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The study of P-element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing
Effect (TSE), a repression mechanism by which a transposon or a transgene inserted in subtelomeric heterochromatin
(Telomeric Associated Sequence or TAS) has the capacity to repress in trans in the female germline, a homologous
transposon, or transgene located in euchromatin. TSE shows variegation among egg chambers in ovaries when
silencing is incomplete. Here, we report that TSE displays an epigenetic transmission through meiosis, which involves
an extrachromosomal maternally transmitted factor. We show that this silencing is highly sensitive to mutations
affecting both heterochromatin formation (Su(var)205 encoding Heterochromatin Protein 1 and Su(var)3–7) and the
repeat-associated small interfering RNA (or rasiRNA) silencing pathway (aubergine, homeless, armitage, and piwi). In
contrast, TSE is not sensitive to mutations affecting r2d2, which is involved in the small interfering RNA (or siRNA)
silencing pathway, nor is it sensitive to a mutation in loquacious, which is involved in the micro RNA (or miRNA)
silencing pathway. These results, taken together with the recent discovery of TAS homologous small RNAs associated
to PIWI proteins, support the proposition that TSE involves a repeat-associated small interfering RNA pathway linked
to heterochromatin formation, which was co-opted by the P element to establish repression of its own transposition
after its recent invasion of the D. melanogaster genome. Therefore, the study of TSE provides insight into the genetic
properties of a germline-specific small RNA silencing pathway.
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Introduction

Repression of transposable elements (TEs) involves com-
plex mechanisms that can be linked to either small RNA
silencing pathways or chromatin structure modifications
depending on the species and/or the TE family [1–6].
Drosophila species are particularly relevant to the study of
these repression mechanisms since some families of TEs are
recent invaders, allowing genetic analysis to be carried out on
strains with or without these TEs [7,8]. In some cases, crossing
these two types of strains induces hybrid dysgenesis, a
syndrome of genetic abnormalities resulting from TE
mobility [9,10]. In D. virilis, repression of hybrid dysgenesis
has been correlated to RNA silencing since small RNAs of the
retroelement Penelope, responsible for dysgenesis, were
detected in nondysgenic embryos but not in dysgenic
embryos [11]. In D. melanogaster, repression of retrotranspo-
sons can be established by noncoding fragments of the
corresponding element (I factor [12,13], ZAM, and Idefix [14])
and can be in some cases (gypsy [15], mdg1 [16], copia [17], Het-A,
TART [18,19], and ZAM, Idefix [C. Vaury and S. Desset,
personal communication]) sensitive to mutations in genes
from the Argonaute family involved in small RNA silencing
pathways. In the same species, strong repression of the DNA P
TE, by a cellular state that has been called ‘‘P cytotype’’ [10],
can be established by one or two telomeric P elements
inserted in heterochromatic ‘‘Telomeric Associated Sequen-
ces’’ (TAS) at the 1A cytological site corresponding to the left

end of the X chromosome [20–24]. This includes repression of
dysgenic sterility resulting from P transposition. We have
previously shown that this P cytotype is sensitive to mutations
affecting both Heterochromatin Protein 1 (HP1) [21] and the
Argonaute family member AUBERGINE [25]. P repression
corresponds to a new picture of TE repression shown, using
an assay directly linked to transposition, to be affected by
heterochromatin and small RNA silencing mutants.
In the course of the study of P cytotype, a new silencing

phenomenon has been discovered. Indeed, a P-lacZ transgene
or a single defective P element inserted in TAS can repress
expression of euchromatic P-lacZ insertions in the female
germline in trans, if a certain length of homology exists
between telomeric and euchromatic insertions [23,26]. This
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homology-dependent silencing phenomenon has been
termed Trans-Silencing Effect (TSE) [26]. Telomeric trans-
genes, but not centromeric transgenes, can be silencers and
all euchromatic P-lacZ insertions tested can be targets [23,26].
TSE is restricted to the female germline (unpublished data)
and has a maternal effect since repression occurs only when
the telomeric transgene is maternally inherited [27]. Further,
when TSE is not complete, variegating germline lacZ
repression is observed from one egg chamber to another,
suggesting a chromatin-based mechanism of repression [28].
Recently, an extensive analysis of small RNAs complexed with
PIWI family proteins (AUBERGINE, PIWI, and AGO3) was
performed in the Drosophila female germline [4]. The latter
study showed that most of the RNA sequences associated to
these proteins derive from TEs. TSE corresponds likely to
such a situation.

Here, we analyze the genetic properties of TSE and show
that it has an epigenetic transmission through meiosis, which
involves an extrachromosomal maternally transmitted stim-
ulating component. Further, in order to investigate the
mechanism behind TSE, we performed a candidate gene
analysis to identify genes whose mutations impair TSE. We
found that TSE is strongly affected both by mutations in
genes involved in heterochromatin formation and in the
recently discovered small RNA silencing pathway called
‘‘repeat-associated small interfering RNAs’’ (rasiRNA) path-
way [3,4,6,29]. In contrast, we show that TSE is not sensitive to
genes specific to the classical RNA interference pathway
linked to small interfering RNAs (siRNA) or to the micro RNA
(miRNA) pathway. This suggests thus that TSE involves a
rasiRNA pathway linked to heterochromatin formation and
that such a mechanism, working in the germline, may underlie
epigenetic transmission of repression through meiosis.

