
Acta Pharmaceutica Sinica B 2020;10(7):1309e1320
Chinese Pharmaceutical Association

Institute of Materia Medica, Chinese Academy of Medical Sciences

Acta Pharmaceutica Sinica B

www.elsevier.com/ loca te /apsb
www.sc iencedi rec t .com
ORIGINAL ARTICLE
Design of drug-like hepsin inhibitors against
prostate cancer and kidney stones
Vincent Blaya,b,*, Mu-Chun Lic, Sunita P. Hoa,b, Mashall L. Stollera,b,
Hsing-Pang Hsiehc, Douglas R. Houstond
aDivision of Biomaterials and Bioengineering, School of Dentistry, University of California San Francisco, San
Francisco, CA 94143, USA
bDepartment of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143,
USA
cInstitute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
350, China
dUniversity of Edinburgh, Institute of Quantitative Biology, Biochemistry and Biotechnology, Edinburgh, Scotland,
EH9 3BF, UK
Received 19 July 2019; received in revised form 24 August 2019; accepted 23 September 2019
KEY WORDS

Virtual screening;

Docking;

Library;

Hepsin;

Tamm-Horsfall protein;

Biomineralization
*Co

E-

Peer

https:

2211-

Elsev
rresponding author. Tel.: þ1 415 514

mail address: vincent.blayroger@uc

review under responsibility of Institu

//doi.org/10.1016/j.apsb.2019.09.008

3835 ª 2020 Chinese Pharmaceutica

ier B.V. This is an open access articl
Abstract Hepsin, a transmembrane serine protease abundant in renal endothelial cells, is a promising

therapeutic target against several cancers, particularly prostate cancer. It is involved in the release and

polymerization of uromodulin in the urine, which plays a role in kidney stone formation. In this work,

we design new potential hepsin inhibitors for high activity, improved specificity towards hepsin, and

promising ADMET properties. The ligands were developed in silico through a novel hierarchical pipe-

line. This pipeline explicitly accounts for off-target binding to the related serine proteases matriptase

and HGFA (human hepatocyte growth factor activator). We completed the pipeline incorporating AD-

MET properties of the candidate inhibitors into custom multi-objective optimization functions. The li-

gands designed show excellent prospects for targeting hepsin via the blood stream and the urine and

thus enable key experimental studies. The computational pipeline proposed is remarkably cost-

efficient and can be easily adapted for designing inhibitors against new drug targets.
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1. Introduction

1
Kidney stones affect 8.8% of the current world population . They
affect all geographical regions and all age groups and impact the
economy and welfare of society2. Kidney stones are a global
health problem.

In general, kidney stones are composed of mixed calcium
oxalates (mainly calcium oxalate monohydrate) and calcium
phosphate (80% of the cases), struvite or magnesium ammonium
phosphate (10% of the cases, more prevalent in women), urate
(7%), cystine (2%, due to a genetic disorder), and lithogenic drugs
(1%)3. Although the urine of humans is normally supersaturated
with respect to calcium and oxalate4, the deposition of crystals in
most individuals is prevented during the residence time of urine in
the body. This is achieved through a kinetic control of the
mineralization reaction by inhibitory molecules naturally present
in the urine. Some of these inhibitors are ions and proteins coming
from blood filtration, such as magnesium, citrate, bikunin and
prothrombin, whereas others are secreted by cells in the nephron
and other parts of the kidney, such as osteopontin, nephrocalcin,
and uromodulin (Umod)3,5e7. The mechanism of kidney stone
formation is typically divided into nucleation, single crystal
growth, crystal aggregation, and retention of crystal aggregates,
often on the distal region of the kidney papilla3,6,7. Various in-
hibitors prevent mineralization at the nucleation stage. For
instance, citrate chelates calcium ions in solution and magnesium
binds to oxalate anions in urine, reducing their activity. None-
theless, other inhibitors act at later stages of the mineral formation
process and are effective since small crystals can be excreted
during micturition.

Mutations in inhibitors of urine mineralization can decrease
their preventive activity and increase the risk of stone for-
mation8e10. Besides, nucleation of supersaturated solutions is
often catalyzed by the presence of solid surfaces. Membrane
phospholipids, bacteria, and cell debris resulting from injury (due
to excessive oxalate concentration, for instance) may promote the
nucleation of kidney stones3,11. A good match between the atomic
structures of the substrate and the mineral phase being deposited
on it (i.e., a high interfacial correlation factor) favors this catal-
ysis12. For instance, secondary nucleation of calcium oxalate may
be facilitated by initial crystals of calcium phosphate, like those in
Randall’s plaque13e15. Likewise, some biomolecules in urine may
act as promoters of mineralization, including osteopontin and
uromodulin. Overall, it is thought that an imbalance between
promoters and inhibitors of urine crystallization primes kidney
stone formation6,15.

