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Abstract

Methamphetamine (METH) is an illicit toxic psychostimulant which is widely abused. Its toxic effects depend on the release of
excessive levels of dopamine (DA) that activates striatal DA receptors. Inhibition of DA-mediated neurotransmission by the DA
D1 receptor antagonist, SCH23390, protects against METH-induced neuronal apoptosis. The initial purpose of the present
study was to investigate, using microarray analyses, the influence of SCH23390 on transcriptional responses in the rat striatum
caused by a single METH injection at 2 and 4 hours after drug administration. We identified 545 out of a total of 22,227 genes
as METH-responsive. These include genes which are involved in apoptotic pathways, endoplasmic reticulum (ER) stress, and in
transcription regulation, among others. Of these, a total of 172 genes showed SCH23390-induced inhibition of METH-
mediated changes. Among these SCH23390-responsive genes were several genes that are regulated during ER stress, namely
ATF3, HSP27, Hmox1, HSP40, and CHOP/Gadd153. The secondary goal of the study was to investigate the role of DA D1
receptor stimulation on the expression of genes that participate in ER stress-mediated molecular events. We thus used
quantitative PCR to confirm changes in the METH-responsive ER genes identified by the microarray analyses. We also
measured the expression of these genes and of ATF4, ATF6, BiP/GRP78, and of GADD34 over a more extended time course.
SCH23390 attenuated or blocked METH-induced increases in the expression of the majority of these genes. Western blot
analysis revealed METH-induced increases in the expression of the antioxidant protein, Hmox1, which lasted for about
24 hours after the METH injection. Additionally, METH caused DA D1 receptor-dependent transit of the Hmox1 regulator
protein, Nrf2, from cytosolic into nuclear fractions where the protein exerts its regulatory functions. When taken together,
these findings indicate that SCH23390 can provide protection against neuronal apoptosis by inhibiting METH-mediated DA D1
receptor-mediated ER stress in the rat striatum. Our data also suggest that METH-induced toxicity might be a useful model to
dissect molecular mechanisms involved in ER stress-dependent events in the rodent brain.
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Introduction

Methamphetamine (METH) abuse is a complex neuropsychi-

atric disorder that affects a significant number of adolescents and

adults worldwide. METH addicts often use large quantities of the

drug [1,2] and can suffer for drug-induced psychosis, withdrawal-

associated depression, coma and/or death after taking accidental

overdoses [3]. Neuroimaging studies have also revealed a number

of abnormalities in the brains of these patients. These include loss

of striatal dopamine (DA) transporters and of serotonin transport-

ers [4,5] and evidence of reactive microgliosis [6]. Previous post-

mortem studies are in agreement with some of those results [7].

Moreover, METH can cause degeneration of monoaminergic

systems and neuronal apoptosis in various brain regions including

the rodent striatum [8–10]. METH-induced cell death is

dependent, in part, on activation of endoplasmic reticulum (ER)-

dependent death pathways [11].

The ER is an intracellular organelle which is involved in diverse

arrays of cellular functions. The ER is very densely packed with

enzymes that are involved in quality control of protein synthesis

and post-translational modification including folding of proteins

[12,13]. Malfunctions in these processes result in misfolded and/or

unfolded proteins that can accumulate in the ER, with consequent

activation of compensatory reactions such as the unfolded protein

response [14]. If these compensatory mechanisms fail to restore

cellular homeostasis, cell death ensues via activation of ER-

dependent apoptosis [15,16]. The signaling pathways that mediate

compensatory mechanisms and cell death during ER stress are

regulated by the ER-resident chaperone, BiP/GRP78 (Binding

Immunoglobulin Protein/Glucose Response Protein 78), which is

bound to three ER transmembrane sensor proteins, namely,

activating transcription factor 6 (ATF6), inositol requiring enzyme

1a (Ire1a), and protein kinase R-like ER kinase (PERK) [17].

During ER stress, BiP dissociates from these proteins and triggers a

PLoS ONE | www.plosone.org 1 June 2009 | Volume 4 | Issue 6 | e6092



series of events that lead to oligomerization of IRE1a [18] and of

PERK [19] as well as cleavage and translocation of ATF6a into

the nucleus [20]. Ire1a has site-specific endoribonuclease (RNase)

activity which splices and activates X-box Binding Protein-1

(XBP1) mRNA and leads to increased production of XBP1 protein

[18] which regulates the transcription of genes that participate in

the maintenance of protein folding and ER-associated degradation

(ERAD) [21]. PERK oligomerization leads to phosphorylation of

eukaryotic translation initiation factor 2a (eIF2a) and inhibition of

global translation [22], but increased activating transcription

factor 4 (ATF4) translation [23]. Periods of excessive ER stress also

cause ATF4-, ATF6, and XBP1-dependent up-regulation of the

pro-apoptotic transcription factor, C/EBP homologous protein

(CHOP) [24] which appears to mediate cell death, in part, by

causing up-regulation of pro-death members of Bcl-2 family

proteins such as BIM [25]. The accumulated evidence supports

the involvement of ER stress and related molecular events in

neurodegenerative events [26] including METH-induced neuro-

nal apoptosis [11].

The present study was therefore undertaken to document if

blockade of DA D1 receptor function might influence METH-

induced gene expression because of the evidence that the DA D1

receptor antagonist, SCH23390, can protect against METH

toxicity in the rat striatum [9,27]. Thus, the purpose of this paper

is to report that microarray and quantitative PCR analyses

detected METH-induced increases in the expression of activating

transcription factor 3 (ATF3), heat shock protein 27 (HSP27),

heme oxygenase 1 (Hmox1), heat shock protein 40 (HSP40),

CHOP, and BIP that are known ER stress-responsive genes. The

METH-induced changes were attenuated, to variable degrees, by

pretreatment with SCH23390. Western blot analysis also docu-

mented changes in Hmox1 and nuclear factor erythroid 2-related

factor 2 (Nrf2) proteins which are both involved in cellular

protective mechanisms. These results demonstrate that METH-

induced neurotoxicity occur, in part, through DA D1-mediated

and ER-dependent molecular events.

