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1. Abstract 
Microbial communities play a crucial role in ecosystem function through metabolic interactions. 
Genome-scale modeling is a promising method to understand these interactions. Flux balance 
analysis (FBA) is most often used to predict the flux through all reactions in a genome-scale 
model. However, the fluxes predicted by FBA depend on a user-defined cellular objective. Flux 
sampling is an alternative to FBA, as it provides the range of fluxes possible within a microbial 
community. Furthermore, flux sampling may capture additional heterogeneity across cells, 
especially when cells exhibit sub-maximal growth rates. In this study, we simulate the 
metabolism of microbial communities and compare the metabolic characteristics found with 
FBA and flux sampling. We find significant differences in the predicted metabolism with 
sampling, including increased cooperative interactions and pathway-specific changes in 
predicted flux. Our results suggest the importance of sampling-based and objective function-
independent approaches to evaluate metabolic interactions and emphasize their utility in 
quantitatively studying interactions between cells and organisms. 
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2. Introduction 
Microbes are essential components of all living ecosystems, and the metabolic interactions 
between them are a significant factor in the functioning of these ecosystems. Microbe-microbe 
metabolic interactions affect nutrient cycling, energy production, and the maintenance of 
microbial diversity1–3. Though our understanding of those microbial communities is aided by 
metagenomics and in vitro analyses, there is a significant gap in mechanistic understanding of 
the makeup and interactions between members of microbial consortia4,5.  
 
Genome-scale modeling has emerged as a promising method by which we can probe an 
organism's metabolic states, behaviors, and capabilities, alone or as a community6–12. Genome-
scale metabolic modeling is a mathematical approach that uses the known biochemical 
reactions of a species to reconstruct a genome-scale metabolic network. Genome-scale models 
(GEMs) provide a holistic view of an organism's metabolism, allowing for mathematical analyses 
that simulate metabolic fluxes and thus provide insight into metabolic pathways and 
physiological processes. The genome-scale model consists primarily of a stoichiometric matrix, 
characterizing the interconversion of metabolites by the set of metabolic reactions, linked with 
a set of Boolean expressions describing the gene-protein-reaction relationships40. Flux balance 
analysis is a constraint-based approach for analyzing that metabolic network to predict 
metabolic fluxes through the GEM.  
 
Much work has recently been applied to understand the metabolic interactions of a microbial 
community in various contexts, including the human gut microbiota and in environmental 
bioremediation14–19. Given the ubiquity of microbial activity, there is substantial value in using 
metabolic modeling to understand these communities' emergent behaviors and abilities. 
 
Most metabolic modeling of microbial interactions is performed in one of three ways (Figure 1): 
(1) compartmentalization, wherein two metabolic models are merged into a single 
stoichiometric matrix with a shared compartment representing the extracellular space, (2) 
lumped model (also called "enzyme soup") approach, where all metabolites and reactions are 
pooled into a single model in proportion to the community makeup, and (3) costless secretion, 
where models are separately simulated while dynamically and iteratively updating the 
simulated environment by adjusting the models' exchange reactions and available nutrients 
based on metabolites that can be secreted without decreasing growth (costless metabolites)19–
26.  
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Figure 1: Approaches for genome-scale metabolic modeling of communities. Metabolic modeling of microbial communities is 
largely performed using (A) Compartmentalization: a single stoichiometric matrix representing the two models joined by a 
lumen compartment wherein metabolites can be freely exchanged; (B) Lumped model: a single stoichiometric matrix 
representing the union of each model’s reactions, thereby ignoring all separation between cells; and (C) Costless secretion: 
individual stoichiometric networks for each model, whose exchange reactions are constrained to reflect the shared extracellular 
media.1 

Each of these approaches has shown promise, and selection of which approach to use heavily 
depends on available data and models and the intended goal of the analysis. As currently 
implemented, each method uses flux balance analysis (FBA), a linear programming technique 
that predicts the flow of material through the metabolic network27–29. FBA depends on the 
maximization of an objective function, and maximizing biomass production is most commonly 
used. Optimizing for biomass assumes species are entirely oriented towards maximal growth, 
thus ignoring the multiplicity of achievable sub-optimal phenotypes30. When simulating the 
metabolism of a community, this assumption can disregard the variety of metabolic 
interactions that the microbes may carry out. Furthermore, the selection and definition of the 
best objective function substantially affect model predictive power and generated results31–34. 
 
