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Abstract
The	 cardiac	 protection	 of	mesenchymal	 stem	 cell	 (MSC)	 transplantation	 for	myo-
cardial	 infarction	 (MI)	 is	 largely	hampered	by	 low	cell	 survival.	Haem	oxygenase	1	
(HO‐1)	 plays	 a	 critical	 role	 in	 regulation	 of	 cell	 survival	 under	many	 stress	 condi-
tions.	This	study	aimed	to	investigate	whether	pre‐treatment	with	haemin,	a	potent	
HO‐1	 inducer,	would	promote	 the	 survival	 of	MSCs	under	 serum	deprivation	 and	
hypoxia	(SD/H)	and	enhance	the	cardioprotective	effects	of	MSCs	in	MI.	Bone	mar-
row	(BM)‐MSCs	were	pretreated	with	or	without	haemin	and	then	exposed	to	SD/H.	
The	mitochondrial	morphology	 of	MSCs	was	 determined	 by	MitoTracker	 staining.	
BM‐MSCs	and	haemin‐pretreated	BM‐MSCs	were	transplanted	into	the	peri‐infarct	
region	in	MI	mice.	SD/H	induced	mitochondrial	fragmentation,	as	shown	by	increased	
mitochondrial	fission	and	apoptosis	of	BM‐MSCs.	Pre‐treatment	with	haemin	greatly	
inhibited	 SD/H‐induced	mitochondrial	 fragmentation	 and	 apoptosis	 of	 BM‐MSCs.	
These	effects	were	partially	abrogated	by	knocking	down	HO‐1.	At	4	weeks	after	
transplantation,	compared	with	BM‐MSCs,	haemin‐pretreated	BM‐MSCs	had	greatly	
improved	the	heart	function	of	mice	with	MI.	These	cardioprotective	effects	were	
associated	with	increased	cell	survival,	decreased	cardiomyocytes	apoptosis	and	en-
hanced	angiogenesis.	Collectively,	our	study	identifies	haemin	as	a	regulator	of	MSC	
survival	and	suggests	a	novel	strategy	for	improving	MSC‐based	therapy	for	MI.
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1  | INTRODUC TION

Despite	the	advanced	developments	in	surgical	treatment	and	phar-
macological	therapy,	myocardial	 infarction	 (MI)	 is	still	a	major	cause	
of	 morbidity	 and	 mortality	 worldwide.1	 Mesenchymal	 stem	 cell	
(MSC)‐based	 therapy	 has	 shown	 promising	 results	 in	MI	 treatment	
because	of	the	capacity	of	MSCs	to	differentiate	into	cardiomyocytes	
and	confer	paracrine	effects.	The	efficacy	of	MSC‐based	therapy	 is	
nonetheless	seriously	restricted	by	poor	cell	survival	in	the	hostile	en-
vironment	of	 the	 injured	heart.2-4	Oxidative	 stress	 in	 the	 ischaemic	
heart	can	quickly	induce	apoptosis	of	transplanted	MSCs.2	It	has	been	
reported	that	fewer	than	1%	of	MSCs	can	survive	in	the	ischaemic	rat	
heart	after	MI	at	24	hours	after	transplantation.5	Therefore,	exploring	
a	novel	strategy	to	enhance	the	retention	and	engraftment	of	MSCs	in	
the	ischaemic	heart	is	urgently	needed.	Indeed,	several	pre‐treatment	
strategies,	including	hypoxia	and	genetic	modification,	have	shown	to	
increase	the	survival	of	MSCs	under	hostile	environment.6,7

Cell	death	is	mainly	mediated	by	mitochondrial	function,	which	
is	closely	related	to	mitochondrial	dynamics.8	Mitochondria	undergo	
fusion	and	fission	to	form	a	network	for	maintaining	cell	function.9,10 
Mitochondrial	 fusion	 is	regulated	by	mitofusin	1	 (Mfn1)	and	Mfn2,	
whereas	mitochondrial	fission	is	mainly	regulated	by	mitochondrial	
fission	protein	dynamin‐related	protein	1	(Drp1)	and	mitochondrial	
fission	1	(Fis1).	Converging	evidence	has	shown	that	mitochondrial	
fission	results	in	fragmented	mitochondria	and	thus	induces	apopto-
sis.11,12	Nevertheless,	whether	ischaemic	conditions	can	induce	mi-
tochondrial	fission	and	thus	lead	to	apoptosis	of	transplanted	MSCs	
has	not	been	determined.

Haem	oxygenase	1	 (HO‐1),	an	 inducible	stress	protein,	possesses	
cytoprotective	 defences	 including	 antioxidative	 stress,	 antiapoptosis	
and	anti‐inflammation	 functions	during	challenge	by	different	 stress-
ors.13,14	A	previous	study	has	shown	that	HO‐1	up‐regulation	inhibits	
mitochondrial	 fission,	 thus	 attenuating	 apoptosis	 of	 cardiomyocytes	
induced	by	intermittent	hypoxia.15	Furthermore,	cardiac‐specific	over-
expression	 of	HO‐1	 significantly	 reduces	 up‐regulated	mitochondrial	
fission	 and	 therefore	 protects	 against	 doxorubicin‐induced	 dilated	
cardiomyopathy.16	Given	 that	HO‐1	plays	 a	 critical	 role	 in	 regulating	
mitochondrial	dynamics,	we	have	been	suggested	that	 the	 ischaemic	
condition	 induces	 apoptosis	 of	MSCs	via	 up‐regulation	of	mitochon-
drial	fission	which	is	regulated	by	HO‐1.	Therefore,	pre‐treatment	with	
haemin,	an	HO‐1	inducer,	can	increase	the	capability	of	MSCs	to	toler-
ate	ischaemic	conditions	via	inhibition	of	mitochondrial	fission	and	thus	
enhance	cardioprotective	effects	that	ameliorate	the	damage	from	MI.