Results

Quantification of TSE
TSE was generated by combining telomeric transgene

insertions (from the P-1152 line) as a silencer locus, with

various euchromatic P-lacZ transgenes expressed in the
germline as targets. Depending on the target, TSE can be
almost total (Figure 1C) or intermediate (Figure 1E and 1F).
When TSE is incomplete, variegation is observed since ‘‘on’’
and ‘‘off’’ lacZ expression is seen among egg chambers: egg
chambers can show strong expression (dark blue) or no
expression, but intermediate repression levels are not (or
very rarely) found. In addition, a given ovary can present
ovarioles showing all possible combinations of on or off egg
chambers (Figure 1E). Simple quantification of TSE is thus
possible by determining the percentage of repressed egg
chambers (Figure 1F). We scored the number of repressed
chambers among the first five egg chambers of a given
ovariole for ten ovarioles chosen at random per ovary. For a
given genotype, more than 1,000 egg chambers were
classically counted (Table 1). This measure generally produces
very reproducible results among replicate experiments
allowing accurate quantification of TSE.

Transmission of TSE over Generations
TSE was previously shown to have a maternal effect since

strong repression occurs only in the progeny of crosses
involving females carrying the telomeric silencer, whereas no
or weak repression occurs if the telomeric silencer comes
from the father [27,28]. Conversely, the parental origin of the
target does not significantly affect TSE. We have thus tested
whether TSE exhibits only a maternal effect (during one
generation) or maternal inheritance over several generations
as well. Two reciprocal G0 crosses were performed in which
the telomeric silencer (P-1152) was maternally introduced
(maternal lineage) or paternally introduced (paternal lineage)
(Figure S1). Thus, the G1 females of the two lineages have the
same genotype. These G1 females were backcrossed with
males having the telomeric silencer and the target transgene
in order to recover G2 females having one copy of the
telomeric silencer locus and one copy of the target transgene.
Such backcrosses were repeated for several generations in
order to follow lineages with constant genotypes over
generations. At each generation, the percentage of TSE was
measured. Figure 2 shows that in the maternal lineage, strong
TSE was detected in G1 (around 70%) and maintained over
generations. By contrast, in G1 of the paternal lineage, the
level of TSE was weak (around 10%), a result consistent with
the maternal effect previously reported. However, in this
paternal lineage, a strong level of repression was not observed
in G2 females either (around 24%), despite the fact that G1

females were carrying a telomeric silencer. TSE thus shows a
maternal inheritance. However, the level of TSE in G2 is
greater than in G1 in the paternal lineage, and in succeeding
generations TSE gradually increases. A total of six gener-
ations are necessary, however, to reach a repression level
close to that of the maternal lineage. Thus, a memory of the
initial maternal effect is observed over generations. In
conclusion, TSE is characterized by maternal transmission
that gets progressively reinforced over successive generations.
It is therefore partially epigenetically transmitted through
meiosis.

TSE Requires an Extrachromosomally Transmitted
Component
In the previous experiment, two main hypotheses can be

proposed concerning the molecular basis of the difference
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Author Summary

The genome of the fruitfly was invaded in the last century by a
mobile DNA element called the P element. After a transient period
of genetic disorders due to P mobility, the P element established a
repressive state for its transposition. We have shown that a major
component of this repression comes from P copies inserted close to
telomeres, the ends of linear chromosomes. One or two P copies
inserted in subtelomeric heterochromatin (the DNA region highly
compacted by protein complexes) can stabilize around 80 P copies.
This finding allowed the discovery of a more general phenomenon
called the ‘‘Trans-silencing effect’’ in which a transgene inserted in
this subtelomeric heterochromatin represses, in the female germ-
line, a homologous transgene, irrespective of the genetic location of
the latter. We show that Trans-silencing requires not only the
chromosomal copy of the telomeric silencer, but also a maternally
transmitted factor whose influence can persist over generations. We
have found that this epigenetic silencing is sensitive to mutations in
genes involved in heterochromatin formation and in a recently
discovered silencing pathway based on small RNAs. Trans-silencing
thus provides a tool for mechanistic analysis of gene repression on
the basis of chromatin changes combined with small RNA pathways
in the germline.



inherited in G1 between the maternal and paternal lineages of
TSE. First, maternally inherited telomeric transgenes may be
imprinted while paternally inherited transgenes are not, and
imprinting may be necessary for TSE to take place in the
zygote. Second, a mother carrying telomeric transgenes may
deposit an extrachromosomal factor in the oocyte, which is

necessary for TSE to occur. This latter hypothesis was tested
by using females hemizygous for the P-1152 telomeric silencer
locus and a dominant genetic marker on the homologous
chromosome to identify transmission of the chromosome
carrying the telomeric silencer or the chromosome devoid of
silencer (M5 balancer chromosome). Figure 3 shows that
crossing these hemizygous females (‘‘A’’ females) with males
carrying a target transgene produced control G1 ‘‘B’’ females,
which have inherited from their mother both the cytoplasm
and a chromosomal copy of the telomeric silencer: in these
females TSE is about 65%. However, sisters having inherited
the M5 chromosome do not show any repression (‘‘C’’
females, TSE ¼ 0%). Thus, the cytoplasm of a P-1152 female
without a chromosomal P-1152 copy cannot induce the TSE.
Crossing P-1152 ; P-Z-target males with females devoid of
telomeric silencer produces a weak repression in the progeny
(2.7%) as shown by ‘‘E’’ females, a result consistent with the
maternal effect of TSE reported previously [27]. Finally,
crossing ‘‘A’’ females with males carrying a P-1152 telomeric
silencer allows recovery of females having maternally
inherited only a ‘‘P-1152’’ cytoplasm and paternally inherited
a P-1152 chromosomal silencer. In that case, strong repres-
sion is observed (‘‘D’’ females, 75% TSE). Thus the cytoplas-
mic component (incapable by itself of inducing TSE, as shown
with ‘‘C’’ females) combined to a paternally inherited
telomeric silencer can establish a strong TSE. Moreover, this
repression is as strong as if the telomeric silencer was
maternally inherited (‘‘B’’ females). Consequently, the mater-
nal effect of TSE cannot be attributed to a difference in
imprinting between the maternally and paternally trans-
mitted P-1152 telomeric silencers, but rather to an extrac-
hromosomally transmitted factor likely deposited in the
cytoplasm of the oocyte, which renders the telomeric

