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ABSTRACT

Deep learning has been applied for solving many
biological problems, and it has shown outstanding
performance. Applying deep learning in research re-
quires knowledge of deep learning theories and pro-
gramming skills, but researchers have developed
diverse deep learning platforms to allow users to
build deep learning models without programming.
Despite these efforts, it is still difficult for biolo-
gists to use deep learning because of limitations of
the existing platforms. Therefore, a new platform is
necessary that can solve these challenges for biolo-
gists. To alleviate this situation, we developed a user-
friendly and easy-to-use web application called DLEB
(Deep Learning Editor for Biologists) that allows for
building deep learning models specialized for biolo-
gists. DLEB helps researchers (i) design deep learn-
ing models easily and (ii) generate corresponding
Python code to run directly in their machines. DLEB
provides other useful features for biologists, such
as recommending deep learning models for specific
learning tasks and data, pre-processing of input bio-
logical data, and availability of various template mod-
els and example biological datasets for model train-
ing. DLEB can serve as a highly valuable platform for
easily applying deep learning to solve many impor-
tant biological problems. DLEB is freely available at
http://dleb.konkuk.ac.kr/.

GRAPHICAL ABSTRACT

INTRODUCTION

Deep learning is one class of machine learning algorithms
that can extract important features from raw data by them-
selves in an end-to-end method (1). Dramatic improve-
ment of computational power and learning algorithms, as
well as the accumulation of enormous sets of biological
data, have enabled the use of deep learning for solving
many biological problems (2) including transcription fac-
tor binding site prediction (3,4), variant detection (5,6), and
biomedical image diagnosis (7,8). Diverse libraries based
on Python programming language, including Tensorflow
(https://www.tensorflow.org/), Keras (https://keras.io/) and
PyTorch (https://pytorch.org/), have been developed to help
implement deep learning models. However, they are difficult
to use without knowledge of deep learning theories and pro-
gramming skills.

Accordingly, diverse deep learning platforms such as
Deep Cognition (https://deepcognition.ai/), Watson Stu-
dio Neural Network Modeler (https://www.ibm.com/cloud/
watson-studio), and Neural Network Console (https://dl.
sony.com) have been developed to allow users to build deep
learning models without programming. Nevertheless, biol-
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ogists are still discouraged from applying deep learning in
their research because existing deep learning platforms only
focus on implementing general deep learning models. To
successfully apply deep learning models in research, it is im-
portant to choose the most appropriate model for the pre-
pared input data and the specific learning task (2). For ex-
ample, the convolutional neural network (CNN) is useful
for extracting and using local patterns in image data (9), and
the recurrent neural network (RNN) is a good model for
processing sequential or signal data (1). However, existing
platforms do not provide enough example models or recom-
mend appropriate models specialized for a specific learn-
ing task that users want to solve. Therefore, it is difficult
for biologists to choose appropriate deep learning models
in those platforms.

Existing deep learning platforms also do not support pre-
processing of biological data, an essential step when us-
ing such data in deep learning. However, it is difficult to
be carried out by biologists, especially if they do not have
enough programming skills. The input data for a deep learn-
ing model is typically represented as a matrix with numer-
ical or categorical values. However, because most biologi-
cal data is not in the shape of a matrix, it has to be pre-
processed to be converted into an allowed format. Thus,
a pipeline for pre-processing the biological data can be
useful for biologists. Furthermore, recent biological stud-
ies have applied various deep learning models with compli-
cated structures including a generative adversarial network
(GAN) (10) and a Wasserstein generative adversarial net-
work (WGAN) (arXiv preprint arXiv:1712.06148). How-
ever, building such complex deep learning models in exist-
ing platforms is still limited and furthermore, most existing
platforms are not freely available to users. Therefore, a new
deep learning platform that can solve the above limitations
especially for biologists is necessary.

We developed a user-friendly and easy-to-use web appli-
cation called DLEB (Deep Learning Editor for Biologists)
for building deep learning models specialized for biologists.
DLEB can help researchers (i) easily design deep learning
models and (ii) generate corresponding Python code for
running in their machines directly. DLEB provides addi-
tional useful features for biologists, such as recommending
deep learning models for specific learning tasks and data,
pre-processing input biological data, making available of
various template models, and example biological datasets
for model training. DLEB can serve as a highly valuable
platform for easily applying deep learning to solve many im-
portant biological problems.

MATERIALS AND METHODS

Web application overview

DLEB consists of two parts: a client-side web interface
and a server-side module (Figure 1). In the client-side web
interface, users can design deep learning models using a
user-friendly and easy-to-use WYSIWYG (What You See
Is What You Get) interface. Diverse template models and
step-by-step model recommendations are also provided for
users who lack adequate knowledge of model structures.
After the users design the deep learning model with the

Figure 1. DLEB workflow. In the client-side web interface, the structure
of deep learning models is designed using an easy-to-use web interface of
DLEB (top panel). The format of input biological data and parameters are
also set in the web interface. Users can use template models and the model
recommendation function as they design models (yellow boxes in the top
panel). In the server-side module, models designed in the client-side web
interface are imported into Python code using the Tensorflow2 and Keras
deep learning libraries (bottom panel). The final Python code generated by
the server-side module in DLEB includes all required code, ranging from
input data pre-processing to model training and validation.

