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Abstract

The inflammasome has been recently implicated in obesity-associated dys-metabolism. However, of its products, the
specific role of IL-1b was clinically demonstrated to mediate only the pancreatic beta-cell demise, and in mice mainly the
intra-hepatic manifestations of obesity. Yet, it remains largely unknown if IL-1b, a cytokine believed to mainly function
locally, could regulate dysfunctional inter-organ crosstalk in obesity. Here we show that High-fat-fed (HFF) mice exhibited a
preferential increase of IL-1b in portal compared to systemic blood. Moreover, portally-drained mesenteric fat
transplantation from IL-1bKO donors resulted in lower pyruvate-glucose flux compared to mice receiving wild-type (WT)
transplant. These results raised a putative endocrine function for visceral fat-derived IL-1b in regulating hepatic
gluconeogenic flux. IL-1bKO mice on HFF exhibited only a minor or no increase in adipose expression of pro-inflammatory
genes (including macrophage M1 markers), Mac2-positive crown-like structures and CD11b-F4/80-double-positive
macrophages, all of which were markedly increased in WT-HFF mice. Further consistent with autocrine/paracrine functions
of IL-1b within adipose tissue, adipose tissue macrophage lipid content was increased in WT-HFF mice, but significantly less
in IL-1bKO mice. Ex-vivo, adipose explants co-cultured with primary hepatocytes from WT or IL-1-receptor (IL-1RI)-KO mice
suggested only a minor direct effect of adipose-derived IL-1b on hepatocyte insulin resistance. Importantly, although IL-
1bKOs gained weight similarly to WT-HFF, they had larger fat depots with similar degree of adipocyte hypertrophy.
Furthermore, adipogenesis genes and markers (pparg, cepba, fabp4, glut4) that were decreased by HFF in WT, were
paradoxically elevated in IL-1bKO-HFF mice. These local alterations in adipose tissue inflammation and expansion correlated
with a lower liver size, less hepatic steatosis, and preserved insulin sensitivity. Collectively, we demonstrate that by
promoting adipose inflammation and limiting fat tissue expandability, IL-1b supports ectopic fat accumulation in
hepatocytes and adipose-tissue macrophages, contributing to impaired fat-liver crosstalk in nutritional obesity.
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Introduction

The inflammasome plays an increasingly recognized role in the

pathogenesis of human diseases, including obesity and Type2

diabetes [1,2]. Two fundamental questions remain outstanding: i.

What is the specific role of various inflammasome products in

obesity? Now, that cytokines other than IL-1b (e.g., IL-18, IL-33)

are known to be generated by activated inflammasome, what

would constitute the specific effects of IL-1b, the only cytokine of

this family that can currently be clinically targeted; ii. How can

systemic and/or inter-organ communication phenomena be

mediated by factors mostly recognized to act locally? Can they

also function directly, as endocrine mediators?

Related to obesity and type 2 diabetes, circulating levels of IL-

1b were demonstrated to predict Type 2 diabetes when in

conjunction with circulating IL6, suggesting a potential role for

circulating IL-1b levels (though not as sole factor) [3]. At the local

tissues sites, bariatric surgery-induced weight-loss was shown to

diminish IL-1b expression in both subcutaneous fat and in the

liver [1]. However, the most direct clinical evidence yet for IL-1b’s
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role in the pathogenesis of type 2 diabetes has been obtained by

antagonizing or neutralizing IL-1b: Treatment of Type2 diabetes

patients with Anakinra (IL-1 receptor antagonist, IL-1Ra) linked

this ubiquitous inflammatory cytokine mainly to the pancreatic

beta-cell demise that is required for diabetes to manifest [4]. Using

mouse diet-induced obesity models, targeting various components

of the inflammasome, including NLRP3 [5,6], caspase-1 [7] and

ASC [7] was shown to either prevent obesity, and/or to relieve

obesity-induced manifestations [5], in particular whole-body

insulin resistance and hepatic steatosis [7,8]. Yet, specifically

addressing the involvement of IL-1b was more directly studied

using IL-1-receptor (IL-1R) knockout mice [9]. This study

demonstrated improved insulin sensitivity and prevention of IL-

1-TNFa synergism in inducing adipocyte insulin resistance.