Figure 1. Phenotype and Quantification of TSE

(A, B) Ovary b-galactosidase staining of P-lacZ enhancer-trap transgenes inserted in subtelomeric heterochromatin (line P-1152 [A]) and euchromatin
(line BQ16 [B]).
(C) Complete repression of lacZ by TSE in the G1 females produced by the cross between P-1152 females and BQ16 males.
(D) Expression control of the euchromatic BC69 P-lacZ enhancer-trap.
(E, F) Incomplete TSE in the G1 females produced by the cross between P-1152 females and BC69 males. Variegation is observed inside ovaries that show
individual ovarioles with both off (lacZ repressed) and on (lacZ not repressed) egg chambers (Ea, Ec, Ed) and ovarioles that are completely off (Ee) or
completely on (Eb). (F) For the quantification of TSE, the number of repressed egg chambers among the first five egg chambers of a given ovariole is
assayed. A total of ten ovarioles are scored per ovary for more than ten ovaries.
doi:10.1371/journal.pgen.0030158.g001

Table 1. TSE Levels in Mutant Contexts

Genotype P-LacZ Silencer; P-lacZ Target

P-1152;

BC69

P-1152;

BQ16

P-1152;

P-Co1

Wild type (TSE control) 62.9% (2,950) 87.8% (2,300) 89.3% (3,250)

Su(var)2055/þ 15.8% (1,150)

Su(var)2054/þ 29.5% (2,550)

Su(var)3–7R2A8/þ 39.5% (1,150)

Su(var)3–7R14/þ 31.0% (1,050)

Su(var)3–7R2A8/Su(var)3–7R2A8 3.3% (1,100)

Su(var)3–7R14/Su(var)3–7R14 7.5% (1,100)

Su(var)3–906/Su(var)3–906 58.5% (1,150)

aubQC42/aubN11 0.0% (1,100)

aubHN2/ aubN11 0.0% (1,200)

hlsE616/hlsD125 0.0% (1,200)

armi1/armi72.1 0.0% (2,500)

r2d21/r2d21 84.7% (3,100)

loqsf00791/loqsf00791 92.3% (1,850)

Su(var)2054/piwi1 10.0% (2,150)

Su(var)2054/piwi2 5.6% (1,200)

Females analyzed carried a maternally inherited P-1152 telomeric silencer locus (from a
homozygous P-1152 mother) and a paternally inherited P-LacZ target transgene. They also
carried mutant alleles of candidate genes involved in heterochromatin formation or/and
small RNA silencing. For heterozygous or heteroallelic mutant genotypes, the maternally
inherited allele is written first. The percentage of TSE is given with the total number of
egg chambers assayed in parentheses.
doi:10.1371/journal.pgen.0030158.t001
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silencers (paternally or maternally inherited) capable of
establishing TSE.

Candidate Gene Analysis
Given the variegating phenotype of TSE and the inter-

action observed above between a maternally transmitted
factor and the chromosomal copy of the telomeric silencer, it
seemed possible that heterochromatin formation and RNA
silencing could be involved in this repression. A candidate
gene analysis was thus performed to identify genes whose
mutations affect TSE among genes encoding heterochroma-
tin components and actors of the small RNA silencing
pathways. For a given assay, a P-1152 telomeric silencer was
combined with a P-lacZ target expressed in the female
germline, in the absence (TSE positive control) or presence
of mutant alleles of the candidate gene. The P-1152 silencer
was inherited in each case from a homozygous P-1152 female.
When tested in the heterozygous state, the mutant allele was

maternally inherited. The first gene tested was Su(var)205
(Figure 4A–4D), which encodes HP1 [30]. HP1 is a multifunc-
tional protein that binds at centromeres, telomeres, and some
scattered sites on the chromosomal arms [31,32]. The TSE
positive control produced almost 90% repression (Figure 4B),
whereas one copy of the null allele Su(var)2055, corresponding
to an almost completely amorphic allele, has a strong negative
dominant effect on TSE (15.8% TSE remaining, Figure 4C).
The allele Su(var)2054 encoding a truncated HP1 protein also
behaves as a genetically null allele and also strongly impairs
TSE (29.5% TSE remaining, Figure 4D). TSE is therefore
sensitive to the dose of HP1. The same analysis was performed
for SU(VAR)3–7, another nonhistone heterochromatin pro-
tein that binds at centromeres and telomeres and is a partner
of HP1 [33,34]. SU(VAR)3–7 contains seven zinc finger motifs,
which were shown to bind DNA in vitro [35,36]. Again a dose
effect was observed since females heterozygous for the
Su(var)3–7R2A8 null allele showed a reduced TSE (less than
40%, Table 1). Since Su(var)3–7 mutants can be homozygous
viable, mutations in this gene were also tested at the
homozygous state and an almost complete loss of TSE was
observed (3.3% TSE remaining, Table 1). Such a result was
also obtained with a second Su(var)3–7 mutant allele
(Su(var)3–7R14, Table 1). Su(var)3–9 encodes a histone methyl
transferase (HMT) responsible for the methylation of histone
H3 on lysine 9 [37]. This protein is also a partner of HP1. The
null allele of this gene tested here at the homozygous state
had no significant effect on TSE (58.5% in the mutant versus
62.9% in the wild-type control, Table 1).
We further tested genes involved in RNA silencing. Three