Results

METH- and SCH23390-induced differential gene
expression in the rat striatum

To identify METH-regulated genes, RNA samples from striata of

rats treated with saline, METH, SCH23390, or combination of these

drugs were subjected to microarray analysis using Rat Illumina

arrays which allow for query of 22,227 transcripts (see Tables S1 and

S2 in Supplemental data for the complete set of array data obtained

from animals euthanized at 2 and 4 hours after METH treatment,

respectively). Figure 1 shows the effects of SCH23390 on METH-

induced gene expression in the rat striatum. The Volcano plots in

figures 1A and 1B show that, in comparison to the control group,

METH caused changes in the expression of 300 and 316 genes at 2

and 4 hours, respectively, after injection of the drug. Because 71

genes were significantly changed at both time points, this left a

combined total of 545 genes that were identified as METH-

responsive at these times. Figures 1C and 1D show the Volcano

comparisons between the SCH23390 and the METH+SCH23390

groups at 2 and 4 hours, respectively. There were a total of 271 and

293 genes that were differentially expressed at those times. The Venn

diagram in Figure 1E reveals that the expression of 173 METH-

responsive genes was influenced by pre-treatment with SCH23390.

Table S3 in Supplemental data summarizes the fold-changes and the

functional classifications for these genes. The SCH23390-resistant

genes are listed in Table S4 in Supplemental data. The METH-

responsive genes participate in apoptotic pathways, control of cell

adhesion, regulation of cell cycle, ER stress, signal transduction, and

transcription regulation (see Tables S3 and S4 for more details).

Because METH has previously been shown to cause neuronal

apoptosis, in part, by activating the ER-dependent death pathway

[11] and because SCH23390 can protect against METH-induced

toxicity [9], we decided to focus more attention on the effects of

METH and SCH23390 on genes that are involved in responses to

ER stress. Table 1 shows a total of 27 ER-related genes that were

either induced (23) or downregulated (4) by the METH injection.

SCH23390 pretreatment caused inhibition of METH-induced

changes in 15 genes; these are listed in bold in the table. These

include Armet, ATF3, BiP, CHOP, Dnajb1 (DnaJ (Hsp40)

homolog, subfamily B, member 1), Hmox1, HSP27, among

others.

SCH23390 attenuates METH-induced activation of ATF6-
regulated gene expression

ER stress is associated with unfolded protein response activation

which is associated with the production of protective chaperones

and antioxidant enzymes [28]. However, excessive ER stress can

cause cellular demise via the activation of the ER-dependent

apoptotic pathway [16,24]. The activation of these protective and

pro-apoptotic genes is regulated by BiP interaction with ATF6,

IRE1a, and PERK [14,28]. ER stress interferes with these

interactions and leads to the activation of ER signaling pathways

[14,28]. Figure 2 shows the effects of METH on some genes that

are involved in the ATF6-dependent pathway [29]. ATF6 mRNA

was induced by METH in a DA D1 receptor-dependent fashion at

both 4 and 8 hours after drug administration (Fig. 2A). Consistent

with the array data, METH caused significant increases in BiP

mRNA, with the peak changes being observed at 2 hours and

normalization by 16 hours (Fig. 2B). SCH23390 was only able to

suppress the effects of METH at 8 hours post-drug. This is

consistent with the array data which did not identify BiP as a

SCH23390-sensitive gene at 2 and 4 hours. HSP27 mRNA also

showed marked biphasic DA D1 receptor-mediated increases after

the METH injection, reaching ,40-fold at 2 hours after METH,

decreasing to 5-fold at 4 hours and then reaching another smaller

peak at 8 hours after METH (Fig. 2F). Other genes that we tested,

namely ER degradation enhancer, mannosidase alpha-like 1

(EDEM1) (Fig. 2C), homocysteine-inducible, endoplasmic reticu-

lum stress-inducible, ubiquitin-like domain member 1 (Herpud1)

(Fig. 2D), and endoplasmic reticulum protein 72 (ERp72) (Fig. 2E),

show transient or no changes after the METH injection.

Specifically, there were no significant changes in EDEM1

expression in any of the treatment groups at any of the times

studied. There were, however, significant increases in Herpud1

mRNA in the striatum of animals sacrificed at 4 hours after the

METH injection; these increases were not significantly attenuated

by the SCH23390 pretreatment (Fig. 2D). In addition, the METH

injection caused DA D1 receptor-dependent increases in ERp72/

Pdia4 expression measured only at 8 hours after injection of the

psychostimulant.