Complementarily, IL-1b knockout mice were more insulin

sensitive on either normal chow or high fat diet [6,10], and both

IL-1b and IL-1a knockouts were protected against hepatic

steatosis induced by high fat or atherogenic diets [7,11]. But do

these represent merely effects of locally-produced IL-1b, or could

arise directly or indirectly from the effect of this cytokine in other

sites, thereby regulating inter-organ crosstalk?

Adipose tissue inflammation is now a well-recognized manifes-

tation of obesity [12]. One of its major consequences is thought to

be hepatic insulin resistance and steatosis, tied to adipose

inflammation particularly when involving visceral fat that is

drained via the portal vein, a notion known as the "portal theory"

[13,14]. This dysfunctional fat-liver crosstalk is currently best

supported by several mouse models in which inflammatory

mediators (Fas/CD95) and/or inflammatory signals (JNK1) were

disrupted specifically in adipocytes, resulting in protection against

diet-induced hepatic steatosis and insulin resistance [15,16]. More

directly, adipose tissue transplantations allowed to increase the

mass of low-grade inflamed adipose tissue (secondary to the

surgical procedure) independently of other effects of obesity [17].

Remarkably, only mesenteric transplantation drained via the

portal vein to the liver, but not systemically-drained transplant,

induced hepatic insulin resistance [17,18]. In both human and

rodent obesity adipose tissue expression of IL-1b is up-regulated,

more in visceral than subcutaneous fat [1,19], but its contribution

to adipose inflammation is not clear: whereas NLRP3-KO mice

do show diminished adipose macrophage infiltration [5], this was

not significantly observed with IL-1RIKO [9], though macro-

phage inflammatory phenotype (IL-6 and TNFa secretion) was

nevertheless diminished. Ex-vivo/in-vitro systems demonstrated

diverse roles of IL-1b on adipocyte function, including activation

of lipolysis [20], insulin resistance [21] and inhibited adipogenesis

[22,23], though the latter wasn’t consistently reported [24].

Exploring the potential crosstalk with the liver, we recently

demonstrated up-regulation of adipocyte expression and secretion

of IL-1b in response to inflammatory stimulus [25]. Moreover, we

proposed that IL-1b may constitute a mediator in the dysfunc-

tional communication between adipocytes and hepatocytes,

resulting in insulin resistance of the latter cell type [25].

In the present study we utilized a series of ex-vivo and in-vivo

approaches that combine tissues from wild-type and knockout

models to better define the role of IL-1b in inter-organ

communication. IL-1b was found to promote adipose tissue

inflammation, limit fat tissue expandability, contribute to ectopic

fat accumulation and to disturbed fat-liver crosstalk.

Results

Consistent with previous studies [5,10], wild-type (WT) mice

exhibited a time-dependent increase in adipose tissue expression of

IL-1b (IL-1b), IL-1 converting enzyme 1 (caspase-1, casp1), but not

IL-1a, when on high fat diet (HFF) (Fig. S1). To begin assessing a

potential role for fat tissue-derived IL-1b as a direct-endocrine

mediator in adipose-liver crosstalk, we measured the level of this

cytokine in systemic versus portal blood. Although measured IL-1b
levels were low, they were in most mice above the detection limit

of the ELISA kit. HFF induced a preferential increase in IL-1b in

portal blood compared to its levels in the systemic circulation in

the majority of mice (Fig. 1A). To generate an in-vivo setting for

testing the isolated effect of increased portal delivery of IL-1b, we

utilized mesenteric (portally-drained) adipose tissue transplantation

from WT or IL-1b-knockout (KO) mice, as recently described

(Fig. 1B) [17]. Transplanted WT mice indeed had elevated portal

vein levels of IL-1b (Fig. 1C), consistent with the procedure-

associated low-grade inflammation of the transplant [17]. To

specifically address the role of the fat-transplant-related IL-1b on

liver function, we assessed the pyruvate-glucose flux in mice

receiving transplant from either WT or IL-1bKO mice.