Uromodulin, also known as uromucoid or Tamm-Horsfall
protein (THP), is the most abundant protein in the urine of
healthy individuals. It is produced by renal epithelial cells that line
the thick ascending limb (TAL) of Henle’s loop. Uromodulin
contains an external hydrophobic patch (EHP) that is cleaved off
before its release into urine (shedding), where it polymerizes into
high-weight polymers via its zona pellucida (ZP) domain16,17. The
biological role of uromodulin is still not fully understood. In
healthy individuals, uromodulin helps to prevent crystal aggre-
gation and bacterial infection and is involved in water and elec-
trolyte homeostasis18e22. However, the role of uromodulin in
crystal aggregation is affected by its glycosylation state (Umod
has eight possible N-glycosylation sites), as well as by the pH and
ionic strength of urine23e25. Uromodulin from stone formers and
that found in the matrix of kidney stones often present low levels
of sialylation23. At urinary salt levels, desialylated Umod shows a
high isoelectric point, which favors its aggregation and binding to
other proteins in urine23. Thus, the polymerization of urinary
Umod may contribute to pathologic crystal aggregation depending
on its glycosylation state and the conditions of the urine in an
individual. It also possible that, even in the same individual,
membrane-bound uromodulin plays a different role on kidney
stone progression, perhaps contributing to the anti-adherence of
the TAL epithelium as it preserves the hydrophobic patch domain
(Fig. 1). Recently, it was reported that hepsin (Hpn), a type II
transmembrane serine protease (TTSP), catalyzes the cleavage of
Umod in the apical membrane and promotes its secretion into
urine26. Thus, it is important to study whether the specific inhi-
bition of hepsin in certain stone formers, with the associated
reduction in urinary uromodulin, could prevent or delay the for-
mation of kidney stones in these patients.

Furthermore, hepsin overexpression been documented in
several human cancers, including renal cell carcinoma, ovarian
cancer, breast cancer, endometrial cancer, and, especially, prostate
cancer27e29. In fact, hepsin overexpression is one of the most
consistent biomarkers for malignant transformation from benign
prostate hyperplasia30. Hepsin is thought to affect cancer cell
migration, invasion and metastasis more than tumor growth30.
Transgenic mice with high levels of hepsin in the prostate
epithelium showed a more aggressive progression and metastasis
by prostate cancer cells31. It has been proposed that the down-
regulation of hepsin inhibitors in epithelial cancers may be asso-
ciated to desmosomal damage and loss of epithelial integrity28. At
the same time, hepsin knockout mice have been shown to develop
normally32,33, suggesting that hepsin is not essential for normal
cell growth or coagulation. Taken together, these results make
hepsin a potential target for the treatment of several cancer types,
and in fact a few inhibitors have been proposed recently to this
end28,34,35. In vitro studies have shown that the growth of hepa-
toma cells was suppressed after treatment with anti-hepsin anti-
bodies36. Hepsin inhibitors displayed anticancer properties in
breast, prostate, colon, and lung cancer cells28. However, previous
inhibitors exhibit significant affinity toward other trypsin-like
serine proteases, such as matriptase and HGFA (hepatocyte
growth factor activator). In particular, matriptase is also a type II
transmembrane serine protease but, unlike other TTSPs, it is
present in a wide range of tissues37, hence the importance of
considering it as a potential off-target when developing new
hepsin inhibitors. Besides, previous inhibitors have been evaluated
for activity in vitro with little or no consideration of their drug-
likeness or ADMET characteristics, which are particularly rele-
vant for targeting hepsin in the nephron.

The development of improved hepsin inhibitors could enable
future studies to advance our knowledge of the biological role of
hepsin and uromodulin in the body. Based on our current under-
standing, it is conceivable that reducing the levels of polymer-
izable Umod in the urine of certain stone forming patients could
have a therapeutic effect in kidney stone disease. Moreover, more
specific small-molecule hepsin inhibitors could enable new
chemotherapeutic agents for prostate cancer. In this work, we
develop improved small-molecule competitive inhibitors of hepsin
using an in-house computational pipeline. In addition to consid-
ering the affinity of the candidate molecules for hepsin, we
explicitly considered their off-target effects on the related trypsin-
like serine proteases matriptase and HGFA. We also estimated key
ADMET properties of the ligands to optimize their availability in
the urine. From a pharmacological point of view, this work is a
particularly interesting case because of the target class selected



Figure 1 Scheme of uromodulin maturation and release into urine.
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and the special requirements imposed on the drug candidates,
which should achieve a relatively fast excretion from the circu-
latory system with minimal degradation and off-target binding.