As an alternative to FBA, flux sampling has recently been used to predict flux distributions in a 
variety of cases and may provide a more holistic and accurate description of the cell's flux 
distribution35–39. This is done by randomly generating many flux values for each reaction in a 
genome-scale metabolic model, while respecting its defined constraints, such as mass or energy 
balance and thermodynamic restrictions. Flux sampling employs Markov chain Monte Carlo 
methods to estimate cellular flux and generate many feasible metabolic flux distributions. Flux 
sampling estimates the most probable network flux values, enabling statistical comparisons of 
the flux distributions. Notably, the approach does not require a selected cellular objective, thus 
reducing user-introduced bias on model predictions and exploring the entire constrained 
solution space. The approach therefore enables studies of phenotypic heterogeneity, as a single 
constrained model can generate a range of flux predictions. However, flux sampling has not 
been widely employed in analyses of microbial communities. Furthermore, comparisons 
between FBA-based and sampling-based analyses of communities are currently lacking. 
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In this work, we apply flux sampling to existing analyses of microbial metabolic interactions, 
showing the range of potential consortia-wide flux distributions achievable with genome-scale 
modeling. We find significant differences in model predictions between FBA and flux sampling, 
with substantial heterogeneity across sampled simulations. We see emergent patterns at sub-
maximal growth rates, such as increased cooperation between microbes in anoxic conditions 
compared to oxygen-rich environments. In total, we systematically evaluate the effect of flux 
sampling, and emphasize the utility of objective function-agnostic approaches to evaluate 
metabolic interactions. 
 
3. Methods 
3.1 GEMs 
Magnusdottir et al. generated the AGORA dataset, a collection of 773 (and later, 7206 in 
AGORA2) genome-scale metabolic models comprising the human gut microbiome. These 
models were simulated to understand their metabolic behavior when grown in pairwise 
combinations, using the approach developed by Kiltgord and Segre16,42,43. Notably, the analysis 
constrained the models with distinct in silico diets and aerobic states. 
  
We randomly selected 75 of the AGORA models, analyzed all unique pairwise combinations 
(2775), and implemented three distinct approaches to study metabolic interactions between 
microbes. In this way, we demonstrate the utility of each approach, compared to flux sampling, 
while limiting computational intensity.  
 
3.2 Flux sampling 
We use the Constrained Riemannian Hamiltonian Monte Carlo (RHMC), which has recently 
been shown to be substantially more efficient than prior sampling algorithms41.  
 
3.3 Compartmentalization 
The pairwise interaction approach used by Magnusdottier and coworkers is as follows17: 

Step 1: Select two models.  
Step 2: Introduce the lumen compartment, which joins the two models into a merged model, where the 
two microbes can secrete and uptake metabolites.  
Step 3: Constrain the model by adjusting exchange reaction bounds to reflect the chosen diet and 
extracellular conditions. 
Step 4: Simulate monoculture by shutting off one of the two models by inactivating all its reactions 
(setting the reaction upper and lower bound to 0 flux). Then simulate the active individual model by 
optimizing for growth.  
Step 5: "Shut off" the second individual model by inactivating all its reactions. Then simulate the active 
individual model by optimizing for growth.  
Step 6: Restore the activity of both individuals in the merged model and optimize each microbes' 
objectives separately. This predicts growth while allowing the exchange of metabolites across the lumen, 
simulating co-culture. 
Step 7: Compare paired growth with the individual growth simulations of steps 4 and 5.  
If paired growth was 10% higher or lower than individual growth, the model was considered to grow 
faster or slower, respectively, in co-culture than alone.  
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We replaced the FBA optimization in steps 4, 5, and 6 with flux sampling as an alternative way 
to predict cellular flux. We used the RHMC algorithm and generated 1000 flux distribution 
samples at each step. We, therefore, had a range of reaction fluxes (including growth rates) for 
both microbes, in mono- and co-culture, with and without oxygen, and with two different 
simulated diets (Western and High Fiber). We then categorized all possible combinations of 
sampled growth rates, following previously described classes: parasitism, commensalism, 
neutralism, amensalism, competition, or mutualism17. For example, if both models grew more 
in co-culture than alone, the interaction was classified as mutualism.  
 