2  | MATERIAL S AND METHODS

2.1 | Cell culture

Human	 bone	 marrow	 (BM)‐MSCs	 were	 purchased	 from	 Cambrex	
BioScience	(catalog	no.	PT‐2501).	BM‐MSCs	were	routinely	cultured	
as	previously	described.17	Cells	were	passaged	at	a	ratio	of	1:3	when	
they	reached	confluence.	The	cells	from	passages	3‐4	were	used	in	
the	current	study.

2.2 | Serum deprivation and hypoxia (SD/H)‐
exposed cell culture and haemin pre‐treatment

To	mimic	the	ischaemic	conditions	in	vitro,	BM‐MSCs	were	cultured	
under	SD/H	challenge.18	In	brief,	when	BM‐MSCs	reached	70%‐80%	
confluence,	the	completed	culture	medium	was	changed	to	medium	
without	foetal	bovine	serum	(FBS)	and	then	cultured	under	hypoxia	
(1%	oxygen,	5%	carbon	dioxide	and	94%	nitrogen)	for	48	hours.	For	
haemin	 pre‐treatment,	 BM‐MSCs	 were	 cultured	 in	 complete	 me-
dium	with	10	µM	haemin	under	normoxia	 (95%	air	and	5%	carbon	
dioxide)	for	24	hours	prior	to	SD/H	challenge.

2.3 | Cell‐counting kit‐8 assay

Cell	 viability	 of	 BM‐MSCs	 was	 examined	 by	 cell‐counting	 kit‐8	
(CCK‐8)	kit	(Beyotime	Biotechnology)	according	to	the	manufactur-
er's	protocol.	Briefly,	BM‐MSCs	with	or	without	haemin	pre‐treat-
ment	were	seeded	in	96‐well	plates	at	a	density	of	2	×	103	cells/well	
under	 SD/H	 challenge	 for	 48	 hours.	 The	 cells	were	 cultured	with	
CCK‐8	 solution	 for	 an	 additional	 2	 hours	 at	 37°C	 in	 a	 dark	 place.	
Subsequently,	the	OD	values	were	measured	at	450	nm	with	a	mi-
croplate	reader	(Biotek).

2.4 | siRNA transfection

Control	siRNA	or	HO‐1	siRNA	was	used	to	transfect	BM‐MSCs	using	
Lipofectamine	 RNAiMAX	 (13778‐075;	 Invitrogen).	 Briefly,	 control	
siRNA	or	HO‐1	siRNA	was	diluted	with	OptiMEM	and	mixed	with	
the	transfection	reagent.	Each	mixture	was	added	to	BM‐MSCs	at	
70%‐80%	confluence	and	then	 incubated	for	24‐48	hours.	Finally,	
the	transfection	efficiency	was	examined	by	Western	blot	analysis.

2.5 | MitoTracker staining

The	morphology	of	mitochondria	was	examined	by	MitoTracker	stain-
ing	 as	previously	 reported.15	Briefly,	 after	 the	different	 treatments,	
BM‐MSCs	were	washed	with	PBS	and	 incubated	with	0.01	µmol/L	
MitoTracker	Green	FM	(M7514;	Thermo	Fisher	Scientific)	for	30	min-
utes	at	37°C	in	a	dark	place	and	then	mounted	with	4',6‐diamidino‐2‐
phenylindole	 (DAPI).	 Images	 from	 five	different	 view	 fields	 of	 each	
slide	(magnification	of	20x)	were	randomly	captured	by	laser	confocal	
scanning	microscopy	(Zeiss	LSM	Meta	510).	The	percentage	of	mito-
chondrial	fragmentation	was	calculated	by	comparing	the	number	of	
cells	with	fragmented	mitochondria	to	the	total	number	of	cells.

2.6 | TUNEL staining

Apoptosis	of	BM‐MSC	after	different	 treatments	was	detected	by	
terminal	 deoxynucleotidyl	 transferase‐mediated	 dUTP	 nick	 end	
labelling	 (TUNEL)	 staining	 kit	 (11684795910;	Roche).	Briefly,	 after	
different	treatments,	the	cells	were	washed	with	PBS,	fixed	and	in-
cubated	with	1	µg/mL	of	Proteinase	K/10	mmol/L	Tris	solution	for	
15	minutes	at	room	temperature.	Following	washing	with	PBS	twice,	
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the	cells	were	incubated	with	the	TUNEL	reaction	mixture	for	1	hour	
at	37°C	in	a	dark	place.	Finally,	the	cells	were	washed	and	mounted	
with	DAPI	 to	 stain	 the	nuclei.	 Images	of	 five	 different	 view	 fields	
for	each	slide	were	randomly	captured	 (magnification	of	20x).	The	
apoptosis	of	BM‐MSCs	was	calculated	as	the	proportion	of	positive	
TUNEL	cells	to	total	DAPI‐positive	cells.