2. Methods

2.1. Protein structures

The structure of hepsin in complex with 2-(2-hydroxyphenyl)-1H-
benzimidazole-5-carboxamidine is available in the Protein Data
Bank (entry 1P57)38. The high quality of the experimental data
(resolutionZ1.75 Å, overall completenessZ90.1%,
overall RmergeZ4%) and of the modeling (RworkZ18.6%,
RfreeZ20.6%) are appropriate for the computational design of
small molecules aiming to modulate its activity39. Moreover, the
B-factors of the atoms in the protease active site are small and its
fold shows a small root-mean-square deviation (RMSD) from that
of related proteases in this region38. The structure of matriptase is
available with PDB accession code 4O9V (resolutionZ1.9 Å,
RworkZ17.0%, RfreeZ23.9%). The structure of HGFA is available
with PDB accession code 2WUC (resolutionZ2.7 Å,
RworkZ22.6%, RfreeZ27.4%).

2.2. Virtual screening

LIDAEUS (LIgand Discovery at Edinburgh UniverSity) is an in-
house virtual screening software. In order to accelerate the
screening procedure, a grid of sites is created in and around the
protein active site, and these sites are classified as hydrogen bond
donor (HBD), hydrogen bond acceptor (HBA) or hydrophobic
depending on their chemical environment. An exhaustive fit of a
given number of atoms from the rigid ligands onto the site points
is carried out to identify energy-minimizing poses. The precision
with which an atom is matched to a site, called “resolution” in this
program, was set to 0.04 Å. The grids of sites employed for the
three different targets are illustrated in Supporting Information
Fig. S1 and provided as Supporting Information to this article
(files.mol). LIDAEUS uses a combination of two built-in scoring
functions, a force field-based energy function and a knowledge-
based pose interaction profile (PIP) function40. The “CAMEL-
SICK2” library was virtually screened, which contains over 1.1
million ligands that passed a lead-like filter and contains multiple
conformations of each ligand, totaling over 4.84 � 106 conformers
screened41.

2.3. Docking

AutoDock Vina, herein referred to as Vina, was used for the
molecular docking of the most promising compounds. This soft-
ware was developed at the Scripps Research Institute and is freely
available on the Internet42. Vina uses a combination of empirical
and knowledge-based scoring functions, which were trained using
nonlinear regression on a very large dataset (PDBbind). Vina also
implements an efficient search and optimization algorithm, the
Iterated Local Search global optimizer42. This optimizer can be
orders of magnitude faster than that in AutoDock 4.2, another
docking software used in this work that relies on a Lamarckian
genetic algorithm-based optimizer. Besides, Vina has built-in
support for internal parallelism in its computations. We also
used AutoDock 4.2, herein referred to as Vina, to independently
evaluate a subset of the ligands. The free-energy scoring function
of AutoDock is based on a linear regression analysis, the AMBER
force field, and a set of protein-ligand complexes with known
inhibition constants43. Docking computations were run on a 32-
core computer, with external parallelism enabled by a custom-
made script. In the case of Vina, an internal parallelism level of
two was typically used44. Binding constants are reported at stan-
dard temperature (298 K).

2.4. ADMET profile

Optibrium StarDrop 6.5.1 was used to predict important ADMET
properties of putative hepsin inhibitors. These include logS, logP,
logD, 2C9 pKi, hERG pIC50, BBB log([brain]:[blood]), BBB
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category, HIA category, P-gp category, 2D6 affinity category,
PPB90 category and TPSA. Relevant ADMET properties were
incorporated along with the docking predictions into multi-
objective additive functions customized to the location of the
target hepsin (circulatory system or urine). The values of the
different properties were mapped to partial scores using affine
desirability functions in StarDrop (Supporting Information Tables
S1 and S2), and the different partial scores were summed to define
the multi-objective functions “Blood Score” and “Urine Score”.
3. Results

Hepsin, also referred to as TMPRSS1, was the first type II
transmembrane serine protease to be cloned. It possesses an N-
terminal cytosolic domain, a hydrophobic transmembrane region,
and two extracellular domains bound together. The extracellular
domains are cleaved after expression and are subsequently
reconnected by a disulfide bond and a network of noncovalent
interactions37,38. The larger, catalytic domain is structurally ho-
mologous to the trypsin family of serine proteases; whereas the
smaller, non-catalytic domain (also called the stem region) adopts
a scavenger-receptor cysteine-rich (SRCR) fold. The latter has
poor sequence homology to other known sequences and its
function is unclear, although it may serve to orient the catalytic
protease domain38. The catalytic domain shows extensive
sequence homology to other serine proteases like matriptase and
HGFA.