We also identified distinct interaction regimes between the two microbes by ordering the 
sampled growth rates. That is, we found the range of different interaction types as a function of 
the different growth rates (and thus, growth demands). We note that the interaction regimes 
predicted here differ from the Pareto analysis performed by Magnusdottir et al., as calculation 
of the Pareto front relies on biomass optimization with FBA while iteratively updating and fixing 
growth rates for each model16.   
 
3.3 Lumped model  
Blasco et al. extended the AGORA set of metabolic models by adding degradation pathways 
that allow for the simulation of the effect of many human diets on the activity of the gut flora26. 
After adding those metabolic reactions involved in degradation, they merged all individual 
microbe models into a supra-organism model. By pooling all GEMs, they made a single lumped 
model comprising all metabolic reactions and metabolites in the population.  
 
This process is often called a "mixed-bag" or "bag-of-genes" approach and is the simplest form 
of genome-scale modeling of bacterial communities. It does not assume any spatial or temporal 
separation between the species and involves the consolidation of ubiquitous metabolic 
reactions44–47. Nevertheless, the approach has been effective at predicting the metabolic 
behavior of consortia while minimizing computation time and reducing model size.  
 
The authors used flux variability analysis (FVA) to identify and correct blocked or low-
confidence reactions and identify the microbial metabolic byproducts produced by the 
microbiota's fermentation of lentils. However, the model was not simulated to predict species 
growth within the community. We, therefore, applied the model to predict consortia behavior.  
With "mixed-bag", lumped modeling of metabolism, it is common to either merge all individual 
model biomass reactions into a supra-organism growth equation or, as chosen by Blasco et al., 
to maintain each model's biomass reaction within the pooled network. That allows for the 
prediction of each microbe's growth.  
 
We generated flux samples of the lumped model and compared them to the case where each 
species' biomass reaction is optimized alone and to the case where the population's overall 
growth is maximized. We calculated the “optimal community growth rate” by finding the 
maximum growth rate possible for all models simultaneously and setting all biomass reactions’ 
lower bound values to that flux value.  
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3.4 Costless Secretion 
Pacheco et al. showed that the secretion of costless metabolites (species that are freely 
secreted as the byproduct of a cell's metabolism, without inhibiting fitness) are critical drivers 
of the metabolic interactions between cells48. The approach is a quasi-dynamic method, as it 
maintains the modeling assumption that the system is at a steady state but successively 
updates the environment shared by the two simulated cells. The method calculates the growth 
of each model at each simulation iteration, finds the secreted metabolites, then updates the 
simulated media until the media is stable.  
 
The costless growth approach is as follows: 

Setup: Select a simulated minimal media definition (i.e., DMEM, M9, SSM, etc.), and define the 
metabolites that comprise that medium. Select N models to be simulated (i.e., two models for pairwise 
interactions, three models to simulate a community of three microbes, etc.) Select M metabolites to be 
individually or provided in addition to the minimal media (list the carbon sources to be provided, and 
choose m to be given at a time). Define whether the model will be simulated in an aerobic or anaerobic 
environment. 
Step 1: Simulate a minimal media condition by setting all exchange reactions' upper bound values to 0 
unless the reaction exchanges metabolites contained in the media. 
Step 2: Provide carbon source(s) M by setting the upper bound(s) of exchange reaction(s) for the 
corresponding metabolite(s) to be unconstrained. 
Step 3: Simulate the models by optimizing for growth. 
Step 4: Note the resulting flux values for the models' transport reactions; if a metabolite is predicted to be 
exported into the media, then explicitly add that metabolite to the simulated media (again, by adjusting 
the models' upper bound for that metabolite's import reaction). 
Step 5: Repeat steps 3-4 until no additional metabolites are secreted, arriving at the simulation’s final 
predicted growth rates. 
Steps 1-5 can be repeated for a different carbon source (or combination of carbon sources) to be added to 
the simulated media. 