2.7 | Western blot analysis

The	protein	of	each	sample	was	extracted	using	RIPA	buffer	(9806,	
CST),	and	then	the	amount	of	concentrated	protein	was	measured.	
The	proteins	were	separated	on	SDS‐PAGE	gel,	transferred	to	PVDF	
membranes	 and	 then	washed	with	Tris‐buffered	 saline	 (TBS)	with	
0.1%	 Tween‐20	 (TBST).	 After	 blocking	 with	 5%	 fat‐free	 milk	 in	
TBS,	 the	 membranes	 were	 incubated	 with	 the	 following	 primary	
antibodies:	 anti‐p‐Drp1	 ser616	 (PA5‐64821;	 Invitrogen),	 anti‐Drp1	
(PA5‐20176;	Invitrogen),	anti‐Mfn2	(ab124773;	Abcam)	and	GAPDH	
(2118,	CST)	at	4°C	overnight.	Then,	the	membranes	were	incubated	
with	 horseradish	 peroxide‐conjugated	 secondary	 antibodies	 for	
1	hour	at	room	temperature.	Finally,	the	membranes	were	exposed	
using	enhanced	chemiluminescence	(ECL	plus)	(Amersham).

2.8 | Preparation of conditioned medium and 
HUVEC tube formation analysis

The	 conditioned	 medium	 (CdM)	 of	 MSCs	 was	 collected	 as	 previ-
ously	 described.19	 Briefly,	 BM‐MSCs	with	 or	without	 haemin	 pre‐
treatment	were	seeded	in	6‐well	plated	and	cultured	until	70%‐80%	
confluence.	Subsequently,	the	medium	was	replaced	with	2	mL	per	
well	serum‐free	medium.	After	48	hours	culture,	the	CdM	was	col-
lected,	centrifuged	and	stored	at	−80°C	until	use.	HUVECs	(30	000	
cells/well)	were	seeded	 in	a	96‐well	plate	coated	with	growth‐fac-
tor‐reduced	matrigel	(BD	Biosciences,	356230).	Next,	HUVECs	were	
treated	with	CdM	derived	 from	BM‐MSCs	and	haemin‐BM‐MSCs.	
After	6	hours	of	treatment,	capillary‐like	tube	formation	was	imaged	
(magnification	of	 10x).	 The	 endothelial	 tube	 length	 and	branching	
points	were	analysed	using	ImageJ	software.	The	experiments	were	
repeated	at	least	three	times.

2.9 | MI model and MSC transplantation

All	experiments	involving	animals	were	performed	in	accordance	with	
relevant	guidelines	and	regulations	of	Tongji	University	and	approved	
by	 the	 Institutional	 Animal	 Care	 and	Use	 Committee	 of	 the	 Tongji	
University	for	Laboratory	Animal	Medicine	(TJLAC‐019‐133).	Female	
C57/B6J	 mice,	 6‐8	 weeks	 old,	 were	 purchased	 from	 the	 Shanghai	
Laboratory	Animal	Research	Center	(Shanghai,	China).	An	MI	model	
in	mice	was	developed	as	previously	described.20	After	ligation	of	the	
left	anterior	descending	artery	(LAD)	2	mm	from	the	aorta,	randomly	
chosen	mice	 received	an	 intramyocardial	 injection	of	30	µL	of	PBS	
(MI	group,	n	=	15),	3.0	×	105	BM‐MSCs	in	30	μL	PBS	(BM‐MSC	group,	
n	=	13)	or	3.0	×	105	haemin‐pretreated	BM‐MSCs	in	30	μL	PBS	(hae-
min‐BM‐MSC	group,	n	=	12)	at	four	sites	on	the	surrounding	border	of	

the	infarct	area.	In	the	negative	control	group	(sham	group,	n	=	10),	the	
mice	underwent	thoracotomy	without	LAD	ligation.

2.10 | Echocardiography assessment

The	 heart	 function	 of	 each	mouse	 from	 the	 different	 groups	was	
evaluated	 by	 transthoracic	 echocardiography	 (Ultramark	 9;	 Soma	
TechnologyA)	at	4	weeks	after	cell	transplantation.	The	echocardio-
graphic	parameters	were	analysed	using	MATLAB	R2011b	software	
(MathWorks).

2.11 | Masson's trichrome staining

After	 echocardiography	 evaluation,	 all	 mice	 were	 killed,	 and	 the	
hearts	 were	 collected.	 The	 mouse	 hearts	 were	 fixed,	 embedded	
and	sectioned	into	5	μm	sections.	Fibrosis	in	the	mouse	hearts	was	
detected	by	Masson's	Trichrome	Stain	Kit	(HT15;	Sigma).	Images	of	
each	 slide	were	captured	 (magnification	of	4x).	The	percentage	of	
the	infarct	size	was	analysed	as	follows:	(fibrosis	area/total	left	ven-
tricle	area)×100%.

2.12 | Immunohistochemistry

Immunohistochemical	 staining	 was	 performed	 as	 previously	 de-
scribed.3	Briefly,	the	heart	sections	were	hydrated,	the	antigen	was	
retrieved,	and	the	specimen	was	blocked	with	5%	bovine	serum	al-
bumin	 for	 30	minutes.	 Subsequently,	 heart	 sections	were	 stained	
with	the	following	primary	antibodies,	anti‐HNA	(ab191181,	Abcam)	
and	 anti‐CD31	 (77	 699,	 CST),	 at	 a	 1:100	 dilution	 and	 then	 incu-
bated	 overnight	 at	 4°C.	 After	washing,	 the	 slides	were	 incubated	
for	30	minutes	with	streptavidin	peroxidase‐conjugated	secondary	
antibody	(ab64264,	Abcam)	at	room	temperature.	After	this	incuba-
tion,	the	slides	were	washed	three	times	 in	PBS,	and	the	antibody	
complexes	were	coloured	with	diaminobenzidine	and	then	counter-
stained	with	haematoxylin.	Five	 sections	were	 randomly	collected	
from	each	mouse,	and	six	mice	from	each	group	were	captured	(mag-
nification	of	10x).