primary RNA silencing pathways have been discovered so far:
miRNA, siRNA (classically termed ‘‘RNA interference’’), and
rasiRNA pathways. These pathways may partially overlap,
since they have certain actors in common, but they differ in
terms of the biogenesis of short RNAs. miRNAs derive from
hairpin RNAs and target numerous essential genes; siRNAs
derive from double-strand RNAs and can serve as a defence
mechanism against parasites such as viruses; and rasiRNAs
derive from interactions between two complementary types
of PIWI-interacting RNAs and have numerous targets but are
more specific of TEs and heterochromatic sequences
[3,4,6,29]. We tested three genes (aubergine [aub], homeless [hls],
and armitage [armi]) involved in both the siRNA pathway
[38,39] and the rasiRNA pathway in Drosophila ovaries [3,4,29].
Mutations of these genes can induce defaults in siRNA-guided
cleavage or in the production of rasiRNAs depending on the
target of the silencing [3,39,40]. These mutations are also
responsible for disruption of embryonic axis specification
linked to disturbance of microtubule polarisation, but this
effect is mediated by a mechanism different from rasiRNA
silencing itself [41]. The first gene tested is aub, an RNA
binding protein and member of the Argonaute family (Figure
4E–4H) [42]. No significant dose effect of aub was detected
(Figure 4G and unpublished data), but the two heteroallelic
aub mutant genotypes tested completely abolish TSE (Figure
4H; Table 1). The second one is hls, which encodes an RNA
helicase [43]. Again no dose effect was observed (unpublished
data), but a heteroallelic hls mutant genotype completely
abolishes TSE (Table 1). The third one is armi, which encodes
a putative RNA helicase [44,45]. No dose effect was observed
(unpublished data), but a complete loss of TSE was observed
in a heteroallelic mutant context (Table 1). Finally piwi,

Figure 2. The Level of TSE Is Epigenetically Transmitted through Meiosis

Two kinds of G1 females were generated that carry the telomeric silencer
P-1152 and the P-otu-lacZ transgene (P-Co1) used as a TSE target (mating
schemes are shown with the complete genotypes on Figure S1). In one
lineage, P-1152 was maternally introduced, whereas it was paternally
introduced in the other lineage. Because of the maternal effect of TSE,
the first lineage (maternal lineage) corresponds to a TSE-positive context
in G1, whereas the second (paternal lineage) corresponds to a TSE-
negative context in G1. G1 females from the two lineages were crossed
with P-1152; P-Z-target males to generate in both cases P-1152/ þ ; P-Z-
target/þ G2 females. Thus G2 females from the maternal and paternal
lineages have the same genotype but differ by the cytoplasm inherited
in G1. This (P-1152/ þ ; P-Z-target/þ) genotype was maintained over
generations and TSE was measured at each generation. The evolution of
TSE is shown in relation to succeeding generations. The blue and pink
lines correspond to the lineages in which the P-1152 telomeric silencer
locus was maternally and paternally inherited in G1, respectively.
Confidence intervals of the percentages (a¼ 5%) are given.
doi:10.1371/journal.pgen.0030158.g002
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another member of the Argonaute family [46] shown to be
involved in the rasiRNA pathway [3,4,6,29,47] was tested. This
gene is also necessary for germline stem-cell renewal [48] and
was shown to be required for post-transcriptional transgene
silencing (a phenomenon termed cosuppression)[49]. No dose
effect on TSE was observed (unpublished data). Because piwi
has deleterious effects on ovary structure at the homozygous
state, we tested the effects of piwi mutant alleles at the
heterozygous state in combination with a Su(var)205 mutant.
In these combinations, piwi mutant alleles aggravate the
negative effect of reduction of the dose of HP1: the single
Su(var)205 mutant shows 29.5% TSE, whereas the double
heterozygotes show 10.0% and 5.6% for piwi1 and piwi2

respectively (Table 1). These results indicate that the siRNA
and/or the rasiRNA pathways are involved in TSE.

To determine which of these two pathways is responsible
for TSE, several other mutations were tested. r2d2 is involved
in the siRNA, but not the rasiRNA pathway [3,50,51]. R2D2 is
a double-stranded RNA (dsRNA) binding protein involved in
siRNA loading onto RISC [50]. In ovaries of females
homozygous for the r2d21 null allele, the siRNA pathway is

severely affected, as shown by a dsRNA-initiated RISC (or
RNA-induced silencing complex) assay [52]. These ovaries
show somewhat abnormal ovarioles (Figure S2), but quanti-
fication of TSE was nonetheless possible. The loss of function
for r2d2 does not affect TSE (Table 1). A second protein
DICER-2 (DCR-2), which combined with R2D2 is responsible
for dsRNA cleavage, is also involved specifically in the siRNA
pathway [53]. The loss of function of Dcr-2 is fertile.
Unfortunately, we were not able to test the effect of a Dcr-2
mutant allele on TSE. Indeed, the control staining (in absence
of a telomeric silencer) of the two different P-lacZ target
transgenes that we tested in homozygous Dcr-2L811fsX mutants
intriguingly showed almost no staining in ovaries, thus
making it impossible to assay any target repression by a
telomeric silencer in this context. Finally, a mutant allele of
loquacious (loqs), a dsRNA binding protein involved in the
miRNA pathway was tested. The loqs f00791 allele corresponds
to a hypomorphic allele that alters miRNA-induced silencing
in all tissues where it has been tested, including ovaries [54].
This allele is viable, allowing us to test homozygous mutant
females. No effect on TSE was detected (Table 1).