 
We adjusted step 3, replacing FBA optimization with flux sampling using the RHMC algorithm, 
simulating pairwise growth with a single metabolite source. Because the costless secretion 
approach repeats the model simulation steps until media convergence, we introduced a 
thresholding term to consolidate the results from each simulation round. In particular, we 
define the set of secreted metabolites (and thus update the extracellular media) based on 
whether all, most, or any of the sampled flux distributions show a metabolite is secreted. For 
example, if metabolite M were secreted in 200 of the 1000 generated flux distributions, it 
would only be added to the extracellular media in the “any” cutoff simulation for the next 
round. If secreted in 750 of the 1000 distributions, it would be added to the “any” and “most” 
analyses. For the “all” cutoff, that metabolite would only be added to the media for the 
following iteration if all 1000 flux distributions showed that metabolite was secreted. 
Thresholding is currently required because of the computational time needed for flux sampling. 
Without thresholding at each simulation, the number of sampled points needed will increase 
exponentially with each round of expansions. We use each cutoff to demonstrate and assess 
the introduced variability, allowing us to compare the outputs with each set threshold.  
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Results 
4.1 Compartmentalized modeling 
Magnusdottir et al. developed AGORA (later updated as AGORA2), a resource for the semi-
automated generation of genome-scale metabolic models. They applied the set of models to 
predict the pairwise interactions between microbes, showing how the individuals' metabolic 
potential drives the emergent behavior of the pair. However, their predictions of metabolic 
activity assume that each microbe is oriented toward achieving maximal growth. We 
introduced flux sampling to the pairwise simulation framework, thus permitting any flux 
distribution from the confined flux space to be included in the assessment of metabolic 
interactions. We selected 50 individual models and paired each together, generating 2775 
unique pairwise analyses that spanned the range of microbial taxa in the AGORA dataset. Each 
paired model was sampled 1000 times, with and without metabolite exchange between the 
microbes being allowed. As described in the Methods, the interaction type was calculated for 
the anaerobic and aerobic states with two unique simulated diets.  
 
By analyzing the most common interaction for each pair, we calculated the total percentage of 
each interaction type, shown in Figure 2A. As expected, slight differences exist between the 
optimization and sampling-based analyses. Namely, antagonistic interactions (competition, 
amensalism, and parasitism) tend to make up a smaller percentage of the entire set with 
sampling instead of optimization (61% compared to 74%). There is an increase of 11% in 
positive and net-neutral interactions (commensalism, neutralism, and mutualism) with 
sampling compared to optimization-based analysis. Cases of neutralism increased from 6% to 
18%, and frequency of mutualism increased from 7% to 13%. The increase in cooperation is 
particularly prevalent with anaerobic analyses, from 30% to 44%. Previous work has highlighted 
that anoxic conditions induce mutualism; this effect is notably amplified with sampling 
compared to simulations maximizing biomass23. When sampling the possible fluxes of 
anaerobic conditions, there is a higher frequency of non-inhibitory relationships. In particular, 
there is a substantial reduction in parasitism with a nearly equivalent increase in neutralism.  
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Figure 2: Pairwise analyses of the AGORA/AGORA2 set of models.(A.) We simulated 2775 pairs of metabolic models on two 
simulated diets with and without the presence of oxygen and calculated the expected interaction type. Interactions are defined 
and colored according to the labels on the far right. Expected interaction type when pairing enterococcus faecalis and prevotella 
disiens (B) and bacteriodes celiilosilyticus and pseudomonas montelli (C) and sampling a range of growth rates. 

Furthermore, we see an increase in symmetrical interactions (mutualism, neutralism, and 
competition, from 25% to 47%), suggesting that without orienting all metabolism towards 
optimal growth, a community of bacterial species may be more inclined towards population 
stability. This is because abundances tend to remain steady when primarily exhibiting those 
three interaction motifs49,50. Notably, the trends of increased anoxic cooperation and 
symmetrical interactions are found irrespective of diet constraints. This suggests that the 
submaximal predicted growth rate allowed with sampling, and not the models themselves or 
extrinsic factors (such as the nutrients provided), is driving the observed outcomes.  
 