2.13 | Polymerase chain reaction

Human	Alu‐sx	 repeat	 sequences	 in	 the	 heart	 tissue	 from	 the	 differ-
ent	 groups	 were	 evaluated	 by	 genomic	 polymerase	 chain	 reaction	
(PCR)	as	previously	described.3	The	primer	of	human	Alu‐sx	was	F:5'‐
GGCGCGGTGGCTCACG‐3',	R:5'‐TTTTTTGAGACGGAGTCTCGCTC‐3.	
The	product	was	detected	by	electrophoresis	in	1.5%	agarose	gel	sup-
plemented	with	ethidium	bromide.

2.14 | Statistical analysis

Values	 are	 shown	 as	 the	 mean	 ±	 SEM.	 Statistical	 analyses	 were	
performed	 using	 Prism	 5.04	 software	 (GraphPad	 Software	 Inc.).	
The	comparison	between	two	groups	was	analysed	using	unpaired	
Student's	 t	 tests	 and	 between	 multiple	 groups	 using	 one‐way	
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ANOVA	followed	by	the	Bonferroni	test.	A	P	value	<0.05	was	con-
sidered	statistically	significant.

3  | RESULTS

3.1 | Haemin suppresses SD/H‐induced 
mitochondrial fission and apoptosis of BM‐MSCs

To	 test	 the	 protective	 effects	 of	 haemin	 on	 BM‐MSCs,	 we	 pre-
treated	 BM‐MSCs	 with	 different	 concentration	 of	 haemin	 (1,	 5,	
10,	20	μmol/L)	for	24	hours	and	then	exposed	them	to	SD/H.	The	
CCK‐8	assay	 showed	 that	haemin	pre‐treatment	greatly	enhanced	
the	 viability	 of	 BM‐MSCs	 under	 SD/H	 in	 a	 dose‐dependent	man-
ner and 10 μmol/L	 haemin	 pre‐treatment	 exhibited	 the	 best	 pro-
tective	effects	 (Figure	1A).	Furthermore,	we	pretreated	BM‐MSCs	
with	10	μmol/L	haemin	with	different	time	(6,	12,	24,	48	hours)	and	
then	 exposed	 them	 to	 SD/H.	 The	 CCK‐8	 assay	 also	 showed	 that	
haemin	pre‐treatment	 greatly	 enhanced	 the	 viability	 of	BM‐MSCs	
under	SD/H	in	a	time‐dependent	manner	and	24	hours	haemin	pre‐
treatment	 exerted	 the	 best	 protective	 effects	 (Figure	 1A).	 Based	
on	 these	 results,	 24	 hours	 pre‐treatment	 with	 10	 μmol/L	 haemin	
was	 chosen	 for	 further	 studies.	We	 then	 tested	 whether	 haemin	

pre‐treatment	could	regulate	SD/H‐induced	mitochondrial	fragmen-
tation	in	BM‐MSCs.	The	results	showed	that	haemin	pre‐treatment	
significantly	reduced	SD/H‐induced	mitochondrial	fragmentation	in	
BM‐MSCs	(Figure	1B).	Western	blotting	demonstrated	that	haemin	
pre‐treatment	reversed	the	up‐regulation	of	p‐Drp1	ser616	and	the	
down‐regulation	of	Mfn2	 induced	by	SD/H	 in	BM‐MSCs,	 suggest-
ing	 that	haemin	attenuated	SD/H‐induced	mitochondrial	 fission	 in	
BM‐MSCs	(Figure	1C).	Moreover,	haemin	pre‐treatment	ameliorated	
SD/H‐induced	apoptosis	of	BM‐MSCs	(Figure	1D).	Taken	together,	
these	findings	indicate	that	haemin	suppresses	SD/H‐induced	mito-
chondrial	fission	and	apoptosis	of	BM‐MSCs.

3.2 | Haemin inhibits mitochondrial 
fragmentation and apoptosis of BM‐MSCs by 
regulating HO‐1

As	haemin	is	an	HO‐1	inducer,	we	investigated	whether	the	protec-
tive	effects	of	haemin	on	SD/H‐induced	BM‐MSCs	after	injury	are	
the	result	of	haemin	regulation	of	HO‐1.	Western	blotting	showed	
that	SD/H	enhanced	the	expression	of	HO‐1	in	BM‐MSCs,	and	hae-
min	pre‐treatment	further	increased	the	expression	of	HO‐1	in	BM‐
MSCs	under	SD/H,	indicating	that	the	protective	effects	of	haemin	

