org/10.1073/pnas.1321405111
https://doi.org/10.1038/nprot.2016.066
https://doi.org/10.1186/s40425-018-0328-8
https://doi.org/10.1371/journal.pcbi.1003664
https://doi.org/10.1002/cyto.a.23068
https://doi.org/10.1046/j.1365-2567.2001.01248.x
https://doi.org/10.1182/blood-2004-07-2583
https://doi.org/10.1158/1078-0432.CCR-12-1554
https://doi.org/10.1158/1078-0432.CCR-09-3123
https://doi.org/10.1089/ars.2016.6835
https://doi.org/10.1016/j.redox.2015.08.009
https://doi.org/10.4049/jimmunol.168.2.689
https://doi.org/10.1038/s41598-017-14970-0
https://doi.org/10.1007/s002620050437
https://doi.org/10.1136/ard.2006.058446
https://doi.org/10.1038/nri1434
https://doi.org/10.1038/s41586-018-0812-9
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Garg et al. Role of NO in Melanoma

42. Shinoda K, Tokoyoda K, Hanazawa A, Hayashizaki K, Zehentmeier S,

Hosokawa H, et al. Type II membrane protein CD69 regulates the formation

of resting T-helper memory. Proc Natl Acad Sci USA. (2012) 109:7409-

14. doi: 10.1073/pnas.1118539109

43. Simeone E, Gentilcore G, Giannarelli D, Grimaldi AM, Caraco C, Curvietto

M, et al. Immunological and biological changes during ipilimumab treatment

and their potential correlation with clinical response and survival in patients

with advanced melanoma. Cancer Immunol Immunother. (2014) 63:675-

83. doi: 10.1007/s00262-014-1545-8

44. Sojka DK,Huang YH, Fowell DJ.Mechanisms of regulatory T-cell suppression

- a diverse arsenal for a moving target. Immunology. (2008) 124:13-

22. doi: 10.1111/j.1365-2567.2008.02813.x

45. Weber JS, Hamid O, Chasalow SD, Wu DY, Parker SM, Galbraith S,

et al. Ipilimumab increases activated T cells and enhances humoral

immunity in patients with advanced melanoma. J Immunother. (2012) 35:89-

97. doi: 10.1097/CJI.0b013e31823aa41c

46. Tarhini AA, Edington H, Butterfield LH, Lin Y, Shuai Y, Tawbi H, et al.

Immune monitoring of the circulation and the tumor microenvironment

in patients with regionally advanced melanoma receiving neoadjuvant

ipilimumab. PLoS ONE. (2014) 9:e87705. doi: 10.1371/journal.pone.0087705

47. Weide B, Di Giacomo AM, Fonsatti E, Zitvogel L. Immunologic correlates

in the course of treatment with immunomodulating antibodies. Semin Oncol.

(2015) 42:448-58. doi: 10.1053/j.seminoncol.2015.02.016

48. Arce Vargas F, Furness AJS, Litchfield K, Joshi K, Rosenthal

R, Ghorani E, et al. Fc effector function contributes to the

activity of human Anti-CTLA-4 antibodies. Cancer Cell. (2018)

33:649-63.e644. doi: 10.1016/j.ccell.2018.02.010

49. de Coana YP, Wolodarski M, Poschke I, Yoshimoto Y, Yang Y, Nystrom M,

et al. Ipilimumab treatment decreases monocytic MDSCs and increases CD8

effector memory T cells in long-term survivors with advanced melanoma.

Oncotarget. (2017) 8:21539-53. doi: 10.18632/oncotarget.15368

50. Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A, et al.

Immunologic and clinical effects of antibody blockade of cytotoxic T

lymphocyte-associated antigen 4 in previously vaccinated cancer patients.

Proc Natl Acad Sci USA. (2008) 105:3005-10. doi: 10.1073/pnas.0712237105

51. Elpek KG, Rubinstein MP, Bellemare-Pelletier A, Goldrath AW, Turley

SJ. Mature natural killer cells with phenotypic and functional alterations

accumulate upon sustained stimulation with IL-15/IL-15Ralpha complexes.

Proc Natl Acad Sci USA. (2010) 107:21647-52. doi: 10.1073/pnas.1012128107

52. Kessel A, Haj T, Peri R, Snir A, Melamed D, Sabo E, et al. Human

CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+)

T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells.

Autoimmun Rev. (2012) 11:670-7. doi: 10.1016/j.autrev.2011.11.018

53. Bouwhuis MG, ten Hagen TL, Eggermont AM. Immunologic

functions as prognostic indicators in melanoma. Mol Oncol. (2011)

5:183-9. doi: 10.1016/j.molonc.2011.01.004

54. Hillen F, Baeten CI, van de Winkel A, Creytens D, van der Schaft DW,

Winnepenninckx V, et al. Leukocyte infiltration and tumor cell plasticity

are parameters of aggressiveness in primary cutaneous melanoma. Cancer

Immunol Immunother. (2008) 57:97-106. doi: 10.1007/s00262-007-0353-9

55. Schmidt H, Bastholt L, Geertsen P, Christensen IJ, Larsen S, Gehl J, et al.

Elevated neutrophil and monocyte counts in peripheral blood are associated

with poor survival in patients with metastatic melanoma: a prognostic model.