Proteases contain several pockets (P10, P1, P2, etc.) that
participate in the recognition of specific amino acids in the sub-
strate around the scissile bond (S10, S1, S2, etc.) and confer them
specificity45,46. Importantly, the primary specificity pocket S1 of
hepsin contains an Asp189 and an Ala190 (Fig. S1); thus, the
natural substrates for hepsin (and HGFA) contain a basic Arg in
P1 position. It has also been reported that hepsin and HGFA have a
preference for Leu in the P2 position28. By contrast, related
matriptase and enteropeptidase have a Ser190 in the S1 pocket.
Thus, the characteristics of both S1 and S2 pockets are key to
maximize the specificity of inhibitors towards hepsin, the devel-
opment of which becomes a particularly complex challenge.

The pipeline developed for this work is summarized in Fig. 2.
The proprietary library used (4.84 � 106 conformers) included
compounds available from a wide range of commercial vendors
(ChemBridge, Asinex, Maybridge, Enamine, LifeChemicals,
Specs, InterBioScreen, ChemDiv and KeyOrganics) and was
virtually screened using the software LIDAEUS. 10,000 unique
molecules were prioritized by rigid-body virtual screening on
hepsin and then docked using Vina. This virtual screening may not
be sensitive to fine details of binding associated to the binding
pockets, which may require conformational changes of the ligand.
Thus, the correlation between virtual screening and docking re-
sults downstream is weak (Supporting Information Fig. S2).
However, all the ligands preselected by LIDAEUS would have
binding constants in the submillimolar range according to Vina.
Next, we docked the selected 10,000 compounds on matriptase
and HGFA using Vina. The results are compiled in file mmc2.xlsx.
The file also lists the predicted binding energies to matriptase and
HGFA. By and large, the binding affinities to hepsin and
matriptase show a higher correlation than the binding affinities to
hepsin and HGFA, since the former belong to the same family of
type II transmembrane serine proteases.

At this stage, we define the Specificity Index as Eq. (1):
Specificity IndexZ
1
�
Ki; hepsin

1
�
Ki; hepsin þ 1

�
Ki; matriptase þ 1

�
Ki; HGFA

Z
eDG hepsin

eDG hepsin þ eDG matriptase þ eDG HGFA

ð1Þ

Notice that 1/KiZKa, the association constant. Thus, the
Specificity Index quantitates how much ligand would bind, under
equilibrium, to hepsin rather than to the related targets matriptase
and HGFA, if all of them were equally accessible to the ligand and
present at the same concentration.

Fig. 3 shows the Specificity Index as a function of the esti-
mated free binding energy for the 10,000 compounds docked
using Vina. The figure evidences that the compounds binding
more strongly to hepsin are not necessarily the ones with the
highest Specificity Index, which highlights the importance of
explicitly considering potential off-target effects early on in the
drug design process. Fortunately, a number of candidates show
promise by having both high binding affinity and relatively high
specificity towards hepsin.

Previous studies have shown that the combination of docking
scores from different algorithms (consensus scoring) can signif-
icantly improve the accuracy of new drug designs. The combi-
nation of Vina and AutoDock, which use different force fields and
scoring functions (see Methods), has proved particularly
reliable47e49. Thus, we selected the top 1000 candidates based on
their binding affinity to hepsin as predicted by Vina. Then, the
binding of these compounds on hepsin, HGFA, and matriptase was
independently re-evaluated using AutoDock. The results of these
calculations are included in the file mmc2.xlsx. Vina and Auto-
Dock show little agreement on the binding affinity of many li-
gands (Fig. 4a), to the point that the top-ranking compounds
according to Vina would exhibit limited binding affinity according
to AutoDock. We also see limited agreement between the Speci-
ficity Index values computed using binding energies from Vina
and AutoDock (Fig. 4b), with AutoDock predicting somewhat
more extreme specificities. We investigated whether this
disagreement could be due to numerical artifacts, such as Auto-
Dock getting trapped in local energy minima during the search
and optimization algorithm. To this end, some molecules were
repeatedly docked more than once starting from different con-
formations. Supporting Information Fig. S3 shows the coefficient
of variation of the predicted binding energies, after three or more
conformers of a ligand were docked on hepsin. The results evi-
dence that both AutoDock and Vina converge to a final pose with
the same binding energy within the termination tolerance of the
search and optimization algorithm. This indicates that entrapment
in local minima is not an issue in these results. Notably, AutoDock
predicts that certain ligands may exhibit an even higher affinity
than that predicted by Vina (Fig. 4b), and these deserve additional
consideration (see below).