F I G U R E  1  Haemin	pre‐treatment	suppresses	serum	deprivation	and	hypoxia	(SD/H)‐induced	mitochondrial	fission	and	apoptosis	of	bone	
marrow‐mesenchymal	stem	cell	(BM‐MSCs).	A,	The	cell	viability	of	BM‐MSCs	with	or	without	haemin	(1,	5,	10,	20	μmol/L)	pre‐treatment	
for	24	hours	under	normoxia	or	SD/H	was	determined	by	CCK‐8	assay	(i).	The	cell	viability	of	BM‐MSCs	with	or	without	10	μmol/L	haemin	
pre‐treatment	for	6,	12,	24	or	48	hours	under	normoxia	or	SD/H	was	determined	by	CCK‐8	assay	(ii).	B,	Representative	images	of	the	
fragmented	mitochondria	(magnification	of	20x)	and	quantitative	analysis	of	fragmented	mitochondria	in	BM‐MSCs	and	haemin‐pretreated	
BM‐MSCs	under	normoxia	or	SD/H.	C,	Western	blotting	and	quantitative	analysis	for	the	expression	of	Mfn2	and	p‐Drp1	ser616	in	BM‐
MSCs	and	haemin‐pretreated	BM‐MSCs	under	normoxia	or	SD/H	exposure.	D,	Representative	images	of	TUNEL	staining	(magnification	of	
20x)	and	quantitative	analysis	of	the	apoptosis	of	BM‐MSCs	or	haemin‐pretreated	BM‐MSCs	under	normoxia	or	SD/H.	Data	are	expressed	
as	the	mean	±	SEM.	n	=	3.	Scale	bar	=	50	μm. *P < .05,	**P < .01, ***P < .001.	ns,	not	significant
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may	 be	 involved	 in	 the	 regulation	 of	 HO‐1	 (Figure	 2A).	 To	 verify	
whether	the	protective	effects	of	haemin	in	BM‐MSCs	under	SD/H	
were	caused	by	regulation	of	HO‐1,	we	added	HO‐1	siRNA	to	the	
haemin‐pretreated	BM‐MSCs	and	then	exposed	the	cells	to	SD/H.	
The	elevation	of	HO‐1	expression	 induced	by	haemin	under	SD/H	
was	significantly	abolished	in	the	haemin‐pretreated	BM‐MSCs	with	
HO‐1	siRNA	(Figure	2B).	Notably,	mitochondria	fragmentation	and	
cell	apoptosis	were	significantly	increased	in	the	haemin‐pretreated	
BM‐MSCs	with	HO‐1	siRNA	compared	with	haemin‐pretreated	BM‐
MSCs	under	SD/H	(Figure	2C,D).	Taken	together,	these	results	show	
that	haemin	 inhibits	mitochondrial	 fragmentation	and	apoptosis	of	
BM‐MSCs	induced	by	SD/H	conditions	through	activating	HO‐1.

3.3 | Haemin‐pretreated BM‐MSCs enhance 
cardioprotection following MI in mice

Cardiac	 function	 was	 measured	 by	 echocardiography.	
Representative	 images	 of	 M‐mode	 echocardiography	 were	 cap-
tured	4	weeks	 after	MI	 in	mice	 (Figure	3A).	Transthoracic	 echo-
cardiography	 showed	 that	 left	 ventricle	 ejection	 fraction	 (LVEF)	
and	 fraction	 shortening	 (LVFS)	 were	 significantly	 reduced	 in	
the	MI	 group	 compared	 with	 the	 sham	 group	 (Figure	 3B).	 Both	

MSC‐transplanted	 groups	 showed	 a	 significant	 increase	 in	 LVEF	
and	LVFS,	and	LVEF	and	LVFS	were	significantly	greater	in	the	hae-
min‐BM‐MSC	group	than	in	the	BM‐MSC	group	(Figure	3B).	Next,	
we	analysed	the	survival	rate	of	mice	from	the	different	groups.	As	
shown	in	Figure	3(C),	compared	with	the	sham	group,	the	mortal-
ity	of	mice	was	greatly	 increased	 in	 the	MI	group.	Nevertheless,	
the	 mortality	 rate	 of	 mice	 in	 the	 BM‐MSCs	 group	 and	 haemin‐
BM‐MSCs	 group	 was	 significantly	 decreased	 compared	 with	
the	 MI	 group.	 Notably,	 the	 mortality	 rate	 in	 the	 haemin‐BM‐
MSCs	 group	was	much	 lower	 than	BM‐MSCs	 group	 (Figure	3C).	
Masson's	 trichrome	staining	showed	that	 interstitial	 fibrosis	was	
greatly	enhanced	in	the	MI	groups	compared	with	the	sham	group	
(Figure	3D,E).	MSC	transplantation	decreased	the	infarct	area,	and	
the	haemin‐BM‐MSC	group	exhibited	a	significantly	decreased	in-
farct	area	compared	with	the	BM‐MSC	group	(Figure	3D,E).

3.4 | Haemin‐pretreated BM‐MSCs improved cell 
survival in mouse hearts following MI

We	 first	 performed	 anti‐HNA	 staining	 to	 detect	 cell	 survival	 at	
4	weeks	 after	 transplantation.	 Both	 BM‐MSCs	 and	 haemin‐pre-
treated	BM‐MSCs	were	detected	in	ischaemic	heart	tissue,	with	a	