Because flux sampling gives a distribution of growth rates and the corresponding flux 
distributions providing for that growth, it is possible to calculate the expected pairwise 
interactions likely for each combination of individual growth rates. We ranked the sampled 
growth rates for each microbe and calculated the most commonly predicted paired growth 
rate, thus giving interaction types for each growth rate. The sampling-based approach 
highlights the variety of interactions possible between two microbes, especially given variation 
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in simulated conditions. Figure 2 shows this analysis for two sets of paired example microbes, 
similar to chemical phase diagrams. The x- and y-axes represent the individual sampled growth 
rates, and their intersection is colored according to the most likely expected metabolic 
interaction motif. Figure 2B shows the pairwise interactions of enterococcus faecalis TX2134, a 
gram-positive nonmotile microbe, and prevotella disiens JCM 6632, a gram negative bacilii-
shaped bacterium. Figure 2B shows the interactions of bacteriodes celiilosilyticus  and 
pseudomonas montelli, two gram-negative and rod-shaped microbes. We show these 
calculations for four distinct extracellular conditions: Western and high fiber diets, with and 
without oxygen.  
 
When simulating the interactions of the Enterococcus and Prevotella strains in Figure 2B, five 
distinct types of interactions are possible, depending on the simulated environment and each 
species' growth rate. Anaerobic states (columns 1 and 2) show a predominance of 
commensalism or mutualism, though parasitism and amensalism are expected when Prevotella 
is rapidly proliferating. In the presence of oxygen (columns 3 and 4), there are several diet-
independent trends: low growth of both microbes causes commensalism; high Enterococcus 
and low Prevotella growth rates cause parasitism; low Enterococcus and high Prevotella growth 
rates cause amensalism; and high growth of both causes competition. At intermediate growth 
rates, the effect of diet is more apparent, as Western diet constraints drive amensalism and 
high fiber constraints push the interaction toward commensalism, parasitism, or amensalism.  
 
Similar insights can be gained when analyzing the interactions between Bacteroides and 
Pseudomonas. For example, the anoxic high fiber condition is relatively invariant, as the two 
microbes show parasitism at nearly all individual growth rates. Alternatively, there is a large set 
of potential outcomes when simulating an anoxic state with a Western diet; the individual 
microbe growth rates can elicit widely distinct interaction motifs. It is possible to see a single 
microbe "dominate" or drive the observed interaction: in the oxygen-rich simulations, changes 
in Pseudomononas growth determine the outcome, largely irrespective of a changing 
Bacteriodes growth rate.  
 
Similar analyses can be performed for all combinations of models. In sum, this sampling-based 
approach highlights the variety of interactions possible between two simulated microbes, 
especially given variety in modeled conditions. 
 
4.2 Lumped model 
By pooling metabolic reactions, it is possible to generate a single GEM that represents 
community metabolic activity. The lumped GEM can then be analyzed using the same 
constraint-based approaches typically utilized for single-species models. Though the technique 
removes all separation between microbes, it can be a useful approach for assessing the activity 
and potential of the community. However, all analyses of such "bag of genes" or "enzyme soup" 
approaches have explicitly assumed that the community aims to maximize growth by assigning 
an objective function. No studies have assessed the effect of flux sampling on the community 
metabolic state. We selected the AGREDA pooled model, which combined 538 AGORA models 
into a single metabolic network. We analyzed the lumped model with three distinct 
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approaches: (1) iteratively setting each individual's biomass reaction as the objective and then 
solving the FBA problem (optimization), (2) performing flux sampling on the network's flux 
solution space (flux sampling), and (3) finding the maximal rate at which all microbes can 
simultaneously grow, then sampling the solution space when that value is set as the lower 
bound for each microbe's growth rate (termed an “optimal community”). These analyses 
allowed us to compare the flux distributions achieved through FBA, flux sampling, and flux 
sampling of the "best state" of the microbial community.  
 
When comparing flux sampling of the network with FBA, we first assessed the variation 
between pathway fluxes to identify large-scale metabolic shifts. Interestingly, flux sampling was 
not equally influential across all pathways but disproportionately affected particular 
subsystems. Figure 3A shows the median normalized flux value through each pathway 
predicted by sampling (y-axis) and the median flux value through the pathway when 
individually optimizing each of the 531 biomass reactions in the model (x-axis). That suggests 
the parts of the network that may be more influential and impactful in community activity 
when separated from the requirement of maximizing cellular growth. Notably, thiamine 
metabolism, terpenoid backbone synthesis, tannin degradation, pyrimidine synthesis, and NAD 
metabolism saw substantially higher fluxes in the sampling approach. A similar plot comparing 
the community-constrained sampling with the FBA approach is in the supplement, in Figure S1. 
For example, we plot the individual fluxes through the NAD metabolism subsystem obtained by 
the three techniques used to predict reaction flux (Figure 3B). Maximization of biomass causes 
consistently low pathway flux, while unconstrained or optimal community-constrained 
sampling predicts a broader range of flux values that are higher compared to the fluxes 
predicted when biomass production is maximized. The case with optimal community-
constrained sampling produces slightly elevated pathway flux compared to unconstrained 
sampling.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2023. ; https://doi.org/10.1101/2023.04.18.537368doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.18.537368
http://creativecommons.org/licenses/by-nc/4.0/