We evaluated the ADMET properties of the top 1000 candi-
dates using StarDrop. The results are included in the file
mmc2.xlsx. In order to summarize the ADMET characteristics
of the ligands, we defined two multi-objective functions. The first
function, Blood Score, evaluates the ADMET suitability of a drug
meant to be administered orally and reach its target via the blood
stream, which could be the case of targeting hepsin in the prostate.
The components of this multi-objective function are indicated in
Table S1 and were selected based on well-known oral lead- and



Figure 2 Hierarchical virtual screening methodology developed for this work.
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drug-likeness criteria50. We modified this function in order to
select for compounds with improved excretion and stability,
aiming to inhibit hepsin exposed to urine (blood filtrate) in the
nephron. To favor a somewhat faster excretion of the ligand, we
increased the weights corresponding to solubility (logS and logP).
We also set a higher penalty for binding to undesired targets such
as plasma protein, P-glycoprotein and hERG, crossing the
braineblood barrier, or having moderate affinity for the cyto-
chromes P450 CYP2D6 and CYP2C9. This multi-objective
function was called Urine Score, and its individual components
are listed in Table S2. As illustrated in Supporting Information
Fig. S4, the functions have a different behavior. Most molecules
tend to rank higher in one of the two criteria and this might be
exploited to target hepsin by different channels. Unfortunately, the
ligands with the highest affinities for hepsin show moderate
ADMET profiles, and thus it may be desirable to modify of some
of their chemical groups and side chains.

The top-binding ligands according to AutoDock are listed in
Table 1 (full details for any of the compounds can be looked up
in file mmc2.xlsx). In this case, compound 31DRH1-100-176 is
predicted to reach a very high pKiZ8.1 (DGZ�11.0 kcal/mol)
according to AutoDock, although this value was significantly
lower in the predictions by Vina (pKiZ6.3, DGZ�8.6 kcal/
mol). The energy-minimizing poses for this ligand are presented
in Fig. 5. Both programs situate the S-containing scaffold inside
the S1 pocket, but they differ in the orientation of the pendant
chain. Notice also the presence of the terminal amide in position
three of the fused ring system, which is able to establish strong
hydrogen bonds with the backbone groups of Gly-216 and Gln-
192.

In its turn, Supporting Information Table S3 shows the top five
ligands in the original library based on their binding affinity to
hepsin predicted by Vina as well as additional estimates of key
properties. The top ligand based on its predicted binding affinity
is 8DRH1-052-975, and it would show a pKi of 7.0 (DGZ�9.6
kcal/mol). Its predicted specificity is relatively low and thus,
in vivo, where it could be exposed to other targets, it might be
outperformed by other ligands such as 6DRH1-317-399 or
31DRH1-219-368 in terms of its specific inhibition of hepsin. The
binding pose of this ligand is shown in Supporting Information
Fig. S5. Remarkably, the strongest interactions (hydrogen
bonds) of this ligand are actually not being established inside of
the S1 pocket, but outside of this pocket by the less constrained
dihydroxyphenyl substituent. When the top ligand is docked on
matriptase (Fig. 5), a very different pose is obtained for this
molecule. In position 190 in matriptase, a serine residue is present,
ready to interact as an HBD (Fig. S5). Therefore, the ligand would
rotate when interacting with matriptase to bind even more
strongly. Thus, in order to design a ligand specific for hepsin it
becomes crucial to exploit this difference in position 190. Notice



Figure 3 Relationship between specificity to hepsin and binding

energy predicted by Vina for the compounds in the original library.

The top 1000 hits based on their predicted binding energy to hepsin

are highlighted in red.

Figure 4 (a) Relationship between the Vina and AutoDock scores

on hepsin for the top 1000 first-generation compounds. (b) Specificity

indices were computed based on the results by Vina and AutoDock.