F I G U R E  2  Haemin	pre‐treatment	inhibits	mitochondrial	fragmentation	and	apoptosis	of	bone	marrow‐mesenchymal	stem	cell	(BM‐
MSCs)	by	regulating	HO‐1.	A,	Western	blotting	and	quantitative	analysis	for	the	expression	of	HO‐1	in	BM‐MSCs	or	haemin‐pretreated	
BM‐MSCs	under	normoxia	or	SD/H.	B,	Western	blotting	and	quantitative	analysis	for	the	expression	of	HO‐1	in	BM‐MSCs	and	haemin‐
pretreated	BM‐MSCs	treated	with	control	siRNA	or	HO‐1	siRNA	under	SD/H.	C,	Representative	images	of	the	fragmented	mitochondria	
(magnification	of	20x)	and	quantitative	analysis	of	fragmented	mitochondria	in	BM‐MSCs	and	haemin‐pretreated	BM‐MSCs	treated	with	
control	siRNA	or	HO‐1	siRNA	under	SD/H.	D,	Representative	images	of	TUNEL	staining	(magnification	of	20x)	and	quantitative	analysis	of	
the	apoptosis	of	BM‐MSCs	and	haemin‐pretreated	BM‐MSCs	treated	with	control	siRNA	or	HO‐1	siRNA	under	SD/H.	Data	are	expressed	as	
the	mean	±	SEM.	n	=	3.	Scale	bar	=	50	μm *P < .05,	***P < .001
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much	higher	cell	survival	detected	for	the	haemin‐BM‐MSC	group,	
suggesting	 that	 haemin	 improves	 BM‐MSC	 tolerance	 against	 is-
chaemia	 challenge	 (Figure	 4A,B).	 To	 further	 verify	 the	 survival	
of	MSCs	 in	 ischaemic	heart	 tissue	after	 transplantation,	we	per-
formed	PCR	to	detect	the	human	repeat	sequences	Alu‐sx	in	heart	
tissue	from	different	groups.	Alu‐sx	was	detected	in	the	BM‐MSCs	
group	and	haemin‐BM‐MSCs	group,	but	not	in	the	sham	group	and	
MI	group	(Figure	4C).	Furthermore,	the	expression	of	Alu‐sx	was	
significantly	 increased	 in	 the	haemin‐BM‐MSCs	group	compared	
with	the	BM‐MSCs	group	(Figure	4C).	Taken	together,	these	data	
demonstrated	that	haemin	treatment	promotes	BM‐MSC	survival	
in	the	ischaemic	heart	tissue.

3.5 | Haemin‐pretreated BM‐MSCs 
inhibited the apoptosis of cardiomyocytes and 
improved angiogenesis in mouse hearts following MI

The	apoptosis	of	 cardiomyocytes	among	 the	different	groups	was	
assessed	by	TUNEL	 staining.	Compared	with	 the	 sham	group,	 the	
apoptosis	of	cardiomyocytes	was	dramatically	 increased	 in	 the	MI	
group	 (Figure	5A,B).	MSC	transplantation	greatly	 inhibited	the	ap-
optosis	 of	 cardiomyocytes,	 and	 haemin‐BM‐MSCs	 were	 superior	
to	BM‐MSCs	in	attenuating	the	apoptosis	of	cardiomyocytes	in	the	
ischaemic	hearts	of	mice	(Figure	5A,B).	The	capillary	density	of	the	
ischaemic	area	among	the	different	groups	was	detected	by	CD31	
staining.	The	capillary	density	was	decreased	in	the	MI	group	com-
pared	with	the	sham	group	(Figure	5C,D).	The	capillary	density	of	the	

ischaemic	 area	 increased	 following	MSC	 treatment	 (Figure	 5C,D).	
Notably,	 the	 haemin‐BM‐MSC	 group	 had	 a	 much	 higher	 capillary	
density	than	the	BM‐MSC	group	(Figure	5C,D).	To	further	examine	
the	paracrine	effects	of	MSCs,	the	angiogenic	capacity	of	CdM	de-
rived	 from	BM‐MSCs	 and	haemin‐BM‐MSCs	was	 assessed	by	 the	
capillary	tube	formation	assay.	Compared	with	BM‐MSC‐CdM,	the	
endothelial	tube	length	and	branching	points	were	significantly	in-
creased	 in	 the	 haemin‐BM‐MSCs‐treated	HUVECs,	 demonstrating	
increased	endothelial	network	formation	(Figure	5E,F).	Collectively,	
these	 data	 demonstrated	 haemin‐pretreated	 BM‐MSCs	 inhibited	
the	 apoptosis	 of	 cardiomyocytes	 and	 improved	 angiogenesis	 in	
mouse	hearts	following	MI.

4  | DISCUSSION

This	study	presents	several	major	findings	(Figure	6).	First,	haemin	
pre‐treatment	 improved	 the	 survival	 of	 BM‐MSCs	 under	 SD/H	
challenge.	 Second,	 haemin	 pre‐treatment	 inhibited	 SD/H‐induced	
mitochondrial	fission	and	apoptosis	of	BM‐MSCs.	Third,	haemin	pre‐
treatment	significantly	increased	the	engraftment	of	BM‐MSCs	and	
induced	angiogenesis	 in	 a	mouse	model	of	MI	 and	 thus	enhanced	
cardiac	protection	efficacy.

MI	is	a	major	contributor	to	the	mobility	and	mortality	of	people	
with	cardiovascular	diseases,	accounting	for	11.2%	of	deaths	world-
wide.21	The	 ischaemic	condition	caused	by	 insufficient	blood	 flow	
leads	to	a	marked	loss	of	cardiomyocytes	in	the	heart.	Furthermore,	