Figure 3. TSE Involves a Strictly Maternally Transmitted Component

‘‘A’’ females, hemizygous for the P-1152 telomeric silencer locus, were established by crossing homozygous P-1152 females and males carrying the
Muller-5 chromosome (M5) devoid of P sequence and marked by the semidominant Bar marker. These ‘‘A’’ females were crossed with males carrying
the BQ16 euchromatic P-lacZ as target in order to recover the ‘‘B’’ and ‘‘C’’ females having inherited or not P-1152. ‘‘A’’ females were also crossed with
P-1152; BQ16 males in order to recover the ‘‘D’’ females having inherited P-1152 from the father. P-1152; BQ16 males were also crossed with females
devoid of P transgenes producing ‘‘E’’ females genotypically similar to ‘‘D’’ females, with the exception that they have inherited a naive cytoplasm,
whereas, ‘‘D’’ females have inherited a P-1152 cytoplasm. ‘‘B–E’’ females were scored for TSE. ‘‘F’’ females show an expression control of the target.
doi:10.1371/journal.pgen.0030158.g003
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In conclusion, TSE strongly depends on the function of two
genes involved in heterochromatin formation and four genes
involved in the rasiRNA silencing pathway but is not affected
by mutations of genes involved in the siRNA or miRNA
pathways.

Discussion

Our study of the regulatory mechanism of a TE that
recently invaded the D. melanogaster genome allowed the
discovery of a master site for establishing strong transposon
repression in the germline; indeed, one or two P elements
inserted in TASs are sufficient to repress the mobility of the
whole P family [21]. TSE was further discovered [26], a
mechanism by which a transgene inserted in subtelomeric
heterochromatin has the capacity to repress a homologous
transgene located in euchromatin. This phenomenon appears
general since it can be induced by transgenes inserted at the
telomere of the X chromosome as well as autosomal
telomeres, and the targets can be located on all major
chromosomes [26,28]. TSE corresponds thus to a useful tool
to investigate the properties of the telomeric master site of P
repression. Here, we show that TSE requires genes encoding
proteins involved in heterochromatin formation (including

HP1, a major component of heterochromatin) and proteins
involved in the rasiRNA silencing pathway. Another TE
master regulatory locus has been described in Drosophila close
to the centromere of the X chromosome. It was first shown to
regulate the gypsy retrotransposon and referred to as the
flamenco locus [55]. This locus was further characterized as
regulating together two other retrotransposons, ZAM and
Idefix, and proposed as a repression center for multiple TEs,
known as ‘‘COM’’ (Centre Organisateur de Mobilisation) [14].
Repression by this locus is based on RNA silencing, but differs
from TSE in that repression of gypsy, ZAM, and Idefix occurs in
the somatic follicle cells of the ovary. This point is important
since in somatic follicle cells, AUBERGINE, a major actor of
the rasiRNA pathway, is not expressed [4]. Conversely, in the
germline, where TSE is active, all known components of the
rasiRNA machinery (AUBERGINE, PIWI, and AGO3) are
present. Consequently, TSE is particularly appropriate to
investigate the genetic properties of a complete rasiRNA-
based repression machinery.

What Is the Molecular Support of Epigenetic Transmission
of TSE?
Here, we show that TSE exhibits a maternal memory that

can be detected for six generations and has thus a partial

Figure 4. TSE Is Sensitive to Mutations in Genes Involved in Heterochromatin Formation and RNA Silencing

In each case, the percentage of TSE is given with the total number of egg chambers counted in parentheses. Females analyzed carried a maternally
inherited P-1152 telomeric silencer locus (from a homozygous P-1152 mother).
(A–D) Mutations affecting HP1. (A) Expression control of the P-otu-lacZ transgene (P-Co1) used as TSE target. (B) G1 females produced by the cross
between P-1152 females and P-Co1 males. (C, D) Females having paternally inherited the P-Co1 target and maternally inherited the P-1152 telomeric
silencer locus together with a Su(var)205 mutant allele.
(E–H) Mutations affecting AUBERGINE. (E) Expression control of the BQ16 target transgene. (F–H) These three types of females have maternally inherited
a P-1152 telomeric silencer and paternally inherited the BQ16 target: (F) TSE positive control (aubþ/aubþ); (G) one maternally inherited mutant aub allele;
(H) loss of function of aub in a heteroallelic mutant context.
doi:10.1371/journal.pgen.0030158.g004
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epigenetic transmission through meiosis (Figure 2). The
genetic analysis indicates that potentialization of the telo-
meric silencer (‘‘potentialization step’’) appears to be a
prerequisite for repression of the target transgene by the
telomeric silencer (‘‘target repression step’’). For the potenti-
alization of the telomeric silencer, both an extrachromosomal
maternally transmitted factor, produced by females carrying
a telomeric silencer, and a chromosomal copy of the
telomeric silencer are necessary (Figure 3). The molecular
nature of this extrachromosomal maternally transmitted
factor, responsible for the maternal effect, is not known at
the moment but it may correspond to rasiRNAs since TAS
homologous rasiRNAs have been reported (see Table S1 of
[4]). We have attempted to identify short RNAs made by
telomeric transgenes by northern blot on ovaries but did not
detect them; this may be due to a low concentration of such
short RNAs. We propose two nonmutually exclusive mecha-
nisms. In the first, which derives from the ‘‘rasiRNA positive
loop model’’ proposed by Brennecke et al. (‘‘ping-pong
model’’) [4] and Gunawardane et al. [29], females deposit
PIWI-interacting RNAs (piRNAs) in the oocyte produced by
telomeric transgenes inserted in tandemly repeated TAS
heterochromatic sequences. As proposed in their model,
these RNAs would be primarily small antisense RNAs
associated with PIWI or AUBERGINE. These piRNAs would
interact in the embryo with sense RNAs produced by the
telomeric transgenes and result in the production of small
sense RNAs associated with AGO3, which in turn would
promote the production of a new antisense piRNA, resulting
in a positive feedback loop. Such a loop can explain the two-
component interaction shown in Figure 3 (see below).