The solid lines represent yZx.
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that these important differences in binding would be invisible to
traditional biochemical binding assays.

Notably, the top-binding compounds tend to present a linker
bound by an amide, which can interact strongly with the residue
Ser195 at the mouth of the pocket. Ser195 is, precisely, the key
catalytic residue in the catalytic triad, and thus binding of these
ligands would lead to the deactivation of the enzyme. An overlay
of the top ligands on hepsin indicates that the side chain hydroxyl
of Ser195 can be taken advantage by many ligands, either as HBD
or as HBA (Supporting Information Fig. S6). The backbone amino
group of Gly193 is also located such that it can interact with many
linkers when the ligand’s scaffold is in the S1 pocket.

Overall, if we compare the top ligands predicted by AutoDock
(Table 1) and Vina (Table S3) we observe some common scaf-
folds, such as 1,4-benzodioxan, 1-3-benzodioxole, and derivatives
of purine. In general, it seems that systems of two fused five- and
six-membered rings could be suitable scaffolds for designing
potent hepsin inhibitors around its S1 pocket.

Based on the structural insights gained from the docking on
hepsin, a small set of analogs of the top-binding ligands V-
0 (Supporting Information Table S4) and VA-0 (Supporting
Information Table S5) were manually designed. These mole-
cules were docked using Vina and AutoDock, and their ADMET
properties were predicted using StarDrop. Full results are included
as Supporting Information file mmc3.xlsx. The virtual medicinal
chemistry studies in Tables S4 and S5 highlight that i) is important
to project side chains outside the S1 binding pocket to achieve
submicromolar binding affinities and compensate for an excessive
entropic loss upon binding, and ii) it is suitable to use a conjugated
flat scaffold to design potent inhibitors, as these lead to a good
spatial match with the shape of the pocket in hepsin and the
orientation of the residues in the pocket.

Importantly, we identified that Asp189, which is crucial for
the recognition of the native substrate, was not being fully
exploited by the original top ligand candidates (Figs. 5 and S6).
Furthermore, in the case of matriptase, Ser190 may act as HBA,
whereas in hepsin Ala190 would not be able to engage in such
interaction. In Table S4, we also explored the design of purine
and caffeine-based scaffolds, with limited success, starting with a
structural simplification approach51. For instance, we hypothe-
sized that it could be beneficial to distance or substitute HBA
groups posed to bind nearby position 190 in hepsin to improve
the specificity of the ligand. Thus, we shifted the anchoring point
of the side chain in 3-methylxanthine from 9-position (V-3) to 7-
position (V-4), a change that could be synthetically accessible. To
maximize the discrimination, we also considered introducing an
amine group as an HBD (in V-12, V-13, V-15, and V-16) so that it
clashed with Ser190 in matriptase. Despite these attempts, better
results are reported in Table S5, where we started from the top
ligand according to AutoDock (VA-0) and modified the indole-
based scaffold to 5-fluoro-6-methyl-1H-indole (VA-14), boost-
ing its affinity (from pKiZ6.2 to pKiZ7.2) and specificity (from
40% to 59%). Importantly, both AutoDock and Vina clearly agree
that this molecule would achieve superior binding affinity and
specificity for hepsin. Note that both purine and indole are ex-
amples of privileged scaffolds present in successful commercial
drugs50,52.

Another important detail of using the indole-based scaffold
chosen is that it may nullify the potential proteolytic activity of the
enzyme when the ligand contains an amide bond proximal to the
2-position of the indole system. The mechanism of action of serine
proteases involves the nucleophilic attack of the carbonyl carbon



Table 1 Top five ligands in the original library based on their binding affinity to hepsin predicted by AutoDock and some of their properties.

Structure SPH identifier pKi/Specificity

(Vina)

pKi/Specificity

(AD)

ADMET

Blood

Score/Urine

Score

ADMET properties

31DRH1-100-176

(VA-0)