F I G U R E  3  Haemin	pre‐treatment	enhances	BM‐MSC‐mediated	cardioprotection	following	infarction.	A,	Representative	images	of	
M‐mode	echocardiographic	images	captured	at	4	weeks	after	MI	in	mice	among	different	groups.	B,	Quantitative	analysis	of	LVEF	and	
LVFS	at	4	weeks	after	MI	in	mice	among	the	different	groups.	C,	Kaplan‐Meier	curves	showed	the	survival	rate	of	mice	in	the	different	
groups.	D,	Representative	images	of	Masson's	trichrome	staining	of	heart	sections	at	4	weeks	after	MI	in	mice	among	the	different	groups	
(magnification	of	4x).	E,	Quantitative	measurement	of	heart	fibrosis	at	4	weeks	after	MI	in	mice	among	the	different	groups.	Data	are	
expressed	as	the	mean	±	SEM.	n	=	6.	Scale	bar	=	200	μm. *P < .05, **P < .01, ***P < .001
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the	injured	heart	cannot	compensate	for	the	lost	cardiomyocytes	be-
cause	of	limited	regenerative	ability,	leading	to	cardiac	remodelling.	
Over	 the	past	decades,	 stem	cell‐based	 therapy	has	emerged	as	a	
novel	strategy	for	treating	MI.	Among	the	various	types	of	stem	cells	
currently	used	in	pre‐clinical	and	clinical	trials,	MSCs	have	been	con-
sidered	a	favourable	cell	source	for	MI	treatment	because	of	their	
unique	advantages,	such	as	easy	isolation,	low	immunogenicity	and	
multipotent	differentiation	capacity.20,22	However,	most	MSCs	died	
within	3	days	after	transplantation	in	the	harsh	environment	of	the	
injured	heart,	thus	limiting	therapeutic	efficacy.23	Recently,	accumu-
lating	evidence	has	demonstrated	pharmacological	pre‐treatment	as	
a	novel	strategy	to	promote	the	survival	of	transplanted	BM‐MSCs	in	
the	ischaemic	heart.24,25	Pre‐treatment	with	sphingolipid	metabolite	
sphingosine	1‐phosphate	dramatically	enhanced	the	engraftment	of	
MSCs	and	thus	improved	the	therapeutic	efficacy	in	a	mouse	model	
of	MI.26	Pre‐treatment	with	fucoidan	inhibited	H2O2‐induced	apop-
tosis	of	BM‐MSCs	by	regulating	the	MAPK	and	Akt	signalling	path-
ways.	 Furthermore,	 transplantation	 of	 fucoidan‐pretreated	 MSCs	
functionally	attenuated	limb	salvage	in	a	murine	hindlimb	ischaemia	
model,	and	these	protective	effects	were	attributed	to	enhanced	cell	
survival.27	Given	these	findings,	identifying	a	novel	drug	or	biolog-
ical	factor	to	pretreat	BM‐MSCs	prior	to	transplantation	is	of	great	
importance.

HO‐1,	 one	 isoform	of	 the	HO	enzyme	 system,	 is	 expressed	 in	
many	types	of	cells	and	can	be	induced	under	the	pathophysiological	
conditions.13	The	elevation	of	HO‐1	exhibits	cellular	protection	via	
various	mechanisms.	Previous	studies	have	shown	that	HO‐1	plays	
a	critical	role	in	regulating	cell	survival	in	response	to	pathophysio-
logic	 stimuli.	 Activation	 of	HO‐1	 enhanced	 the	 survival	 of	 cardio-
myocytes	under	 intermittent	hypoxia	challenge,	whereas	knocking	
down	HO‐1	partially	 abrogated	 this	 effect.15	 Indeed,	 transduction	
of	HO‐1	into	BM‐MSCs	can	improve	cell	survival	under	stress	condi-
tions.	MSCs	overexpressing	HO‐1	exhibited	superior	prosurvival	and	
antiapoptotic	properties	and	 thus	exerted	an	enhanced	protective	
efficacy	 to	attenuate	 lipopolysaccharide‐induced	acute	 lung	 injury	

in	 rats.28	Transfection	with	HO‐1	 in	MSCs	greatly	attenuated	 iron	
overload‐induced	 apoptosis	 by	 inhibiting	 reactive	 oxygen	 species	
generation	 and	 IL‐10	 secretion.29	Nevertheless,	 gene	modification	
can	affect	the	genome	stability	of	MSCs.	Therefore,	in	the	current	
study,	 we	 used	 haemin	 pre‐treatment	 to	 induce	HO‐1	 expression	
in	BM‐MSCs.	Consistent	with	previous	studies,	pre‐treatment	with	
haemin	significantly	enhanced	the	expression	of	HO‐1	in	BM‐MSCs	
under	SD/H,	and	the	elevation	of	HO‐1	greatly	inhibited	apoptosis	of	
BM‐MSCs.	More	importantly,	HO‐1	knockdown	with	siRNA	remark-
ably	reversed	the	antiapoptotic	effects	in	BM‐MSCs.	In	vivo,	haemin	
pre‐treatment	significantly	enhanced	the	engraftment	of	BM‐MSCs	
and	restored	heart	function	in	a	mouse	model	of	MI	compared	with	
BM‐MSCs	 without	 haemin	 pre‐treatment.	 Although	 haemin	 pre‐
treatment	can	increase	the	survival	of	BM‐MSCs	under	SD/H	chal-
lenge,	the	underlying	mechanisms	remain	largely	unknown.