Compared to sham-operated controls, mice receiving a transplant

from WT, but not IL-1bKO mouse, had a higher rise in blood

glucose levels during pyruvate tolerance test (PTT, Fig. 1D, E).

This finding suggests that the absence of IL-1b in the transplant

prevented the augmented conversion of pyruvate to glucose

induced by increased mass of portally-drained adipose tissue.

To determine if adipose-derived IL-1b can directly regulate fat-

liver communication or rather act locally to alter adipose tissue

adaptation in obesity, we utilized co-culture of primary hepato-

cytes with adipose tissue explants (Fig. 2A). Adipose tissue explants

from WT-NC mice somewhat attenuated insulin-stimulated Akt

though not GSK3 phosphorylation in primary hepatocytes from

IL-1RI (i.e., isolated from IL-1R1KO mice, Fig. 2B, C). In

addition, a significant, near-complete diminution of hepatocyte

insulin responsiveness was induced by adipose explants from WT-

HFF mice, suggesting an effect independent of hepatocyte IL-1RI

(Fig. 2B, C). Furthermore, primary hepatocytes from WT mice co-

cultured with adipose tissue explants from IL-1bKO-HFF mice

responded better to insulin stimulation than the same cells

incubated with fat explants from WT-HFF mice. However,

blocking the direct effect of IL-1b with IL-1 receptor antagonist

(IL-1Ra) only partly and with marginal statistical significance

corrected insulin responsiveness of WT hepatocytes co-cultured

with WT-HFF explants. Collectively these results demonstrate that

diet-induced obesity in the absence of IL-1b alters adipose tissue in

a manner less detrimental to adipose-liver crosstalk. Yet, in WT

conditions when IL-1b is present, it does not seem to directly

mediate the disturbed fat-liver crosstalk induced by obesity.

Rather, adipose-derived IL-1b seems to act primarily locally to

regulate adipose tissue adaptation to obesity, consequently

resulting in impaired fat-liver crosstalk.

To begin addressing the local role of IL-1b in adipose

adaptation to diet-induced obesity, we tested the effect of HFF

on adipose tissue expression of pro-inflammatory cytokines in IL-

1bKO mice (Fig. 3A). As expected, IL-1b mRNA levels were non-

detectable in IL-1bKO mice on either diet. Importantly, in the

absence of IL-1b, HFF induced only a 1.1-and 1.8–fold increase in

il6 and tnfa mRNA, much less than in WT mice. Histological

sections of adipose tissue stained with haematoxylin-eosin (H&E)

or immunostained with anti-Mac2 revealed that HFF induced a

significant infiltration of macrophages in crown-like structures

(CLS, inflammatory cells surrounding adipocytes), whereas this

was less evident in IL-1bKO mice (Fig. 3B, C, E, F).

Complementarily, f4/80 mRNA, a marker of macrophage

infiltration into the tissue measured by quantitative real-time
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PCR, revealed only a 7.4-fold induction by HFF in the IL-1bKO,

much less than in- WT mice (31.7-fold) (Fig. 3D,G).