6.3

42%

8.1

57%

0.101

0.008

MW Z 416.4 Da

LogS Z 1.94

LogP Z 2.24

2C9 pKi Z 5.23 hERG pIC50 Z 3.86

P-gp category: yes

PPB90 category: medium

29DRH1-560-653 6.2

21%

7.5

21%

0.271

0.093

MW Z 436.5 Da

LogS Z 3.60

LogP Z 1.86

2C9 pKi Z 4.17 hERG pIC50 Z 5.47

P-gp category: yes

PPB90 category: low

21DRH1-180-486 6.5

41%

7.4

48%

0.108

0.023

MW Z 387.4 Da

LogS Z 2.20

LogP Z 0.25

2C9 pKi Z 5.15 hERG pIC50 Z 4.15

P-gp category: yes

PPB90 category: low

31DRH1-041-844 6.3

35%

7.4

70%

0.082

0.012

MW Z 415.4 Da

LogS Z 0.66

LogP Z 3.62

2C9 pKi Z 4.71 hERG pIC50 Z 4.05

P-gp category: yes

PPB90 category: high

9DRH1-047-413 6.1

34%

7.4

45%

0.348

0.030

MW Z 384.4 Da

LogS Z 1.89

LogP Z 2.47

2C9 pKi Z 5.13 hERG pIC50 Z 5.24

P-gp category: no

PPB90 category: medium
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Figure 6 9544 new hybrid compounds (second-generation library)

were generated by extracting R-groups from the LIDAEUS virtual

screening output (original library) and exhaustively combining them

with the optimized scaffold in the four ways shown. For details, see

file mmc4.xlsx.

Figure 5 Binding poses of the ligand 31DRH1-100-176 (VA-0) on

hepsin according to (a) AutoDock (pKiZ8.1) and (b) Vina (pKiZ6.3).

Hydrogen-bonds are indicated as dashed yellow lines. A part of the

pocket surface is shown: the exterior is lightly colored; the interior is

rendered plain gray. Note the potential of Asp189 to act as HBA.
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of the substrate peptide by a deprotonated serine45,46 (Ser195). In
this case, the proton on 1-nitrogen of indole is relatively acidic
(pKa w21) and could be taken up by serine (Supporting
Information Fig. S7), as it is also much closer and better ori-
ented than the carbonyl carbon. This peculiar arrangement could
further strengthen the binding of the ligand. Most importantly,
because the directionality of the amide bond is inverted with
respect to the natural substrate, the indole is sterically unable to
act as a leaving group (as it is contained in the S1 pocket). This
type of chemistry allows the powerful use of amide-containing
inhibitors in close proximity to an otherwise catalytic serine as
a notable example of substrate mimicry.

After optimizing the scaffold to 5-fluoro-6-methyl-1H-indole
(compound VA-14, Table S5), we set out to enhance the side chain
protruding outside the S1 pocket. A scaffold hopping approach was
devised based on the original 10,000 ligands preselected by
LIDAEUS. For this, we considered all the R-groups that were
connected through an amide bond to the rest of the molecule in this
first-generation library. Then, all the possible compounds con-
forming to Fig. 6 were enumerated, which resulted in a second-
generation library of 9544 new hybrid molecules (file
mmc4.xlsx). Thanks to the initial virtual screening by LIDAEUS,
many of the side groups considered at this stage were known to fit
reasonably well in the vicinity of the active site of hepsin, hence
gaining a double benefit from the use of this software.

The new compounds were then docked using Vina and their
ADMET properties estimated (file mmc4.xlsx). The most prom-
ising ligands were also docked on matriptase and HGFA in order
to assess their specificity. Although scaffold hopping onto a lead-
like library might generate considerably large molecules
(depending on how the R-group decomposition is conducted),
most of the best molecules proposed satisfy Lipinski’s rule of
five50 and exhibit reasonable ADMET properties. By and large,
this library enumeration approach turned out very successful
(Supporting Information Fig. S8) and allowed us to significantly
upgrade the lead compound VA-14 (KiZ643 nmol/l).
Compounds with predicted pKi values for hepsin as high as 8.1
(KiZ10 nmol/L) were constructed by this approach (Table 2 and
file mmc4.xlsx). The predicted binding poses of some of these
inhibitors on hepsin are represented in Fig. 7 and Supporting
Information Fig. S9 using LigPlotþ projections53.

The binding affinities of the ligands in Table 2 were also
estimated using a different scoring algorithm, X-score54. Although
this scoring function presents some correlation with that in Vina, it
is clearly different42, and differences of two orders of magnitude
in binding affinity to hepsin are predicted for other ligands
(Supporting Information Fig. S10). Thus, the X-score results for
the ligands selected, shown in Supporting Information Table S6,
further suggest that these molecules would display high binding
affinities to hepsin. Notably, some of the ligands designed in this
work are predicted to be more potent than previous designs
(Supporting Information Table S7), which could reduce the
amounts of xenobiotics that need to be administered in order to
achieve a therapeutic effect, potentially increasing safety and
minimizing side-effects. A molecular pathway association anal-
ysis using PathwayMap55 also suggests low toxicity for the
compounds selected (Supporting Information Fig. S11). Notably,
the compounds selected have molecular weights in the range of
400 Da (well below Lipinski’s 500 Da cutoff), � 10 rotatable
bonds, and a polar surface area � 140 Å2 (Table 2). According to
Veber’s rule, inhibitors that meet the latter two criteria show good
oral bioavailability56.