 

 
Figure 3: Pooled Model Analyses. (A) Median pathway flux values predicted by unconstrained flux sampling compared to 
optimization of biomass. Subsystems that have significantly different median fluxes are labeled. (B) Reaction fluxes for the NAD 
metabolism pathway predicted with each technique. (C) KL divergence between the distribution of fluxes achieved via 
optimization and sampling. (D) Comparison of the flux-sum value for each metabolite for unconstrained flux sampling and 
optimization of biomass. 

At the reaction level, differences emerge between the three community analysis methods. We 
compared the flux distributions for each reaction, calculating the bi-directional KL divergence 
values51, shown in Figure 3C. We classified the difference in the median fluxes for each reaction 
for two analysis methods  into low, medium, and high divergence categories. This calculation 
revealed that very few (76 of the 5499 reactions, to the left of the leftmost vertical line) show 
close alignment between unconstrained flux sampling and optimization of biomass37,39. The 
predicted flux through most reactions (86%, shown to the right of the second vertical line) is 
“widely divergent” between the two approaches. This points to the substantial differences 
between the optimal growth state and the total solution space. Interestingly, a metabolite-
centric view based on metabolite flux-sum analysis shows similar turnover rates for the 
metabolites across the two analysis methods (Figure 3D). Metabolites that vary widely between 
the two conditions include NADP, NADPH, coenzyme A, UDP, and UDP-glucose (higher with 
optimization) and water (higher with sampling).  
 
4.3 Costless secretion 
Pacheco et al. argued that the secretion of "costless" metabolites (byproducts of the cell's 
metabolism that are released without causing a loss of fitness) might be a primary driver of 
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interspecies interactions within a microbial community48. In order to study this metabolic cross-
feeding, they developed a pipeline where two GEMs are constrained to a minimal media 
condition, then iteratively simulated, thus updating the media with the costless metabolites 
until convergence. By FBA assumes that cells grow maximally and that all metabolites secretion 
enables maximum growth. Costless metabolites predicted to be secreted may differ for distinct 
feasible growth rates. Therefore, while the FBA-based perspective is valuable, it may only 
partially describe the simulated system. By allowing submaximal growth rates and alternative 
maxima through sampling, we demonstrate increased metabolic latitude for microbial 
communities.  
 

 
Figure 4: Costless secretion analysis. (A) Number of iterations required to achieve a stable media, for the aerobic (left) and 
anaerobic (right) states for optimization of biomass or different cutoffs for flux sampling (all, most, any), plotted as a percentage 
of all simulations. (B) Number of metabolites secreted for optimization of biomass or with distinct cutoffs for flux sampling (all, 
most, any) for anaerobic and aerobic conditions. (C) Each simulation was categorized into one of 7 cases (the six shown in the 
left panel and the case where no growth was achieved) for the aerobic or anaerobic condition.  

A primary output from the costless secretion analysis is the number of iterations of model 
simulation until media convergence. We simulated 648 cases (pairwise combinations of 3 
microbes, with and without oxygen, with 108 distinct fuel sources provided to supplement the 
minimal media). We assessed the number of iterations required to reach a steady media. 
Interestingly, for both the normoxic and anoxic conditions, we see an increase in the number of 
rounds of model simulation with sampling compared to the base analysis with FBA. This makes 
sense, as a loosened restriction of growth rate allows for heterogeneous simulation results, 
which include a greater possible set of metabolites to be secreted and successive changes in 
the simulated media. That trend of more iterations with sampling remains even when we 
implement different cutoffs for whether a secreted metabolites is present in all, most, or at 
least one of the sets of sampled metabolic flux distributions (Figure 4A). Interestingly, the cutoff 

 
 
 
 
 
 

60 

 

 
Figure 17: Costless secretion analysis. (A) Number of iterations required to achieve a stable media, for the aerobic (left) and 
anaerobic (right) states for optimization of biomass or different cutoffs for flux sampling (all, most, any), plotted as a percentage 
of all simulations. (B) Number of metabolites secreted for optimization of biomass or with distinct cutoffs for flux sampling (all, 
most, any) for anaerobic and aerobic conditions. (C) Each simulation was categorized into one of 7 cases (the six shown in the 
left panel and the case where no growth was achieved) for the aerobic or anaerobic condition.  