A second mechanism can be proposed for the potentializa-
tion step. Indeed, RNA silencing and heterochromatin
formation have been shown to be connected since ‘‘short
RNA-dependent heterochromatin formation’’ pathways have
been described in several species (fission yeast [56], ciliates
[57], plants [58], and Drosophila [59], for a review see [60–62]).
According to this model, maternally transmitted small RNA
molecules may modify the chromatin structure of the
chromosomal copy of the (paternally or maternally trans-
mitted) telomeric transgenes in the embryo and thereby
confer to the telomeric transgene the capacity to be a
silencer. Recently, RNA-dependent heterochromatin forma-
tion was observed at Drosophila telomeres since mutations of
homeless were shown to cause an opening of chromatin at the
level of telomeric retroelements in Drosophila ovaries (M.
Klenov and V. Gvozdev, personal communication). Such a
model is consistent with the results of our candidate gene
analysis since mutations in two genes involved in hetero-
chromatin formation (Su(var)205 and Su(var)3–7) strongly
impair TSE. HP1 could play a role in heterochromatin
formation, not only as a component of heterochromatin but
also indirectly: indeed, in Schizosaccharomyces pombe CHP1 (a
chromodomain protein) has been shown to be part of a
complex that drives small RNAs to chromatin in order to
modify histone H3 methylation [63]. Such a role for the HP1
chromodomain protein in a similar complex could also exist
in Drosophila.

How can maternal memory of TSE over six generations be
explained? Because of the modality of TSE transmission over
several generations, it can be proposed that establishment of
the hypothetical extrachromosomal component discussed

above requires a number of generations to reach a sufficient
concentration to establish strong repression. Under the
‘‘rasiRNA positive loop model’’ proposed by Brennecke et
al. [4] and Gunawardane et al. [29], when males carrying a
telomeric silencer are crossed with females bearing no
silencer, the cytoplasm of the oocytes would lack piRNAs
homologous to the transgene. However, synthesis of these
RNAs would begin in these G1 females stimulating this
pathway and increasing the piRNA concentration. At each
generation, females would transmit to their daughters a
higher concentration of rasiRNA molecules than at the
previous generation. At generation six, a sufficient level
would be reached to allow strong TSE. Under the ‘‘RNA-
dependent heterochromatin formation’’ model, when males
carrying a telomeric silencer are crossed with females bearing
no silencer, again the cytoplasm of the oocytes would lack
small RNAs homologous to the transgene. However, synthesis
of these RNAs would begin in these G1 females stimulating
heterochromatinization of the telomeric silencer. This
change in the chromatin state would stimulate the produc-
tion of rasiRNAs at the locus also establishing a positive loop,
i.e., reciprocal stimulation between heterochromatin forma-
tion and production of small RNAs. Such a reciprocal
positive loop between heterochromatin formation and small
RNA silencing has been proposed for gene silencing in S.
pombe [64,65]. Again, at each generation, females would
receive from their mother and transmit to their daughters a
higher concentration of RNA molecules than at the previous
generation until a sufficient level is reached at generation six.

How Does the ‘‘Target Repression Step’’ Occur?
Repression of the target transgene by the telomeric silencer

was shown to be homology dependent [23,26,28]. TSE
however does not require homology at the level of the
promoters of the telomeric and euchromatic insertions since
a defective telomeric P element lacking the P promoter can
repress a P-lacZ transgene in which lacZ is driven by a heat-
shock promoter [23]. The TSE decision appears to be
established at the cystoblast stage and stably maintained
since the 15 deriving nurse cells are roughly identical in
regard to their repression state. Another important point in
understanding the repression mechanism is that the telo-
meric silencer can lack the lacZ gene, i.e., the gene repressed
by TSE in the target transgene. For example, a P-white-yellow
transgene [66] inserted at 1A can repress the euchromatic P-
otu-lacZ-white (pCo) transgene used in this study (unpublished
data). In this case, the homology between the telomeric and
the euchromatic transgenes comes from the white trans-
formation marker. This rules out the hypothesis that silencing
of the target occurs via an interaction between rasiRNAs
deriving from the telomeric silencer and the target transgene
transcript; indeed, the targeted transcript in TSE corre-
sponds to the lacZ sequence and no lacZ rasiRNAs can be
produced by the silencer. Therefore, TSE would not occur by
post-transcriptional gene silencing.
Target repression could thus occur via transcriptional gene

silencing. This would fit with the variegated phenotype of
repression observed. Such variegation strongly suggests that
repressed targets undergo heterochromatinization. Two
hypotheses can be proposed to explain such heterochromati-
nization. First, rasiRNAs produced by the telomeric silencer
would interact with nascent transcripts on the target, and this
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interaction could provoke a local heterochromatinization of
the target [64,65]. Heterochromatinization may then spread
along the target as suggested by the repression of a P-otu-lacZ-
white target by a telomeric P-white-yellow transgene. In this case
heterochromatinization would start on the white sequence of
the target and subsequently reach the lacZ sequence. HP1 and
SU(VAR)3–7 could be involved in this spreading since
centromeric heterochromatin spreading has been shown to
be sensitive to the dose of these proteins [35,67]. An
alternative hypothesis for target heterochromatinization is a
DNA–DNA interaction between the telomeric and the
euchromatic transgenes, leading to their pairing and to
trans-heterochromatinization of the target following this
pairing. Indeed, telomeric silencers are themselves in a
heterochromatic state due to the heterochromatic nature of
the TAS [68–71]. This is illustrated by a phenomenon referred
to as telomeric position effect, in which a transgene inserted
in TAS shows variegation in the eye for the transformation
marker [72–75]. Again HP1 and SU(VAR)3–7 could play a role
in this trans-heterochromatinization.