specified training parameters, DLEB implements the model
and generates a Python code in the server-side module.
The generated Python code consists of many useful parts,
such as implementation of designed deep learning mod-
els, code for pre-processing input biological data, model
training, and monitoring, that allow users to run the code
and examine the training process in their machines di-
rectly without any additional tasks. The details of func-
tions provided by DLEB are described in the following
subsections.
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Figure 2. Client-side web interface of DLEB. (A) Layer and Template panel for adding layers in models. (B) Information panel for displaying the number
of layers and parameters in current models. The numbers are changed in real-time. (C) Designed models are visualized as in graph form in which nodes and
edges represent layers and connections between layers, respectively. Multiple layers can be grouped and visualized as a layer group (blue boxes). Activation
functions are presented as circles with a function icon positioned on edges. (D) Parameter panel for setting various parameters of each layer and activation
functions.

Deep learning model design in the client-side web interface

DLEB provides an easy-to-use web interface for design-
ing and constructing deep learning models using simply
mouse click and drag (Figure 2). DLEB supports diverse
types of layers, activation functions, and pre-trained mod-
els (layer panel in Figure 2A). Users can easily set various
parameters for each layer such as an activation function in
the parameter panel (Figure 2D). For user’s convenience,
DLEB provides commonly used parameter values as de-
faults. Users can also add custom layers and define their
operation. Designed models are visualized as a graph struc-
ture where nodes and edges represent layers consisting of
the model and connections among them, respectively (Fig-
ure 2C). Additionally, multiple layers designed for working
together for the same function such as encoder and decoder
can be grouped and visualized as a layer group (blue boxes
in Figure 2C). Activation functions, which transform out-
puts of layers, are represented as circles with a function icon
positioned on edges.

For researchers with little experience in designing deep
learning models, DLEB provides diverse template models
(Template panel in Figure 2A) and recommends deep learn-
ing models (Figure 3). DLEB supports widely used deep
learning models as templates including DNN (Deep Neu-
ral Network), CNN, RNN, GAN, WGAN and autoencoder

as well as popular pre-trained neural networks including
Xception (11), VGG (arXiv preprint arXiv:1409.1556) and
ResNet (12). DLEB recommends deep learning models ap-
propriate for a selected learning task with its available input
data (Figure 3A–C). When the users choose a model among
the recommended ones, DLEB generates a template for the
model in the web interface for further customization (Fig-
ure 3D).

Moreover, DLEB provides various information on con-
structed models that could be used to build complete mod-
els. For example, DLEB can calculate and display numbers
of layers and parameters in deep learning models that are
updated in real time during model construction (Figure 2B).
Those numbers can be valuable information for users to
reduce the size of the model or the time needed for train-
ing. DLEB also checks the integrity of model structures and
parameter values before generating corresponding Python
code.

Deep learning model implementation in the server-side mod-
ule

Given a model structure and user-defined parameters,
DLEB generates Python code in the server-side module
for running in users’ machines directly without additional
programming. The Python code consists of multiple parts:
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Figure 3. Model recommendation function of DLEB. (A) Web interface for selecting a learning task. Users can choose one of the learning tasks including
‘Feature extraction’, ‘Data generation’, ‘Classification’, and ‘Regression’. (B) Web interface for selecting the type of available data. (C) Examples of models
recommended by DLEB. (D) Web interface for customizing a recommended model.

pre-processing input biological data, implementing the de-
signed model, and training and monitoring the model. It is
difficult to directly use data in formats specialized for bio-
logical data, such as FASTA, BAM, bigWig, VCF and GFF,
as input data for deep learning models. Therefore, DLEB
generates Python code for calculating biological features in
each genomic region of interest and summarizing them in a
matrix format using the Python library ‘janggu’ (13) and in-
house Python scripts. Image and text data can also be pre-
processed into pixels and string arrays, respectively, which
are summarized in NumPy (14) array format that can be di-
rectly used in deep learning models. For model training and
evaluation, the pre-processed dataset can be divided into
training, validation, and test datasets. The generated code
can be also used to post-process the output of output layers
by converting it into the original format of the input data
such as a sequence or an image. The generated Python code
includes code for all of the above tasks.

The designed deep learning models are implemented in
the server-side module using Tensorflow2 and Keras, the

two most popular deep learning libraries. For handling
models with complex structures including multiple inputs
or outputs and non-linear topology, the Keras functional
API, which is more flexible than the Keras sequential API,
is used. To identify the order of layers in the model struc-
ture efficiently, the depth-first search algorithm is used for
traversing the graph structure of models. Furthermore, the
final code includes code for training, testing, monitoring,
and saving models. Therefore, all processes from data pre-
processing to model training can be executed directly by
running just the generated Python code. Additionally, users
can obtain intermediate outputs generated by hidden layers
by using a command-line option of the generated Python
code.