Mitochondria	 dynamics	 play	 an	 essential	 role	 in	 inducing	 cell	
death.30	 Mitochondrial	 fusion	 leads	 to	 elongated	 mitochondria,	
whereas	mitochondrial	fission	produces	small	round	mitochondria.10 
There	 is	a	balance	of	mitochondrial	 fusion	and	 fission	 in	a	healthy	
cell.	However,	this	balance	is	disrupted	under	stress	conditions,	re-
sulting	 in	apoptosis.31	 In	 the	current	 study,	we	 found	 that	 the	mi-
tochondrial	fragmentation	of	BM‐MSCs	was	dramatically	increased	
under	 SD/H	 challenge	 compared	 with	 normoxia.	 Furthermore,	
SD/H	challenge	up‐regulated	the	expression	of	p‐Drp1	ser616	and	
down‐regulated	Mfn2,	 indicating	 SD/H	 induced	mitochondrial	 fis-
sion.	Recent	studies	have	documented	that	HO‐1	plays	an	essential	
role	in	the	regulation	of	mitochondrial	fission.32,33	Haemin	treatment	
significantly	 inhibited	 the	 ischaemia/reperfusion‐induced	 up‐reg-
ulation	 of	 Drp1	 expression	 and	 enhanced	 the	 down‐regulation	 of	
Mfn2	in	a	mouse	model	of	liver	injury	and	thus	attenuated	hepatic	
injury.	Furthermore,	these	protective	effects	were	partially	reversed	
by	ZnPP,	a	haemin	inhibitor.34	Consistently,	in	this	study,	we	found	
that	haemin	pre‐treatment	enhanced	the	expression	of	HO‐1	in	BM‐
MSCs	and	ameliorated	mitochondrial	fission,	as	shown	by	reduced	
Drp1	levels	and	increased	Mfn2	levels.	More	importantly,	inhibition	

F I G U R E  4  Haemin‐pretreated	bone	
marrow‐mesenchymal	stem	cell	(BM‐
MSCs)	improved	cell	survival	in	mouse	
hearts	following	MI.	A,	Representative	
images	of	anti‐HNA‐positive	cells	in	the	
ischaemic	heart	at	4	weeks	after	cell	
transplantation	(magnification	of	10x).	
B,	Quantitative	analysis	of	cell	survival	
at	4	weeks	after	MI	in	mice	among	the	
different	groups.	C,	PCR	showed	that	the	
expression	of	Alu‐sx	was	significantly	
increased	in	the	haemin‐BM‐MSCs	group	
compared	with	the	BM‐MSCs	group.	Data	
are	expressed	as	the	mean	±	SEM.	n	=	6.	
Scale	bar	=	100	μm. *P < .05



438  |     DENG Et al.

of	HO‐1	through	siRNA	addition	greatly	abrogated	the	inhibition	of	
haemin	on	mitochondrial	 fission	and	apoptosis.	However,	whether	

chemical	 inhibition	of	HO‐1	activity	using	ZnPP	affects	mitochon-
drial	fragmentation	and	apoptosis	requires	further	investigation.

F I G U R E  5  Haemin‐pretreated	bone	marrow‐mesenchymal	stem	cell	(BM‐MSCs)	improved	angiogenesis	in	mouse	hearts	following	MI.	A,	
Representative	images	of	TUNEL	staining	in	the	heart	at	4	weeks	among	the	different	groups	(magnification	of	20x).	B,	Quantitative	analysis	
of	the	apoptosis	of	cardiomyocytes	in	the	heart	at	4	weeks	among	the	different	groups.	n	=	6.	C,	Representative	images	of	CD31	staining	
in	the	heart	at	4	weeks	among	the	different	groups	(magnification	of	10x).	D,	Quantitative	analysis	of	blood	vessels	in	the	border	zone	of	
ischaemic	hearts	stained	with	CD31.	n	=	6.	E,	Representative	light	images	of	HUVEC	tube	formation	assay	in	BM‐MSC‐CdM	and	haemin‐
BM‐MSC‐CdM	treatment	(magnification	of	10x).	F,	Quantitative	analysis	of	HUVEC	tube	length	and	number	of	the	branches	in	BM‐MSC‐
CdM	and	haemin‐BM‐MSC‐CdM	treatment.	n	=	3.	Data	are	expressed	as	the	mean	±	SEM.	*P < .05, **P < .01, ***P < .001.	Scale	bar	=	100	μm

F I G U R E  6  Transplantation	of	haemin‐
pretreated	BM‐MSCs	dramatically	
improves	heart	function	recovery	after	MI	
in	mice	via	enhancement	of	cell	survival
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This	study	has	several	limitations.	First,	in	addition	to	Drp1	and	
Mfn2,	whether	haemin	 can	affect	other	proteins	 related	 to	mito-
chondrial	 dynamics	 has	 not	 been	 determined.	 Second,	 we	 only	
examined	the	survival	of	haemin‐pretreated	BM‐MSCs	at	4	weeks	
after	transplantation;	therefore,	long‐term	cell	survival	needs	to	be	
examined	in	future	studies.	Third,	the	potential	mechanisms	behind	
HO‐1	regulation	of	mitochondrial	dynamics	remain	unclear.	Haemin	
contains	 iron,	which	 is	released	by	HO	activity,	 regulating	the	ex-
pression	 of	 various	 proteins.	 As	mitochondria	 are	 the	major	 iron	
handling	 organelles,	 whether	 haemin	 regulates	mitochondrial	 dy-
namics	via	iron	requires	further	investigation.	Fourth,	as	SD/H	en-
hances	endogenous	HO‐1	expression	level,	it	therefore	would	make	
scientific	sense	to	silence	basal	HO‐1	levels	to	verify	our	study.

In	 summary,	 our	 results	 demonstrated	 that	 haemin	 pre‐treat-
ment,	via	up‐regulation	of	HO‐1	levels,	significantly	enhanced	BM‐
MSC	survival	under	ischaemic	conditions	by	inhibiting	mitochondrial	
fission,	thus	improving	the	therapeutic	effects	for	treating	MI.	Our	
study	 shows	pharmacological	 pre‐treatment	modulating	 the	HO‐1	
pathway	as	a	novel	approach	for	enhancing	MSC‐based	therapy	for	
cardiovascular	diseases.
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