What Is the Role of the Telomere Cap in TSE?
Drosophila telomeres can be divided into three domains

with respect to chromatin structure [71]: (1) the subtelomeric
cluster of heterochromatic TAS repeats [68–70] in which the
tested P elements or P transgenes are inserted; (2) distal to
the TAS, a telomeric retrotransposon array tandemly
repeated in the same orientation [76–80], the retrotranspo-
son array is partially euchromatic [71], and transgenes
located inside this domain do not show variegation for an
eye marker [81]; and (3) at the extremity of the retrotrans-
poson array, the telomere protein cap that prevents telomere
fusion and regulates telomeric retrotransposon transcription
and transposition [82–85]. Interestingly, HP1 (Su(var)205) and
SU(VAR)3–7, both implicated in TSE, are part of the cap and
therefore could be required for the telomeric locus to be a
silencer. This hypothesis is supported by the analysis of the
different Su(var)205 alleles. In addition to the two null alleles
of Su(var)205 tested here, which showed a strong effect on
TSE (Table 1), we also tested a deficiency and the Su(var)2052

allele corresponding to a mutation in the chromodomain
(involved in the histone H3 K9-methylated binding), which
leaves the capping activity intact [85,86]. The deletion of
Su(var)205 as expected has a strong effect on TSE but
Su(var)2052 has no effect (unpublished data). This suggests
that HP1 effect can be mediated (at least partially) via its
capping activity. Therefore, HP1 and SU(VAR)3–7 could
affect the telomeric transgenes in TAS indirectly via such
capping activity, for example, by affecting the localisation of
the telomere inside the nucleus.

Finally, it could appear paradoxical that an amorphic
mutant allele of the Su(var)3–9 HMT has no effect on TSE
since RNA-dependent heterochromatin formation in most
cases involves the histone H3 methylation transition from
lysine 4 to lysine 9 to establish the link between short RNAs
and formation of heterochromatin. However, this result can
be explained by the fact that this HMT has been recently
shown not to be responsible for histone H3 methylation on
lysine 9 at Drosophila telomeres [85]; another unidentified
HMT likely plays this role. We are therefore pursuing the
candidate gene analysis in order to identify a HMT involved
in TSE.

Conclusions
Telomeric TSE appears to be a complex repression

mechanism that requires genes involved in heterochromatin
formation and in RNA silencing. In Drosophila, interaction
between small RNA silencing pathways and transcriptional
repression was previously shown to exist in somatic tissues for
cosuppression phenomena or for variegation phenotypes
with the white marker in the eye [49,59]. TSE shows that
interaction between RNA silencing and heterochromatin
formation can also occur in the germline. This type of
silencing appears to be the basic mechanism for P-element
repression [28], although some P-encoded repressors encoded
by euchromatic copies may contribute in some cases to P
repression [10,87]. TSE has the same complex inheritance as
the P cytotype [10,88,89]. The subtelomeric heterochromatin
thus represents a piRNA producing ‘‘platform’’ [4] available
for recent invaders of the genomes to establish their own
repression. The study of TSE illustrates the genetic properties
of such a platform.

Materials and Methods

Experimental conditions. All crosses were performed at 25 8C and
involved three to five couples in most cases. All ovary lacZ expression
assays were carried out using X-gal overnight staining as described in
Lemaitre et al. 1993 [90], except that ovaries were fixed for 6 min.

Transgenes and strains. P-lacZ fusion enhancer trap transgenes (P-
1152, BQ16, and BC69) contain an in-frame translational fusion of the
Escherichia coli lacZ gene to the second exon of the P transposase gene
and contain rosyþ as a transformation marker [91]. The P-1152
insertion comes from stock number 11152 of the Bloomington Stock
Center (http://flystocks.bio.indiana.edu) and was mapped at the
telomere of the X chromosome (site 1A); this stock was previously
described to carry a single P-lacZ insertion in TAS [26]. However, in
our number 11152 stock, we have mapped two P-lacZ insertions in the
same TAS unit and in the same orientation that might have resulted
from an unequal recombination event duplicating the P-lacZ trans-
gene. P-1152 is homozygous viable and fertile. BQ16 is located at 64C
in euchromatin of the third chromosome and is homozygous viable
and fertile. BC69 is inserted on Chromosome 2 in the first exon of the
vasa gene and results in a vasa loss of function; it is consequently
homozygous female sterile. P-1152 shows no lacZ expression in the
ovary (Figure 1A), whereas BQ16 and BC69 are strongly expressed in
the nurse cells and in the oocyte (Figure 1B and 1D, respectively). P-
Co1 is an insertion of the pCo transgene (P-otu-lacZ) on the third
chromosome (87A-B), which is homozygous viable and fertile. b-
galactosidase expression of the pCo transgene is driven by the otu
promoter and is therefore strongly detected in both nurse cells and
the mature oocyte [27]. This transgene contains a white gene as a
transformation marker.

Lines carrying transgenes have M genetic backgrounds (devoid of P
TEs), as well as the multimarked balancer stocks used in genetic
experiments (yw; Cy; TM3Sb / T(2;3)apXa, M5; Cy / T(2;3)apXa and M5;
TM3Sb/ T(2;3)apXa) and the strains carrying mutations used for the
candidate gene analysis (see below).

Mutations used for the candidate gene analysis. Su(var)205, aub,
piwi, r2d2, and loqs genes are located on Chromosome 2, whereas
Su(var)3–7, Su(var)3–9, hls (synonym of spindle-E), and armi are located
on Chromosome 3. Loss of function is lethal in the case of Su(var)205
and loqs, female sterile in the case of aub, piwi, hls, r2d2, and armi, and is
viable and fertile in the case of Su(var)3–9. Loss of function of
Su(var)3–7 is viable when the mother is heterozygous mutant but
lethal when the mother is homozygous mutant [92].