An additional advantage of having started with a lead-like
filtered library is that most of the compounds show good synthetic
accessibility57 and many of them are commercially available.
Likewise, because the second-generation library was enumerated
by recombining R-groups at amide bonds, the molecules built
generally have reasonable synthetic accessibility. Notably, the
optimized scaffold 5-fluoro-6-methyl-1H-indole can be acquired
from commercial vendors. In Supporting Information Fig. S12 we



Table 2 Summary of the development of specific drug-like hepsin inhibitors in this work.

Library Structure Identifier Ki (nmol/L)/S.I.

(Vina)

Ki (nmol/L)/S.I.

(AD)

Blood

Score/Urine

Score/Rot.

bonds/PSA

ADMET properties

1st Gen library 8DRH1-052-975

(VA-0)

578

40%

12

53%

0.101

0.008

7

117

MW Z 416.4

logS Z 1.9

logP Z 2.24

2C9 pKi Z 5.23 hERG pIC50 Z 3.86

Manual refinement VA-14 64

59%

31

55%

0.061

0.005

7

133

MW Z 427.4

logS Z 0.87

logP Z 2.15

2C9 pKi Z 5.70 hERG pIC50 Z 3.49

2nd Gen library VB-1013 10

75%

66

14%

0.028

0.005

6

127

MW Z 463.5

logS Z 0.63

logP Z 3.99

2C9 pKi Z 6.04 hERG pIC50 Z 4.13

VB-1385 10

64%

13

52%

0.091

0.008

4

123

MW Z 419.4

logS Z 0.91

logP Z 2.79

2C9 pKi Z 5.73 hERG pIC50 Z 4.23

VB-3497 10

60%

37

38%

0.107

0.022

5

106

MW Z 435.4

logS Z 0.49

logP Z 3.65

2C9 pKi Z 5.99 hERG pIC50 Z 4.52

VB-865 17

55%

18

58%

0.159

0.022

3

108

MW Z 376.3

logS Z 0.52

logP Z 2.57

2C9 pKi Z 5.81 hERG pIC50 Z 4.77
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Figure 7 Projections of the inhibitors VB-1013 (left) and VB-1385 (right) bound to the active site of hepsin as predicted by Vina. The pipeline

proposed succeeded in incorporating side chains to the scaffold that make strong interactions with hepsin and are synthetically accessible.
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exemplify the synthesis of the most promising ligands in Table 2
starting from a commercially available compound.

4. Conclusions

Hepsin is an important medicinal target in need of improved in-
hibitors. The development of drug-like specific inhibitors of
hepsin could improve our understanding and options about this
macromolecule in kidney stone formation and the progression of
certain types of cancer. Known inhibitors are limited by their
specificity towards hepsin in the presence of similar proteases and/
or by their limited stability in the human body. In this work,
potentially improved small-molecule inhibitors have been
designed to target hepsin in a specific manner. Derivatives of
indole, a privileged scaffold, were predicted to exhibit nanomolar
binding affinity to the active site of hepsin. Moreover, their esti-
mated ADMET properties are promising towards oral
administration.

At a broader level, this work defines a hierarchical computa-
tional pipeline that can allow the determination of potent lead-like
and drug-like compounds with excellent cost-efficiency. The
combination of a coarser virtual screening prior to a finer docking
and the recombination of the results in a second-generation library
allowed three important benefits: i) a large lead-like library could
be reduced into a compact library of compounds with sizes
matching the environment of the active site of the protein of in-
terest, ii) the second-generation library takes further advantage of
the first virtual screening, and iii) the compounds produced are
more likely to exhibit reasonable ADMET properties and better
synthetic accessibility. Moreover, the pipeline proposed can be
applied with little intervention by advancing the top hits obtained
by default in the pipeline, or it can be adapted to the know-how of
the laboratory or company using it, allowing the manual modifi-
cation of intermediate structures, as shown in this work. Notably,
over a million compounds were screened to varying depths
without the need of expensive supercomputing resources, by using
an affordable 32-core system in less than a week of computing
time. This work could therefore be adapted to pursue novel targets
and improve the efficiency of the discovery and design of next-
generation drugs.
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