A primary output from the costless secretion analysis is the number of iterations of model 
simulation until media convergence. We simulated 648 cases (pairwise combinations of 3 
microbes, with and without oxygen, with 108 distinct fuel sources provided to supplement the 
minimal media). We assessed the number of iterations required to reach a steady media. 
Interestingly, for both the normoxic and anoxic conditions, we see an increase in the number of 
rounds of model simulation with sampling compared to the base analysis with FBA. This makes 
sense, as a loosened restriction of growth rate allows for heterogeneous simulation results, 
which include a greater possible set of metabolites to be secreted and successive changes in 
the simulated media. That trend of more iterations with sampling remains even when we 
implement different cutoffs for whether a secreted metabolites is present in all, most, or at 
least one of the sets of sampled metabolic flux distributions (Figure 4A). Interestingly, the cutoff 
selected has much less of an effect than whether FBA (leftmost column) or flux sampling (right 
three columns) is chosen. We predict a much higher number of iterations in the anoxic 
condition, with up to 11 iterations of media change, compared to at most 3 rounds in the 
aerobic state.  
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selected has much less of an effect than whether FBA (leftmost column) or flux sampling (right 
three columns) is chosen. We predict a much higher number of iterations in the anoxic 
condition, with up to 11 iterations of media change, compared to at most 3 rounds in the 
aerobic state.  
 
We indeed see an increase in the number of metabolites secreted by the microbe pairs with 
flux sampling compared to FBA, as shown in Figure 4B. There is an apparent increase in 
predicted costless metabolites when the threshold is progressively loosened (from all to most 
to any). That is reasonable, as there are outliers or secreted metabolites that are particular to 
one or only few sampled flux distributions. We again predict an increase in secreted 
metabolites when simulating oxygen-free environments. Specifically, for anaerobic conditions, 
more unique metabolites are secreted as part of the cells' metabolic flux patterns than in the 
oxygen-rich environments for the two most stringent cutoffs (all and most).  
 
Pacheco established distinct interaction types, categorized based on the secretion and uptake 
rates of metabolites, using the following naming convention: non-interaction, or N, where no 
used media metabolites come from either model, commensalism, or C, characterized by 
unidirectional exchange, and mutualism, or M (where metabolites are interchanged between 
the two models). Following this letter designation, a numerical value represents the number of 
carbon sources added to the environment. Finally, the letters a or b specify the absence and 
presence of competition, respectively. As an example, N1a would describe a simulation where a 
metabolite is taken up by only one cell in the presence of one carbon source. We used the same 
naming convention to classify our simulations (Figure 4C). Firstly, we notice substantially fewer 
simulations with flux sampling where neither microbe achieved growth (204 compared to 114 
of the 324 aerobic simulations and 246 compared to 114 of the 324 anaerobic simulations). 
Though initially counterintuitive (that we would be more likely to achieve growth without 
optimizing for it than when attempting to maximize biomass), the result highlights the benefit 
of flux sampling. That is, due to the metabolic flexibility simulated with sampling, it is more 
likely that a microbe would secrete a metabolite beneficial for the other and thus enable the 
other cell to grow. In contrast, emergent interactive behavior is less likely when each microbe is 
"selfishly" oriented towards its growth at the expense of all other cellular goals (via FBA). We 
also note differences between the aerobic and anaerobic conditions, with the aerobic sampling 
simulations producing more instances of cooperative mutualism (M1a: 90 with aerobic 
sampling compared to 5 with anaerobic sampling ) and the anaerobic simulations resulting in 
more non-competitive non-interaction (N1a: 91 with anaerobic sampling compared to 0 with 
aerobic sampling).  
 