Su(var)2–505 was x-ray induced and corresponds to a null allele
since it only encodes the first ten amino acids of the HP1 protein [67].
Su(var)2–504 was EMS induced and encodes a truncated HP1 protein,
;85% of wild type size [67], missing a domain necessary for targeting
of HP1 to the nucleus [93]. Lines carrying these mutations were
kindly provided by Gunter Reuter.

Su(var)3–7R2A8 and Su(var)3–7R14 were generated by homologous
recombination [92,94]. Su(var)3–7R14 produces a chimeric protein and
Su(var)3–7R2A8 deletes most of the protein-coding sequence of the
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gene. These two alleles behave as genetic null mutations. Lines
carrying these mutations were kindly provided by Marion Delattre.

Su(var)3–906 was generated by x-ray and corresponds to an
amorphic allele [37,95]. Line carrying this mutation was kindly
provided by Gunter Reuter.

Three strong mutant alleles of aub induced by EMS were used. All
of them are homozygous female sterile. aubQC42 [96] comes from the
Bloomington Stock Center (stock number 4968). aubHN2 [96] has an
amino acid substitution. aubN11 [97] has a 154-bp deletion, resulting in
a frameshift that is predicted to add 16 novel amino acids after
residue 740 [98]. aubHN2 and aubN11 were kindly provided by Paul
Macdonald.

piwi1 and piwi2 are P-element–induced mutations; piwi1 contains a
P transgene inserted in the first exon [46]. The orientation of the
transgene is opposite to that of the gene. piwi2 contains a P transgene
inserted in exon 4 in the same orientation as the gene. In both cases,
homozygous females are sterile. Lines carrying these mutations were
kindly provided by Alain Bucheton.

hlsE616 (synonym of spn-E1) was generated by EMS [43,99]. hlsD125

(synonym of spn-EhlsD125) was generated by P-element excision
resulting in deletion of coding sequences and adjacent sequences.
Deletion may extend into other genes [43]. Lines carrying these
mutations were kindly provided by Utpal Bhadra.

armi1 and armi72.1 are P-element–induced mutations; armi1 has an
insertion of a P transgene in the 59 UTR of the armitage gene [44].
armi72.1 derives from armi1 by an imprecise excision of the P element,
resulting in a deletion of armi sequences in the 59 untranslated region
[39]. These two alleles are female sterile and come from the
Bloomington Stock Center (stock numbers 8513 and 8544).

r2d21 results from a deletion induced by the remobilization of a P
transgene located in 59 of the r2d2 gene [50]. The 4.9-kb deletion
removes the entire r2d2 open reading frame [52]. This allele is an
amorphic allele and homozygous females are sterile due to abnormal
ovaries. The siRNA pathway is severely affected as shown by a dsRNA-
initiated RISC assay in ovaries of homozygous mutant females [52].
This line comes from the Bloomington Stock Center (stock number
8518).

loqs f00791 results from a piggyBac transgene insertion 57 bp upstream
of the transcription start site of loqs [54], a gene necessary for miRNA-
directed silencing. loqs f00791 is a hypomorphic allele that is homo-
zygous viable. At the homozygous state, this allele has a strong effect
on miRNA processing in ovaries. It also has a negative effect on siRNA
silencing [54]. This allele comes from the Bloomington Stock Center
(number 18371).

All the alleles described above are maintained over a balancer
chromosome. Additional information about mutants and stocks are
available at FlyBase (http://flybase.bio.indiana.edu).

Supporting Information

Figure S1. Detailed Mating Scheme to Detect Epigenetic Trans-
mission of TSE

M5 indicates Muller5, a balancer of the X chromosome devoid of P
sequence, Sb indicates Stubble, a dominant marker of the TM3
balancer Chromosome 3, and Xa means Xasta, a dominant marker
of the attached Chromosomes 2 and 3 (T(2;3)apXa). In each case, the
maternally inherited chromosomal complement is written above the
bar. G1 females carrying the telomeric silencer P-1152 and the P-otu-
lacZ transgene (P-Co1 located on Chromosome 3) used as a TSE target
were generated by two reciprocal crosses; in the maternal lineage of

TSE (left), P-1152 was maternally introduced, whereas it was
paternally introduced in the paternal lineage (right). G1 females
were crossed with P-1152; P-Co1 males to establish, in the two
lineages, G2 females having the same genotype (P-1152/ M5; P-Co1/ Sb)
but differing in the cytoplasm transmitted by the G0 females. The
same procedure was repeated over six generations. At each
generation, females were dissected and TSE was quantified in ovaries.
The results are shown on Figure 2.

Found at doi:10.1371/journal.pgen.0030158.sg001 (51 KB PPT).

Figure S2. r2d2 Homozygous Mutant Context Allows TSE Quantifi-
cation

Ovaries from a homozygous r2d21 female that carries a P-1152
silencer locus and a BQ16 target transgene.

Found at doi:10.1371/journal.pgen.0030158.sg002 (2.4 MB PPT).

Accession Numbers

The National Center for Biotechnology Information (NCBI) (http://
www.ncbi.nlm.nih.gov) and FlyBase (http://flybase.bio.indiana.edu)
accession numbers for the genes described in this article are
(respectively): armitage (CG11513, FBgn0041164); Su(var)205
(CG8409, FBgn0003607); aubergine (CG6137, FBgn0000146); piwi
(CG6122, FBgn0004872); r2d2 (CG7138, FBgn0031951); loquacious
(CG6866, FBgn0032515); Su(var)3–7 (CG8599, FBgn0003598);
Su(var)3–9 (CG6476, FBgn0003600); and homeless (CG3158,
FBgn0003483). For the P element, see FBgn0003055. For general
properties of TAS, see FBgn0041614. For TAS data sequences, see
LO3284, U58967, U58968, and U58969. Information about X-TAS
piRNAs are in Table S1 of [4].
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