We further characterized how the lack of IL-1b altered the non-

adipocyte cellular component of adipose tissue in response to HFF

using FACS analyses. Following isolation of the SVF and exclusion

of dead (propidium iodide–positive) cells, SVC were gated for

CD45 to detect leukocytes, and in this fraction macrophages were

identified based on double-positive staining of F4/80 and CD11b

(Fig. 4A). Consistent with other reports [26], obesity greatly

increased the number of CD45-positive cells and adipose tissue

macrophages (ATMs, Fig. 4B, C, respectively). However, IL-

1bKO-HFF mice exhibited only a non-significant increase in total

number of leukocytes, and only a small increase in the number of

ATMs. ATMs may accumulate triglycerides by engulfing lipid

droplet remains of dead adipocytes [19], and/or by re-esterifying

free fatty acids released from adipocytes [27]. We therefore used

the fluorescent neutral lipid stain Bodipy to assess ATM lipid

content (Fig. 4D). In WT mice HFF increased 12.1-fold the mean

lipid fluorescence in ATMs compared to WT-NC. IL-1bKO-HFF

however exhibited a significant attenuation of HFF-induced

increase in the mean ATMs’ lipid content (Fig. 4E). Complemen-

tarily, cultured J774.1 mouse macrophage cells incubated in-vitro

Figure 1. Role of adipose IL-1b in adipose-liver cross-talk as revealed by portally-drained mesenteric adipose tissue
transplantation. (A) Serum IL-1b levels were measured in peripheral (systemic) or portal vein blood in WT mice fed normal chow (WT-NC) or
high fat diet (WT-HFF). Connecting lines indicate the paired systemic-portal samples from a single mouse, n = 17–19. Red symbols represent$20%
higher IL-1b level in the portal compared to the systemic blood; (B) Schematic representation of the mesenteric adipose tissue transplantation
experimental flow. (C)Portal blood levels of IL-1b were measured in sham-operated (n = 9) and in mice receiving mesenteric adipose tissue
transplantation from a littermate WT mouse (Trans-WT, n = 13)*p,0.05. (D, E) Intra-peritoneal pyruvate tolerance test (PTT, 2 gr/Kg body weight) was
performed in Sham (n = 9), Trans-WT (n = 13), and in mice receiving transplants from IL-1bKO mice (Trans-IL-1bKO, n = 7) four weeks post-
transplantation. Area under the glucose levels curve (AUC) was calculated; *p,0.05 compared to Sham-operated controls.
doi:10.1371/journal.pone.0053626.g001
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with free fatty acids or aggregated LDL revealed that adding IL-1b
to the culture medium enhanced lipid accumulation (Fig. S2A, B),

consistent with a previous report demonstrating such effect with

both IL-1b and TNFa [28].

The findings above offered a putative effect of locally-produced

IL-1b along with adipose tissue microenvironment on ATMs.

Further along this line, we assessed how in the absence of IL-1b
HFF altered the inflammatory profile of adipose tissue and ATMs

by measuring the mRNA levels of several M1/M2 genes

("classically-activated"/"alternatively-activated" macrophages)

(Fig. 4F,G) [29]. Consistent with other reports in mice [30] and

in humans [31], obese mice showed a significant increase in M1

and in some of the M2 genes. In IL-1bKO mice this obesity

induced change in the M1 and M2 genes was markedly less

pronounced. Collectively, the adipose tissue response to HFF in

IL-1bKO mice uncovers a major role for IL-1b in the

development of adipose tissue inflammation in response to diet-

induced obesity.

Adipocyte hypertrophy and associated cell death may be major

drivers of adipose tissue inflammation in obesity. Conversely,

cellular hyperplasia may support increased adipose tissue expand-

ability that prevents "ectopic" triglyceride storage in non-adipose

tissues like the liver. We therefore tested if the attenuated HFF-

induced adipose tissue inflammation in IL-1bKO-HFF mice was

associated with altered adipose tissue expandability. Body com-

position analysis using computed tomography (CT) revealed that

Figure 2. Role of adipose IL-1b in hepatocyte insulin resistance as revealed by co-culture approach. (A) Schematic representation of the
fat explants – primary hepatocyte co-culture experimental design. (B) Insulin-stimulated Akt and GSK3 phosphorylation in primary hepatocytes from
IL-1RIKO liver co-cultured or not with fat explants from WT-NC or WT-HFF and densitometry analysis of 2–5 mice per group. *p = 0.05 compared to
incubation with fat explants from WT-HFF mice. (C) Insulin-stimulated Akt phosphorylation in primary hepatocytes from WT mice co-cultured with fat
explants from WT-HFF, IL-1bKO-HFF, or WT-HFF in the presence of IL-1 receptor antagonist (WT-HFF+RA). The right graph depicts densitometry
analysis of 7–9 mice per group. *p,0.05 compared to the signal obtained from primary hepatocytes incubated with fat explants from WT-HFF mice.
doi:10.1371/journal.pone.0053626.g002
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HFF caused expansion of adipose tissue compartments in WT

mice. After 16w on HFF, both epididymal fat and liver weights

were significantly increased compared to WT-NC (Fig. 5A).