Effects of METH and SCH23390 on XBP1-dependent gene
expression

The transcriptional activity of XBP1 is regulated by IRE1a-

dependent splicing of XBP1 mRNA and generation of active

XBP1 protein [18,30]. This is followed by increases in XBP1-

dependent increases in the expression of ERAD-related mRNAs

[21,31]. In order to determine if the drug causes activation of

IRE1a signaling, we measured XBP1 mRNA splicing at different

times after the METH injection. Figures 3A and 3B show that the

METH & DA D1-Linked ER Stress
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Figure 1. METH- and SCH23390-induced differential gene expression in the rat striatum. (A and B) Volcano plots showing the effects of
METH on striatal gene expression. Comparison of METH-treated rats to control rats revealed that METH caused changes in (A) 300 genes at 2 h after
the METH injection, of which 189 were induced and 111 were repressed, and (B) 316 genes at the 4 h time-point, of which 133 were induced and 183
were repressed. The Volcano plots showing the effects of SCH23390 pre-treatment on METH-induced striatal gene expression are shown in (C) and
(D). These comparisons revealed that these two groups show differences in the expression (C) of 271 genes at the 2 h time-point, the expression of
184 of which was inhibited and of 87 of which was potentiated by SCH23390 (D) of 293 genes at the 4 h time-point, the expression of 175 of which
was inhibited and of 118 of which was potentiated by SCH23390. (E) The Venn diagram shows the overlap of genes that are common between the
two different comparisons: M vs. C and M vs. M+S. Abbreviations are C, control; S, SCH23390; M, methamphetamine. To be identified as SCH23390-
responsive, the genes must have passed the following criteria: greater or less than 1.7-fold changes at p,0.05.The 173 METH-responsive genes that
were influenced by pre-treatment with SCH23390 are listed in Table S3 and the SCH23390-resistant genes are listed in Table S4.
doi:10.1371/journal.pone.0006092.g001
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METH injection resulted in increases in XBP1 splicing and XBP1

transcription at various times after the drug injection. The

METH-induced XBP1 mRNA splicing was inhibited by

SCH23390 pretreatment. However, METH-induced increases in

unspliced XBP1 mRNA were not significantly attenuated by the

SCH23390 pretreatment, suggesting that other METH-mediated

events, such as oxidative stress [1], might be responsible for these

changes. Quantification of three XBP1 target genes revealed that

METH administration is associated with increases in the anti-

death gene, defender against cell death 1 (Dad1) (Fig. 3C) [32]

which is a subunit of the mammalian oligosaccharyltransferase

[33–35]. The METH-induced changes were attenuated by

pretreatment with SCH23390. The expression of DnaJ (Hsp40)

homolog, subfamily C, member 3 (Dnajc3/p58IPK), a member of

the Hsp40 family of chaperones [36–38] which can control PERK

eIF2a kinase activity during ER stress [39] and protect the stressed

ER [40], was also induced by METH in a DA D1 receptor-

sensitive fashion (Fig. 3D). There were also significant DA D1

receptor-mediated increases in the expression of vascular endo-

thelial growth factor (VEGF) (Fig. 3E) which is a neuroprotective

factor [41,42] that protects against ER stress-dependent neurode-

generation [43].

METH-mediated induction of genes of the ER PERK-
dependent pathway

As mentioned above, ER stress is also associated with activation

of the PERK-dependent pathway [22,23,44]. Figure 4 shows the

effects of METH and of SCH23390 on the expression of 4 genes

that participate in the PERK-regulated pathway [45]. As shown in

Figs 4A and 4B, METH caused significant DA D1 receptor-

dependent increases in ATF4 protein which occurred as early as

2 hours after the METH injection. These results are consistent

with the fact that ER stress is known to induce early increases in

ATF4 translation [46]. Injection of SCH23390 significantly

prevented the METH-induced increases in ATF4 protein levels

(Fig. 4B). There were also METH-induced increases in ATF4

Table 1. METH administration causes changes in ER stress-related genes.

Accession No. Gene Symbol Time

2 h 2 h 4 h 4 h

M/C (M+S)/M M/C (M+S)/M

NM_012912 Atf3 166.534 223.355 2.325 21.959

NM_031970 Hspb1 (HSP27) 27.016 24.723 9.659 27.562

NM_012580 Hmox1 19.956 26.583 3.173 22.739

XM_341663 Dnajb1 p 8.458 22.552 2.597 22.141

NM_022934 Dnaja1 (HSP40) 2.975 21.659 2.262 22.052

XM_218543 Plekhf1 2.942 21.116 1.618 21.307

XM_215722 Dnajb4 p 2.829 21.448 2.092 21.504

NM_080906 Ddit4 (REDD1) 2.678 1.142 1.455 21.195

NM_024134 Ddit3 (CHOP, Gadd153) 2.557 21.340 2.301 22.483

XM_223680 Ahsa2 p 2.543 21.083 2.997 22.488

NM_053612 Hspb8 (HSP22) 2.378 21.671 1.889 21.712

NM_012935 Cryab 2.295 1.331 1.806 21.716

XM_233767 Dnajb5 p 2.003 21.715 2.016 22.049

NM_175761 Hspca (HSP90) 1.908 21.380 1.604 21.585

XM_217147 Dnaja4 1.862 21.490 1.647 21.651

NM_022522 Casp2 1.722 21.481 1.226 21.292

NM_031122 St13 1.550 21.083 1.767 21.773

NM_013083 Hspa5 (BIP, GRP78) 1.314 1.304 2.563 22.042

NM_053523 Herpud1 (Herp) 1.304 1.332 2.055 21.931

XM_236614 Armet p 1.061 1.396 2.063 21.882

NM_022232 Dnajc3 1.185 1.085 1.726 21.650

NM_001004210 Xbp1 1.154 1.207 1.723 21.608

NM_053849 Pdia4 21.141 1.460 1.781 21.765

XM_576401 Phldb1 21.200 21.222 21.944 1.226

NM_152790 Carhsp1 21.217 21.014 21.833 1.337

XM_234909 Plekhj1 21.430 21.040 22.060 1.695

XM_230610 Hspa12b p 23.243 2.005 21.233 1.155

The data in this table were generated from the comparisons between the METH and control groups at 2 and 4 h according to the criteria used in the analyses (greater
or less than 1.7-fold and p,0.01). The values represent fold changes between the specified groups (n = 6). The genes are listed in descending order according to the
METH-induced fold changes at the 2 h time point. The bolded genes are genes whose METH-induced expression was significantly inhibited by the SCH23390
pretreatment.
doi:10.1371/journal.pone.0006092.t001