Example biological datasets

There are various public example datasets for evaluating
the performance of deep learning models, such as MNIST
(15), Street View House Numbers (16), and the 1 Bil-
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Figure 4. Example generative adversarial network (GAN) model designed using DLEB. (A) The model structure of GAN consisting of a discriminator
and a generator. (B) Images of the input and the output of the generator in the GAN model. Feature maps of the last hidden layer in the encoder are also
visualized as gray-scale images (blue box).

lion Word Language Model Benchmark datasets (arXiv
preprint arXiv:1312.3005). Even though there are unique
characteristics of biological data compared with other
datasets including high complexity (17) and variability (18),
there are no example datasets specialized for evaluating
deep learning models designed for biological input data.
Therefore, DLEB provides example biological datasets that
researchers have used in deep learning models in recent bio-
logical studies (5,19–21). DLEB supports example datasets
with diverse types including sequence, alignment, signal,
and image and provides example deep learning models for
each data type.

Implementation

The server-side module was written by Python (version
3.8.10). The client-side web interface was implemented
using HTML5 (https://www.w3.org/TR/html5/), Bootstrap
(version 4.6, https://getbootstrap.com/), and JavaScript
(https://www.javascript.com/) along with several libraries,
such as jQuery (https://jquery.com/) and d3.js (https://d3js.
org/). PHP (version5.3.3, https://php.net) was used for
Python code generation.

RESULTS

To illustrate the capability and usefulness of DLEB, we built
a GAN model that generates in situ hybridization (ISH) im-
ages of Drosophila embryo (Figure 4). In this experiment,
we randomly selected 1,000 ISH images obtained from the
Berkeley Drosophila Genome Project (BDGP) dataset (22)
available in the DLEB website to use as training data. The
GAN model was designed to contain two sub-models: a
generator that could generate the ISH images and a discrim-
inator that could distinguish real images from images the
generator provided (Figure 4A). The generator comprises
two parts: encoder and decoder. The encoder has three con-
volutional layers and two batch normalization layers with a
LeakyReLU activation function, and the decoder consists
of three deconvolution layers and two batch normalization
layers with a ReLU activation function. To generate image
vectors with values ranging from –1 to 1, a Tanh activa-
tion function is fed to the result of the final decoder block.
The discriminator consists of four convolutional layers fol-
lowed by the LeakyReLU activation function and batch
normalization. The resulting feature vector is fed to a sig-
moid activation function for binary classification. To train
this model, we set the batch size to 1 and the number of
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Figure 5. Example convolutional neural network (CNN) model designed using DLEB. (A) The architecture of the CNN model. (B) Pre-processing of an
input DNA sequence. A DNA sequence in 1000 bp length is converted to a one-hot encoded matrix using a source code provided by DLEB. (C) Predicted
probabilities of chromatin features (top row) and true labels (bottom row; 1 means the input sequence is related to the corresponding chromatin feature).

epochs to 100, and used the Adam optimizer with a learn-
ing rate of 1E–5 and a cross entropy loss function. Figure
4B shows an example of input ISH image, the feature maps
of the last hidden layer in the encoder, and the synthesized
ISH image from the generator, which was similar to the in-
put image.

We next built a CNN model that predicts chromatin fea-
tures from a given DNA sequence as designed and described
in (21) (Figure 5A). For training and testing the model, we
collected 99 298 DNA sequences in 1000 bp length with
labels of 10 chromatin features, and split them to train-
ing (80%), validating (10%), and testing (10%) dataset. The
DNA sequences in FASTA format were converted to matri-
ces containing one-hot encoded nucleotides using a source
code for pre-processing input data provided by DLEB (Fig-
ure 5B). The CNN model consists of two 2D convolution
blocks, a 2D convolution layer, and a fully connected layer
(Figure 5A). The 2D convolution block contains a 2D con-
volution layer with a ReLU activation function followed by
a max pooling and a dropout layer. The output of the sec-
ond 2D convolution block is fed to the 2D convolution layer
and then to a fully connected layer. The final output vector
is then transformed with a sigmoid activation function for
multi-label classification of 10 chromatin features. For train-
ing this model, the batch size was set to 16 and the SGD
optimizer was used with a learning rate of 1E-3 and a mean
squared error loss function. Figure 5C shows an example
of the probability of each chromatin feature predicted by
the CNN model (top row) and a true label (bottom row;
1 means the input sequence is related to the corresponding
chromatin feature). By using 0.5 as the probability cutoff for
classification, we can observe perfect agreement between the
predicted and true labels.

The deep learning models shown in Figures 4A and 5A
were solely designed by using the client-side web interface in

DLEB. The generated Python code for those models (Sup-
plementary Data S1 and S2) was successfully run in a ma-
chine with the NVIDIA Quadro RTX 5000 GPU. These
experiments clearly showed the applicability of DLEB for
solving biological problems using deep learning.

CONCLUSIONS

DLEB is a user-friendly web application for designing and
implementing deep learning models for biologists. It helps
users design and implement deep learning models with
an easy-to-use web interface and various useful functions.
DLEB can serve as a highly valuable platform for easily
applying deep learning to solve many important biological
problems. Because various biological data can be presented
in graph form, future updates in DLEB will include the sup-
port of graph-based neural networks such as graph convo-
lutional networks.
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