Remarkably, although IL-1bKO gained similar total body weight

compared to WT mice when on HFF (Fig. S4), adipose tissues

accumulation appeared to exceed that which was observed in WT-

HFF mice in both the intra-abdominal cavity and in subcutaneous

depots (Fig. 5B). Yet, no similar increase in liver size was observed,

in contrast to WT mice (Fig. 5A, B). This corresponded

histologically to the extent of lipid accumulation, with

Figure 3. High fat feeding induces only a minor adipose tissue macrophage infiltration in IL-1bKO mice. (A) Quantitative real-time PCR
analysis of adipose tissue (epididymal fat pad) of IL-1b, il6 and tnf (normalized to tbp, 18S and 36b4). n$3 per group. (B–D) Representative X20 light
microscopy images of adipose tissue stained with H&E or with anti-Mac2 antibody. The mean6SEM number of crown like structures (CLS) per X10
microscopic field was counted as described in Materials and Methods. mRNA levels of f4/80, a macrophage marker, was assessed by quantitative real-
time PCR. (E–G) Similar analysis as described above (B–D), but for IL-1bKO-NC and IL-1bKO-HFF mice. n = 3–6 animals per group were included in the
analysis. *p,0.05 compared to IL-1bKO-NC; ***p,0.001 compared to WT-NC.
doi:10.1371/journal.pone.0053626.g003
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56.166.9% versus 27.565.5% of the sections area being steatotic

in WT-HFF versus IL-1bKO-HFF, respectively (Fig. S3). Inter-

estingly, in HFF mice a higher fat mass correlated with lower liver

weight (Fig. 5C), supporting the proposition that in the absence of

IL-1b greater expansion of adipose tissue protected against ectopic

fat accumulation in the liver.

To gain further insight on the mechanisms for increased adipose

tissue expandability in IL-1bKO-HFF mice we assessed adipocyte

Figure 4. Role of IL-1b in adipose tissue macrophage recruitment, ATM lipid content, and adipose inflammatory profile in dietary
obesity. (A) FACS plots and gating of the stromal-vascular cells (SVCs) to detect adipose tissue macrophages (ATMs). Leucocytes (B), ATMs (C) in
adipose tissue of WT-NC (n = 4), WT-HFF (n = 11), IL-1bKO-NC (n = 3) and IL-1bKO-HFF (n = 7). (D) Histogram of lipid content (determined with Bodipy)
in representative mice of the 4 mouse groups (E). Quantitative real-time PCR analysis of M1 or M2- genes in epididymal adipose tissue of (F) WT-NC,
WT-HFF (n = 4, 11, respectively), and (G) IL-1bKO-NC and IL-1bKO-HFF (n = 3 and 7, respectively). The expression of each transcript was normalized to
tbp, 18S and 36b4 mRNA/rRNA, and a value of 1 was assigned to the normal chow group (NC) of each strain. *p,0.05, compared to NC; **p,0.01
compared to NC ***p,0.001.
doi:10.1371/journal.pone.0053626.g004
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size distribution. Using a semi-automated quantitative analysis of

histological sections revealed that overall HFF induced a similar

shift towards larger adipocytes in IL-1bKO and WT mice

(Fig. 5D). This suggests that the increased adipose tissue mass of

IL-1bKO-HFF compared to WT-HFF could not be attributed to

greater diet-induced adipocyte hypertrophy, and therefore largely

relied on an increase in adipocyte cell number. Consistently,

whereas in WT mice HFF induced a decrease in early (pparg, cebpa)

and late (fabp4, glut4) adipogenic markers, as previously reported

[32,33], IL-1bKO mice showed significant increase in pparg, cebpa

and fapb4 and no change in glut4 (Fig. 5E). This unique increase in

adipogenic genes in response to HFF could support augmented

adipose tissue expansion in the absence of IL-1b.