METH & DA D1-Linked ER Stress

PLoS ONE | www.plosone.org 4 June 2009 | Volume 4 | Issue 6 | e6092



mRNA which occurred later than the changes in ATF4 protein,

with SCH23390 inhibiting these changes (Fig. 4C). As stated

above, ATF4 is a member of the ATF/CREB family of

transcription factors which is upregulated during ER stress

[46] and which controls the expression of ATF3 and CHOP

[47,48]. Consistent with the array, we observed that METH

caused substantial increases in ATF3 mRNA (Fig. 4D). These

increases were biphasic, reaching ,45-fold at 2 hours, down to

Figure 2. Effects of METH and SCH23390 on the expression of ATF6 and some ATF6-regulated genes. METH administration caused early
induction of (A) ATF6 (B) BiP and (F) Hspb1/HSP27 transcripts. The METH-induced changes in the expression of these genes were normalized by pre-
treatment of SCH-23390. (D, E) Herp/Herpud1 and ERp72/Pdia4 showed only transient changes at 4 h and 8 h respectively, after METH treatment
whereas (C) EDEM1 was not affected. Data were obtained from RNA isolated from six animals per group and determined individually. The levels of
mRNA were normalized to 18 s rRNA levels. Values represent means6SEM of fold changes relative to the controls. Statistical significance was
determined by ANOVA followed by protected least-squares difference (PLSD). Key to statistics: * = M vs. C; # = M vs. M+S; *, # p,0.05; **, ##
p,0.01; ***, ### p,0.001.
doi:10.1371/journal.pone.0006092.g002
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3-fold at 4 hours, and back up to 18-fold at 8 hours after the

METH injection. Expression of ATF3 protein was also induced

by METH in a DA D1 receptor-dependent fashion (Figs. 4E and

4F). The levels of CHOP/Gadd153 mRNA also showed

significant DA D1 receptor-sensitive METH-mediated increases

(Fig. 4G). The increases in CHOP expression are consistent with

previous results obtained in the striata of METH-treated mice

[11]. CHOP is known to participate in stress-induced apoptosis

and to regulate the expression of several genes including growth

arrest and DNA-damage-inducible 34 (GADD34) [49]. As

Figure 3. Effects of METH and of SCH23390 on XBP1 target genes. (A) Administration of METH caused splicing of XBP1 mRNA. XBP1 mRNA
fragments were amplified by RT-PCR and PCR fragments were separated on 2% agarose gel. Arrowhead indicates spliced XBP1 (479 bp). The
sequences of primers used to amplify the XBP1 transcripts are provided in Supplemental Table 1. (B) Levels of unspliced XBP1 mRNA were induced by
METH at 4 and 8 h after the drug injection. The induced XBP1 mRNA was not significantly inhibited by SCH23390 pretreatment. METH administration
also caused increases in the expression of the XBP1 target genes: (C) DAD1, (D) p58IPK, and (E) VEGFa. The METH-induced changes in these three
transcripts were attenuated by pretreatment with SCH23390. Statistical analyses and key to statistics are as described in Figure 2.
doi:10.1371/journal.pone.0006092.g003

METH & DA D1-Linked ER Stress
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Figure 4. SCH23390 pretreatment causes inhibition of METH-induced changes in ER PERK-dependent gene expression. (A, B) METH
caused significant DA D1 receptor-dependent increases in ATF4 protein. (C) METH-induced changes in the levels of ATF4 mRNA and their inhibition
by SCH23390. (D) Effects of METH caused on ATF3 mRNA; (E, F) ATF3 protein expression; (G, H) Effect of METH on the levels of CHOP/Gadd153 and
Gadd34 mRNA. Statistical analyses and key to statistics are as described in Figure 2.
doi:10.1371/journal.pone.0006092.g004
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observed in Fig. 4H, the levels of GADD34 mRNA, a protein

that dephosphorylates eIF2a [50], also showed substantial

METH-induced increases that are suppressed by SCH23390 in

a time-dependent fashion.

Figure 5 shows the effects of METH on Hmox1 which is an

important antioxidant enzyme which can be induced by a number

of pharmacological agents [51,52]. As per the microarray data,

METH caused significant SCH23390-sensitive increases in

Hmox1 mRNA which remained elevated up to 16 hours after

the drug injection (Fig. 5A). METH also caused marked DA D1

receptor-sensitive increases in Hmox1 protein expression which

lasted for about 24 hours (Figs. 5B and 5C).

Figure 5. Pre-treatment of SCH-23390 inhibits METH-induced changes in Hmox1 expression. (A) METH caused biphasic changes in
Hmox1 mRNA levels in rat striatum. (B, C) Western analyses also showed significant increases in the levels of Hmox1 protein. Pre-treatment of SCH-
23390 normalized Hmox1 expression in a time-dependent manner. Representative photomicrographs show results of three samples per time point of
METH and METH+SCH – treated rats and four samples per time point of control and SCH-treated rats are shown in (B). Abbreviations are as described
in Figure 1. (C) The quantitative data of western blot data represent means6SEM (n = 6). For quantification, the signal intensity was normalized over
the signal intensity of tubulin. Statistical analyses and key to statistics are as described in Figure 2.
doi:10.1371/journal.pone.0006092.g005