5. Discussion 
Phenotypic heterogeneity, even in the monoculture of a genotypically uniform population, is 
known to have a substantial effect on observed community outcomes. However, the effects of 
this heterogeneity have yet to be fully studied, despite the rapid and substantial increases in 
modeling efforts at the genome-scale. In addition, microbes have been shown to exhibit sub-
maximal growth, which needs to be sufficiently addressed with GEMs. While phenotypic 
heterogeneity and sub-maximal growth dynamics have been studied in individual GEMs of 
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microbial activity , these two phenomena have not been analyzed for models of microbial 
interactions30,52–58. In this work, we demonstrate how pairing disparate existing approaches of 
flux sampling and modeling of communities pushes the field of metabolic modeling forward. 
We systematically evaluate the predictive effects of replacing FBA and its central assumption of 
maximal growth with flux sampling approaches.  
 
In particular, we assess the effect of exploring the entire flux solution space with three distinct 
approaches of microbial community modeling: the compartmentalized approach, the lumped 
model or "enzyme soup" approach, and the costless secretion approach. With each approach, 
we replicate the major conclusions achieved with optimization of biomass using FBA For 
example, we predict higher frequency of cooperation under anaerobic conditions. Furthermore, 
applying flux sampling expands our understanding of the systems-level heterogeneity that gives 
rise to observed community activity. For the compartmentalized approach, we show increased 
tendency toward stable consortia and provide an ability to identify distinct growth rate-
dependent interaction regimes. For the lumped modeling approach, we predict large 
differences in the predicted flux for certain pathways and reactions than others, and in the 
turnover of specific metabolites. With the costless secretion approach, we predict a 
substantially wider range of metabolites secreted, enabling growth on substrates that had not 
been predicted when optimizing biomass using FBA. 
 
As previously found, most observable metabolic heterogeneity across a population has two 
primary sources: variation in network structure and variation in network usage (divergence in 
form and functional utilization)59. Ensemble modeling of GEMs has been shown to lead to 
increased accuracy and is of particular focus to the field with the emergence of novel tools; 
however, an equivalent effort has not been put towards understanding heterogeneous states 
achieved with a consistent network, despite the existence of flux sampling of GEMs as a tool for 
the past 20 years60,61. To our knowledge, one paper has used sampling to study cell-cell 
metabolic interactions62. Other researchers have identified this gap, and future work can more 
earnestly utilize and leverage the technique63.  
 
We recognize some limitations of our work. A particular area for improvement of genome-scale 
modeling is the difficulty in assigning constraints for the reaction fluxes. Without appropriate 
bounds on metabolic reaction rates, flux sampling may explore biologically unreasonable 
metabolic states. The emergence of novel experimental tools is particularly promising to 
address this limitation. For example, -omics technologies enable in vitro and in vivo 
measurements of growth rates, metabolite secretion, and impact of enzymatic knockouts. Such 
data can be used to provide biologically reasonable constraints on reaction fluxes. In addition, 
we used thresholding to keep the analyses computationally feasible. However, this potentially 
limits our results. Improvements in computational ability, from advances in computing speed 
and algorithm development, will enable us to investigate the full range of biological outcomes 
possible with flux sampling without imposing artificial thresholds. Finally, we evaluated 
microbial fitness and interspecies relationships based on growth rate using flux sampling, 
eliminating the necessity of maximizing biomass. Future work can explore alternative metrics to 
assess cellular behavior. This is especially important because genome-scale modeling is 
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increasingly used for eukaryotic (principally human) cells, where growth rate as a proxy for cell 
health is less supported64–69. For example, rather than focusing on growth, we could instead 
study flux through a specific reaction or pathway known to mediate the behavior of a particular 
cell type.  
 
6. Conclusion 
In this work, we evaluate the effect of flux sampling on three standard approaches for modeling 
the interactions between microbes at the genome-scale. The method clearly distinguishes 
between optimization-based and sampling-based characterizations of the metabolic 
interactions within a community. We demonstrate the utility of flux sampling in quantitatively 
studying metabolic interactions in microbial communities. 
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Supplemental Information 
Figure S1 

 
Figure S1: Community-constrained sampling compared to FBA optimization. (A) Median pathway flux values predicted by 
community-constrained flux sampling compared to optimization of biomass. Subsystems that have significantly different median 
fluxes are labeled. (B) Comparison of the flux-sum value for each metabolite for community-constrained flux sampling and 
optimization of biomass. 
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