Discussion

The fundamental role of IL-1b in inflammatory cascades is well

established, as is now the recognition of adipose tissue inflamma-

tion in obesity-associated-morbidities. Yet, whether and how IL-

1b regulates adipose inflammation and fat-liver crosstalk in obesity

is poorly defined. The present study reveals that: i. IL-1b regulates

lipid storage capacity in adipose tissue, in ATMs, and as previously

shown, in the liver [11]. In its absence, adipose tissue expand-

ability increases in response to excess calories, correlating with

lower liver weight and less (ectopic) lipid storage. ii. IL-1b is a

major promoter of adipose tissue inflammation in obesity. iii. IL-

1b regulates adipose-liver crosstalk, mainly having local effects in

both tissues. IL-1b-mediated autocrine/paracrine actions in

adipose tissue that promote local inflammation and limit

expandability generate a dysfunctional fat-liver communication

that could contribute to liver steatosis and insulin resistance.

Regulation of TG Storage in Obesity
Previous studies have demonstrated local effects of IL-1b on

either adipocytes or hepatocytes, both of which can contribute to

hepatic lipid accumulation in obesity: In cultured adipocytes IL-1b
was shown to induce lipolysis by down-regulating PPARc [20].

Such an effect in an in-vivo setting would result in increased free

fatty acid delivery to the liver. Complementarily, IL-1b may

directly limit hepatocyte fat oxidation by inhibiting PPARa [8].

Consistent with these studies, our study shows that IL-1b
deficiency results in reduced liver steatosis and reduced insulin

resistance. However in addition, our findings suggest that IL-1b
may also limit adipose tissue expandability: in its absence a marked

increase in whole-body fat mass was observed. Intriguingly,

adipocytes of IL-1bKO-HFF showed a similar cell-size distribution

to that seen in WT-HFF, implying that the larger fat depot mass is

the result of larger total number of adipocytes (i.e., hyperplasia).

IL-1b was previously shown to inhibit adipogenesis [22,23], and

here we show that whereas in WT mice HFF decreases expression

of genes involved in adipogenesis, the opposite response to HFF is

induced in IL-1bKO mice, revealing an IL-1b-mediated blockade

on adipose tissue expandability.

Limited adipose tissue expandability, particularly in subcutane-

ous fat, has been suggested to exert a causative role in obesity-

associated morbidity (the "ectopic fat/lipid overflow" theory [34]).

According to this view, adipose tissue is the metabolically safe site

for excessive lipid storage, hence when storage capacity is

exhausted, lipid overflows to non-adipose tissues causing ectopic

fat accumulation and in turn, metabolic dysfunction [35].

Hypertrophied adipocyte cell death could trigger adipose inflam-

mation, and pro-inflammatory cytokines (including IL-1b) can

inhibit key adipogenesis genes like pparg. Thus, it is likely that IL-

1b participates in either hypertrophic adipocyte cell death that

launches the inflammatory cascade, and/or directly in limiting

adipose hyperplastic response and expandability. Jointly, these

contribute to ectopic fat accumulation, impaired adipose-liver

crosstalk and obesity-associated morbidity.

IL-1b Regulation of Adipose Tissue Inflammation in
Obesity

What is IL-1b’s role in adipose tissue inflammation in obesity?

In the absence of IL-1b total adipose tissue leukocyte and

macrophage counts were lower under HFF, and obesity-associated

increase in expression of M1 (classically-activated) macrophage

markers seemed less pronounced (ccl2, cxcl10, cxcl13) or completely

absent (ccl8). HFF-induced changes in M2 (alternatively-activated)