METH & DA D1-Linked ER Stress
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Because Hmox1 is regulated, during ER stress, via PERK-

mediated Nrf2 phosphorylation and its transit from the cytosol

into the nucleus [53–55], we also tested the possibility that METH

might cause changes in Nrf2 mRNA and protein levels. Figure 6A

shows that METH caused only transient DA D1 receptor-

dependent increases in Nrf2 mRNA levels. In contrast, the

METH injection was associated with decreases in the levels of

Nrf2 protein in the striatal cytosolic fractions and its prolonged

accumulation in the nuclear fractions (Figs. 6B–6E). The

quantitative data in Fig. 6C show that the levels of cytosolic

Nrf2 protein in the control group of animals remained relatively

constant while there were significant decreases in cytosolic Nrf2

levels in the SCH23390 and METH-treated rats. The changes in

METH-induced accumulation of Nrf2 protein in nuclear fractions

occurred in a biphasic fashion, with initial changes observed as

early as 2 hours after the drug but with some reversal towards

normalization by 8 hours. This was followed by another phase of

increases at 16 hours lasting up to 72 hours after the injection of

METH (Fig. 6E). The METH-induced increases in nuclear Nrf2

were significantly inhibited by SCH23390. However, there were

further decreases in cytosolic Nrf2 levels in the rats treated with

both METH and SCH23390, decreases that were significantly

different from those observed in the METH group (Fig. 6C).

These changes are not due to increased transit into the nucleus

since SCH3390 blocked the effects of METH on Nrf2 accumu-

lation in the nucleus (compare Figs. 6C and 6D). These

observations are consistent with the observation that SCH23390

caused decreases in cytosolic Nrf2 (Fig. 6C) without causing

increases in nuclear Nrf2 (Fig. 6E).

Discussion

The ER is an essential organelle which is responsible for post-

translational processing and proper folding of recently synthe-

sized proteins that participate in secretory pathways and are

membrane bound [12,13]. The ER can be stressed by

dysfunctions in calcium homeostasis, oxidative stress, and

improper protein folding [14,16]. These abnormalities trigger

ER stress-dependent events which consist of the production of

chaperone proteins that attempt to prevent cellular demise [14]

and/or activation of cell death cascades when ER stress is too

overwhelming [16,56]. In the present study, we have found that

the illicit neurotoxin, METH, can cause the activation of ER

stress-mediated gene expression. Our microarray analyses

identified several genes whose transcript levels were significantly

increased early after injection of the drug. METH administration

also caused significant activation of genes and proteins that are

downstream of the ATF6, IRE1alpha, and PERK ER signaling

pathways [14,16]. These include both protective and pro-death

transcripts. Quantitative PCR confirmed these changes and also

provided more detailed time courses for these changes. We also

found that METH-mediated activation of ER stress-dependent

events is dependent, in part, on the stimulation of DA D1

receptors that are very abundant in the rat striatum [57]. These

observations are consistent with reports that stimulation of D1

receptors by DA can cause death of neuroblastoma cells [58] and

of striatal neurons [59] in cultures.

Our findings that METH can cause ER stress in the rat striatum

are consistent with our prior observations that METH can cause

apoptosis of mouse striatal cells via cross-talks between ER- and

mitochondria-dependent death pathways [11]. Although we have

previously shown METH-induced increases in CHOP and BiP

expression in the mouse striatum [11], the present data provide a

more detailed picture of METH-responsive ER stress genes in the

rat striatum. As previously reported in the mouse striatum, METH

administration caused significant increases in the transcription of

CHOP which is known to be involved in pathways that lead to

neuronal apoptosis [60]. The present results also extend our

previous observations by showing that the increases in CHOP

expression are dependent on stimulation of striatal DA D1

receptors. The METH-induced increases in CHOP expression are

also preceded by significant increases in the levels of ATF4

protein, a member of the ATF/CREB class of transcription

factors, which is a regulator of CHOP expression during ER stress

[48]. During ER stress, activation of the PERK-dependent

pathway leads to phosphorylation of eIF2a [22,23,61]. Phosphor-

ylation of this protein leads to global inhibition of translation,

which results in the reduction of ER protein load. In addition,

eIF2a phosphorylation leads to increased translation of a number

of mRNAs [62], one of which is ATF4 [23,44,47]. Our

observations of METH-induced increases in the expression of

ATF4 protein and transcript are consistent with prior reports that

this transcription factor is induced under conditions of ER and

oxidative stresses [44,63]. The findings that METH caused

increases in ATF4 protein earlier than the changes in ATF4

mRNA levels are consistent with ER stress-induced increased

translation of ATF4 [23,47,50]. During ER stress, ATF4 also

regulates the expression of ATF3 [48] which is also increased after

METH administration in a DA D1 receptor-dependent fashion.

Of note, ATF3 is induced by an array of cellular stresses [64] and

by administration of the METH analog, amphetamine [65].

Interestingly, ATF3 is also thought to be an important player in

the integral stress response (ISR) [23]. It needs to be mentioned

that adenoviral over-expression of ATF3 in PC12 cells prevents c-

Jun-N-Terminal kinase (JNK)-dependent apoptosis via increased

expression of the chaperone, HSP27 [66]. This report is consistent

with our demonstration that HSP27 is significantly induced by

METH. When taken together, those observations suggest that

activation of the PERK-ATF4-ATF3 ER stress cascade might be,

in part, responsible for adaptive responses of striatal cells to

METH-induced oxidative stress and for counterbalancing the pro-

apoptotic effects of CHOP induction by the drug.