Br J Cancer. (2005) 93:273-8. doi: 10.1038/sj.bjc.6602702

56. Gandini S, Ferrucci PF, Botteri E, Tosti G, Barberis M, Pala L, et al. Prognostic

significance of hematological profiles in melanoma patients. Int J Cancer.

(2016) 139:1618-25. doi: 10.1002/ijc.30215

57. Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM,

et al. High-dimensional single-cell analysis predicts response to anti-PD-1

immunotherapy. Nat Med. (2018) 24:144-53. doi: 10.1038/nm.4466

58. Parker KH, Beury DW, Ostrand-Rosenberg S. Myeloid-derived

suppressor cells: critical cells driving immune suppression in

the tumor microenvironment. Adv Cancer Res. (2015) 128:95-

139. doi: 10.1016/bs.acr.2015.04.002

59. Markowitz J, Brooks TR, Duggan MC, Paul BK, Pan X, Wei L, et al. Patients

with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived

suppressor cells upon progression of disease. Cancer Immunol Immunother.

(2015) 64:149-59. doi: 10.1007/s00262-014-1618-8

60. Santegoets SJAM, de Groot AF, Dijkgraaf EM, Simões AMC, van der Noord

VE, van Ham JJ, et al. The blood mMDSC to DC ratio is a sensitive and easy

to assess independent predictive factor for epithelial ovarian cancer survival.

Oncoimmunology. (2018) 7:e1465166. doi: 10.1080/2162402X.2018.14

65166

61. Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming

of age. Nat Immunol. (2018) 19:108-19. doi: 10.1038/s41590-017-0022-x

62. Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, et al. IL-

4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J

Immunol. (2003) 170:270-8. doi: 10.4049/jimmunol.170.1.270

63. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, et al.

Arginase I production in the tumor microenvironment by mature myeloid

cells inhibits T-cell receptor expression and antigen-specific T-cell responses.

Cancer Res. (2004) 64:5839-49. doi: 10.1158/0008-5472.CAN-04-0465

Conflict of Interest: Moffitt Cancer Center filed a provisional patent based

on the MPATR algorithm. Institutional grants (JM) that are not a conflict of

interest for this paper were received from Morphogenesis, Navigate BP, and

Jackson Laboratories. JM is on the data safety monitoring committee for NewLink

Genetics and is not a conflict for this paper. Clinic trials (JM) were sponsored

with support unrelated to the current study given to the institution by REATA

Pharmaceuticals, Idera pharmaceuticals, Morphogenesis Inc., Macrogenics Inc.,

and Merck.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Garg, Ott, Mostofa, Chen, Chen, Kroeger, Cao, Mailloux, Agrawal,

Schaible, Sarnaik, Weber, Berglund, Mulé and Markowitz. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Immunology | www.frontiersin.org 13 February 2020 | Volume 11 | Article 164

https://doi.org/10.1073/pnas.1118539109
https://doi.org/10.1007/s00262-014-1545-8
https://doi.org/10.1111/j.1365-2567.2008.02813.x
https://doi.org/10.1097/CJI.0b013e31823aa41c
https://doi.org/10.1371/journal.pone.0087705
https://doi.org/10.1053/j.seminoncol.2015.02.016
https://doi.org/10.1016/j.ccell.2018.02.010
https://doi.org/10.18632/oncotarget.15368
https://doi.org/10.1073/pnas.0712237105
https://doi.org/10.1073/pnas.1012128107
https://doi.org/10.1016/j.autrev.2011.11.018
https://doi.org/10.1016/j.molonc.2011.01.004
https://doi.org/10.1007/s00262-007-0353-9
https://doi.org/10.1038/sj.bjc.6602702
https://doi.org/10.1002/ijc.30215
https://doi.org/10.1038/nm.4466
https://doi.org/10.1016/bs.acr.2015.04.002
https://doi.org/10.1007/s00262-014-1618-8
https://doi.org/10.1080/2162402X.2018.1465166
https://doi.org/10.1038/s41590-017-0022-x
https://doi.org/10.4049/jimmunol.170.1.270
https://doi.org/10.1158/0008-5472.CAN-04-0465
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	Multi-Dimensional Flow Cytometry Analyses Reveal a Dichotomous Role for Nitric Oxide in Melanoma Patients Receiving Immunotherapy
	Introduction
	Materials and Methods
	Patient Samples
	Flow Cytometric Analysis of Peripheral Blood Samples
	Measurement of pSTAT1
	Analyses

	Results
	MPATR Algorithm
	Delineation of the Role of NO Using the MPATR Algorithm

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