Our results also suggest that METH treatment can activate

IRE1a-dependent transduction mechanisms since the drug

induces DA D1 receptor-mediated XBP1 mRNA splicing, which

is mediated by IRE1a –associated RNase activity [18]. Several

targets have been identified for this transcription factor, among

which are Dad1, Dnajc3/p58IPK, and VEGF, all of which show

DA D1 receptor-dependent METH-induced upregulation (see

Fig. 3). The METH-induced increases in their expression suggest

that the injection of toxic doses of the drug is associated with the

triggering of protective mechanisms in an attempt to prevent

METH-induced neuronal apoptosis. This statement is supported

by the evidence that Dad1 is an inhibitor of apoptosis [67], whose

absence is associated with developmental abnormalities in Dad-1

null mice [68]. In addition, p58IPK, first identified as a 58-kDa

protein that inhibits PKR in influenza virus-infected kidney cells

[37], can complex with PKR and PERK and inhibit their

autophosphorylation [39] as well as protect the stressed ER [40].

Thus, the present observation of METH-induced Dnajc3/p58IPK

does suggest its participation in a coordinated response to

attenuate or prevent METH-mediated deleterious effects on the

ER in conjunction with VEGF which has been shown to protect

neurons against ischemia [41,69] glutamate toxicity [70] and ER

stress [43]. VEGF appears to exert its protective effects against

neuronal apoptosis, in part, by both caspase-dependent [71] and

caspase-independent [72] mechanisms. Although similar mecha-

nisms have been identified in METH-induced neuronal apoptosis
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Figure 6. METH treatment causes transit of Nrf2 from the cytoplasm to the nucleus in the rat striatum. (A) Effects of METH and
SCH23390 Nrf2 mRNA. METH administration causes the shuttling of Nrf2 protein from the cytosol (B) to the nucleus (D). The METH-induced increases
in nuclear Nrf2 protein was inhibited by SCH23390 pre-treatment. Nuclear and cytosolic fractions were separated as described in the Materials and
methods section. The fractions were obtained from individual samples of six animals per time-point. Representative photomicrographs show results
of three samples per time point of METH and METH+SCH2 treated rats and four samples per time point of control and SCH-treated rats. The
membranes were reprobed with a-tubulin antibody to confirm equal protein loading. Signal intensity was measured densitometrically with LabWorks
version 4.5 (BioImaging Systems analysis software, BioImaging System, UVP Inc., Upland, CA) and the quantitative data (C, E) are represented as
optical density of six animals per time-point (means6SEM). For quantification, the signal intensity was normalized over the signal intensity of tubulin.
Statistical significance was determined by ANOVA followed by protected least-squares difference (PLSD). Key to statistics: * = M vs. C; ‘ = S vs. C;
# = M vs. M+S. *, e, # p,0.05; **, ee, ## p,0.01; ***, eee, ### p,0.001.
doi:10.1371/journal.pone.0006092.g006
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[73], the potential role of VEGF against METH toxicity has yet to

be investigated.

Mammalian HSPs, which include HSP27, HSP40, and HSP70,

are molecular chaperones that participate in the proper folding of

proteins and help to maintain their native conformations during

stressful events [74–76]. HSPs also participate in the transfer of

improperly folded proteins to the proteasome for degradation.

HSPs are induced by heat shock, hypoxic and ischemic events, and

oxidative stress [74,75]. Recent studies have documented a role for

these proteins in neurodegenerative processes and have demon-

strated that HSPs are important in cellular protection against

aggregation-prone proteins and in animal models of neurodegen-

eration [77,78]. Thus, our demonstration of METH-induced

expression of the chaperones, Hsp27/Hspb1 [79] and BiP/Grp78

[80], suggests that striatal cells are able to mount adaptive

defensive HSP-modulated networks against the toxic effects of the

drug. This statement is consistent with the fact that a BiP inducer,

called BiP inducer X, was able to reduce the number of apoptotic

cells in the penumbra of ischemic strokes caused by occlusion of

the middle carotid artery of the mouse [81]. That contention is

further supported by reports that BiP can protect against ER

stress-induced cell death in several models of cellular demise

[82,83]. In addition to the HSP70 chaperones, HSP27 has been

shown to be a very potent neuroprotective agent. The chaperone

protects against cell death caused by alpha-synuclein in vitro [84],

as well as against kainate toxicity [85] and cerebral ischemia [86]

in vivo. HSP27 appears to exert its protective effects, in part, by

inhibiting caspase-dependent apoptotic pathways [87–89]. Be-

cause increased expression of HSP27 is observed in cells that

survive ischemic insults [90], it is not far-fetched to suggest that the

induction of these chaperones might occur in cells destined to

survive against METH-induced apoptosis. This assumption will

need to be demonstrated in future studies.

In addition to the HSPs, METH administration also caused

significant increases in the expression of Hmox1 which is a phase 2

enzyme that is induced by oxidative stress and cellular injury

[91,92]. Hmox1 catalyzes the rate-limiting step in heme

degradation and is involved in protecting cells against various

pathological insults including ischemic injuries and peroxide

toxicity [93,94]. We found that the METH injection caused

sustained increases in the levels of Hmox1 mRNA and protein in a

DA D1 receptor-regulated fashion. The observations that METH

causes oxidative stress [95] and that METH-induced toxicity can

be prevented by blocking the DA D1 receptor with SCH23390 [9]

suggest that METH might induce Hmox1 transcription via two

mechanisms, one mediated by generation of oxygen-based radicals

and another occurring via receptor stimulation since DA can cause

cell death by stimulation of DA D1 receptor [59,96]. Our findings

that METH can also cause shuttling of Nrf2 protein from cytosolic

to nuclear fractions are thus consistent with the published

literature indicating that the regulation of Hmox1 transcription

involves Nrf2 protein phosphorylation and its stabilization and

transit from the cytosol and accumulation into the nucleus

[53,54,97,98]. It is also of interest that the combined administra-

tion of the DA D1 antagonist, SCH23390, with METH, led to

further reduction of cytosolic Nrf2 levels without concomitant

increases in nuclear Nrf2. In fact, the pretreatment with

SCH23390 blocked the METH-induced nuclear accumulation

of Nrf2 (see Fig. 6). Also of note is the fact that SCH23390, given

alone, also caused reduction of cytosolic Nrf2 without increasing

nuclear Nrf2 (compare Figs. 6C and 6E). When taken together,

these observations suggest that blockade of DA neurotransmission

via D1 receptors might cause increases in proteasomal degradation

of Nrf2 [99]. Furthermore, the consistency of the data on

SCH23390-induced effects at all the time points examined

suggests potentially important roles for DA D1 receptors in the

regulation of ubiquitin-dependent proteasomal degradation in the

mammalian basal ganglia [100]. The veracity of this idea will need

to be tested experimentally.

Because the transcription of both Hmox1 and NQO1 is

dependent, in part, on Nrf2 [101–103], it is of interest to discuss

the induction of Hmox1 by METH in relation to the protection

afforded by NAD(P)H quinone oxidoreductase-1(NQO1) induc-

tion against METH toxicity in vitro [104]. Miyazaki and

collaborators [104] reported that BHA, a known NQO1 inducer

[105], was able to increase NQO1 and to provide significant

protection against METH toxicity in vitro. Because the authors

also found that METH, itself, also caused NQO1 induction [104],

their findings and our present observations indicate that toxic

doses of the psychostimulant activate a protective cascade which is

mediated via Nrf2-regulated transcriptional events, which involve

coordinated induction of several genes that code for phase II

detoxification enzymes including Hmox1 and NQO1 [101].

As noted above, the ER is involved in the processing and folding

of membrane and secretory proteins [12,13]. Depletion of ER

calcium, oxidative stress, and disturbances in protein folding,

which all cause ER stress, are accompanied by increases in the

expression of ER chaperones[14,106] including ERp72 [107].

ERp72/Pdia4 is a member of the family of protein disulfide

isomerase [108] which participates in the formation and reduction

of disulfide bonds and their isomerization [109]. Our observation

of METH-induced increases in ERp72 expression is consistent

with the reported up-regulation of ERp72 during ER stress [110].

Similar to our results, it has been reported that ERp72 and

Hmox1 are both up-regulated after depletion of ER calcium stores

[111].

In summary, the present study demonstrates that a toxic dose of

METH can cause changes in the transcription of genes that are

involved in the regulation of an array of cellular functions. These

include activation of genes that participate in cellular responses to

ER and oxidative stresses. The present observations are the first to

document that stimulation of striatal DA D1 receptors can lead to

substantial activation of ER stress-dependent gene expression in

that brain structure. These results also implicate ER signaling

pathways as important players in METH-induced long-term

neurobiological effects. Finally, our results suggest that the METH

toxicity model might be useful in investigations seeking to dissect

the molecular control of the ER stress-related molecular events via

stimulation of G-protein coupled receptors in the mammalian

brain.

Materials and Methods

Animals and Drug Treatment
All animal use procedures were according to the NIH Guide for

the Care and Use of Laboratory Animals and were approved by

the NIDA (National Institute of Drug Abuse) Animal Care

Committee. Male Sprague Dawley rats (Charles River Labs),

weighing 250–300 g, were used. Rats were injected with either

saline or METH (40 mg/kg) via the intraperitoneal route in the

presence or absence of the DA D1 receptor antagonist, SCH23390

(1 mg/kg). The dose of METH was chosen because it can cause

long-term depletion of monoaminergic terminals [112] and

neuronal apoptosis [113,114] in the rodent brain. The dose of

SCH23390 was chosen because similar doses protect against

METH toxicity [9]. This approach resulted in four groups of

animals: Saline control (C), saline plus SCH23390 (1 mg/kg) (S),

saline plus METH (40 mg/kg) (M), and SCH23390 followed by
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METH (M+S). SCH23390 was given 30 minutes before the

single injection of saline or METH. For the microarray analysis,

animals (n = 6 per group) were decapitated and striatal tissues

were harvested at 2 and 4 hours after the METH or control

injections.

RNA extraction
Total RNA was isolated using Qiagen RNeasy Midi kit (Qiagen,

Valencia, CA) according to the manufacturer’s instructions. RNA

integrity was assessed using an Agilent 2100 Bioanalyzer (Agilent,

Palo Alto, CA).

Microarray hybridization and scanning
Microarray hybridization was carried out using Illumina’s

RatRef-12 Expression BeadChips arrays (22, 227 probes) (Illumina

Inc., San Diego, CA), In brief, a 600 ng aliquot of total RNA from

each striatal sample was amplified using Ambion’s Illumina RNA

Amplification kit (cat. no. IL1791; Ambion, Austin, TX). Single-

stranded RNA (cRNA) was generated and labeled by incorporat-

ing biotin-16-UTP (Roche Diagnostics GmbH, Mannheim,

Germany, cat. no. 11388908910). 750 ng of each cRNA sample

were hybridized to Illumina arrays at 55uC overnight according to

the Illumina Whole-Genome Gene Expression Protocol for

BeadStation (Illumina Inc., San Diego, CA, cat. # 11201828).

Hybridized biotinylated cRNA was detected with Cyanine3-

streptavidine (Amersham Biosciences, Piscataway, NJ, cat.

#146065) and quantified using Illumina’s BeadStation 500GX

Genetic Analysis Systems scanner.

Microarray data analysis
All microarray data reported in the manuscript is described in

accordance with MIAME guidelines. The complete raw data for

the analyses done at 2 and 4 hours after the METH injection are

listed in supplement tables S1 and S2, respectively. The Illumina

BeadStudio software was used to measure fluorescent hybridiza-

tion signals. Data were extracted by BeadStudio (Illumina, San

Diego, CA) and then analyzed using GeneSpring software v. 7.3.1

(Silicon Genetics, Redwood City, CA, USA). Raw data were

imported into GeneSpring and normalized using global normal-

ization. The normalized data were used to identify genes as

METH-responsive if they show increased or decreased expression

according to the arbitrary cut-off of 1.7-fold changes at p,0.01.

The genes that were identified as SCH23390-responsive showed

an increase or decrease expression according to the arbitrary cut-

off of 1.7-fold changes at p,0.05.

Quantitative RT-PCR Analysis
Total RNA was extracted from striatal samples from all the 4

groups and was used for quantitative RT-PCR to confirm the

results obtained with microarray. Quantitative RT-PCR were

carried out with minor modification of previously described

procedures [9]. Briefly, individual total RNA (1 mg) samples from

six rats for each time-point for every group were reverse-

transcribed into cDNA using Advantage RT for PCR kit

(Clontech, Mountain View, CA, USA). PCR experiments

employed a primer set and iQ SYBR Green Supermix (BioRad,

Hercules, CA USA) using the Chromo4 RT-PCR Detection

System (BioRad). Sequences for gene-specific primers correspond-

ing to PCR targets were obtained using LightCycler probe design

software v. 2.0 (Roche, Indianapolis, IN, USA) and were

synthesized at the Synthesis and Sequencing Facility of Johns

Hopkins University (Baltimore, MD). The primer sequences are

listed in Table S5 in the supplement. The relative amounts of

messenger RNA (mRNA) normalized to 18 s rRNA were then

quantified.

PCR analysis of XBP1 splicing
cDNA synthesis from total RNA is similar to the procedure

described under the section quantitative RT-PCR analysis. To

amplify XBP1 mRNA (NM_005080), PCR was performed for 35

cycles (95uC for 30 s; 58uC for 30 s; 72uC for 1 min) using the

PCR primers 59-AGA GTA GCA GCT CAG ACT GCC AG -39

and 59-PCGA ACT GGG TCC TTC TGG GTA-39 and with iQ

SYBR Green Supermix (BioRad, Hercules, CA USA) using the

Chromo4 RT-PCR Detection System (BioRad). Fragments

representing spliced and unspliced XBP1 were visualized on 2%

agarose gels with ethidium bromide staining.

Immunoblot Analysis
Striatal tissues were first washed with chilled 0.01 M PBS.

Cytoplasmic and nuclear protein fractions were prepared using

NE-PER nuclear and cytoplasmic extraction reagents based on the

manufacturer’s instruction (Pierce, Rockford, IL). Protein concen-

tration of cell lysates was determined with the BioRad Dc Protein

assay reagent (BioRad, Temecula, CA). The lysates were then

denatured with sample buffer (62.5 mM Tris-HCl, 10% glycerol,

2% SDS, 0.1% bromophenol blue, and 50 mM DTT) at 100uC
for 5 min, and subjected to SDS-PAGE. Proteins were electro-

phoretically transferred to Hybond-PTM membrane (Amersham

Pharmacia Biotech, Piscataway, NJ) and incubated overnight at

4uC with ATF3, ATF4 (1:500 dilution), Nrf2 and Hmox1

antibodies (1:750 dilution, Santa Cruz Biotechnology Inc., Santa

Cruz, CA, USA). After washing in Tris-buffered saline with 0.1%

Tween-20, membranes were pre-incubated in the detergent/

blocking buffer containing 1:2000 horseradish peroxidase (HRP)-

conjugated anti-rabbit secondary antibody (Cell Signaling Tech-

nology Inc., Danvers, MA, USA) for 1 hr at room temperature.

To confirm equal protein loading, blots were re-probed with a-

tubulin antibody (1:4000; Sigma, 2 h at RT). LumiGLO

chemiluminescent reagents (Cell Signaling Technology Inc.,

Danvers, MA, USA) were used to detect protein expression.

Signal intensity was measured densitometrically with LabWorks

version 4.5 (BioImaging Systems analysis software, BioImaging

System, UVP Inc., Upland, CA). For quantification, the signal

intensity was normalized over the signal intensity of tubulin.

Statistical Analysis
Statistical analysis for qRT-PCR and Western blot data was

performed with the statistical package StatView (SAS Institute,

Cary, NC, USA) using ANOVA followed by Fisher’s protected

least-significant difference test (p,0.05).

Supporting Information

Table S1 Raw data of all genes at 2 h after METH or control

injections.

Found at: doi:10.1371/journal.pone.0006092.s001 (20.68 MB

XLS)

Table S2 Raw data of all genes at 4 h after METH or control

injections.

Found at: doi:10.1371/journal.pone.0006092.s002 (14.57 MB

XLS)

Table S3 List of 173 SCH23390-sensitive METH-responsive

genes in the rat striatum.

Found at: doi:10.1371/journal.pone.0006092.s003 (0.07 MB

XLS)
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Table S4 List of 372 SCH23390-resistant METH-responsive

genes in the rat striatum.

Found at: doi:10.1371/journal.pone.0006092.s004 (0.12 MB

XLS)

Table S5 List of primer sequences used for quantitative RT-

PCR.

Found at: doi:10.1371/journal.pone.0006092.s005 (0.02 MB

XLS)
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