macrophage markers were also lower in IL-1bKO mice. This

suggests that a major role of IL-1b in adipose tissue inflammation

is in the recruitment of macrophages to adipose tissue, although a

more subtle regulation of specific macrophage inflammatory

signature markers is plausible. These findings are consistent with

observations in NLRP3-KO mice [5,6]. Although the overall

conclusion (i.e., of a key role for the IL-1b/IL-1R in obesity-

associated adipose tissue inflammation) is well consistent with the

findings in IL-1RIKO mice [9], the inconsistencies are also worth

noting given that both models target the exact biological system. In

IL-1RIKO mice ATMs were functionally less inflammatory, but

their numbers (both total and M1 macrophages defined by being

CD11c+) were not changed compared to WT. The reasons for this

apparent discrepancy are unknown, and could result from

differences in experimental conditions (different diets were used

in both studies), from different compensatory changes induced by

knocking out each of the two genes, and/or represent true

biological differences when targeting the cytokine versus its

receptor. For example, absence of the receptor, even without

inducing compensatory up-regulation of receptors for other pro-

inflammatory cytokines, could induce changes in abundance/

availability of intracellular receptor partners that are common

between IL-1RI and TLR’s signaling. Interestingly, in our study

lack of IL-1RI in primary hepatocyte did not prevent insulin

resistance induce by adipose tissue explants from WT-HFF mice,

whereas the absence of IL-1b in the adipose tissue fragments did

suggest involvement of IL-1b in adipose-hepatocyte crosstalk.

Moreover, in the leptin/leptin receptor mice models, hepatic

steatosis was more severe in ob/ob mice than in db/db mice [36] –

consist with a somewhat milder phenotype when deleting the

receptor versus its ligand. We propose that closer investigation into

these differences may reveal new insights into the specific input of

the "IL-1 system" in obesity.

Our findings also provide in vivo evidence for a role for IL-1b in

promoting triglyceride accumulation in ATMs. Such activity is

reminiscent of in vitro studies using cultured (non adipose-derived)

Figure 5. IL-1b impact on liver and adipose tissue mass and adipose tissue expandability. (A) Representative Computed Tomography (CT)
scans (mid-coronal sections) of WT-NC and WT-HFF mice, and excised epididymal white adipose tissue (eWAT) and livers, and the mean6SEM of their
weights. (B) Similar to A, but for IL-1bKO mice. ***p,0.001 compared to NC. (C) Spearman correlation between epididymal fat pads’ weight and liver
weight in HFF mice. (D) Adipocyte size distribution in WT and IL-1bKO mice, quantified as described in Methods. n = 3–6 mice per group. (E)
Quantitative real-time PCR analysis of the indicated genes in epididymal adipose tissue in WT and IL-1bKO mice, respectively. n = 3–6 per group.
*p,0.05 compared to IL-1bKO-NC ***p,0.0001 compared to WT-NC.
doi:10.1371/journal.pone.0053626.g005
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macrophages [37] and when the effect of IL-1b was tested on

cholesterylester-laden macrophages [38]. Thus, our results suggest

that IL-1b is a regulator of adipose inflammation by promoting

leukocyte and macrophage recruitment, and interestingly, by

enhancing macrophage lipid accumulation.

The Role of IL-1b in Adipose-liver Crosstalk
Using cultured cell lines we have previously proposed an

endocrine role for IL-1b in adipocyte-hepatocyte communication

in response to adipocyte inflammation [25]. Here we estimated the

role of IL-1b in adipose-liver crosstalk by co-culturing fat explants

with primary hepatocytes. Insulin responsiveness was higher in

hepatocytes co-cultured with adipose explants from IL-1bKO-

HFF than WT-HFF mice. A direct role of IL-1b as an endocrine

mediator in adipose-liver crosstalk could be supported by

demonstrating a preferential increase in portal (over systemic)

IL-1b levels in response to HFF. Yet, in the fat explant/primary-

hepatocyte system, antagonizing IL-1b with IL-1Ra only partially,

and with marginal statistical significance, prevented the insulin

resistance observed in liver cells. Furthermore, hepatocytes from

IL-1RIKO mice were not protected against the insulin resistance

induced by co-culturing them with adipose tissue explants from

HFF mice. Thus, only a minor, if any, direct endocrine function of

adipose tissue-derived IL-1b on hepatocytes may be operational.

Rather, it is most likely that IL-1b’s role in regulating the

endocrine function of adipose tissue is mediated by its own

contribution to adipose tissue inflammation via autocrine/para-

crine actions discussed above. The mesenteric transplantation of

adipose tissue from IL-1bKO mice may suggest a unique role for

IL-1b specifically in the adipocytes in this local autocrine-

paracrine function, as host-derived infiltrating cells into the

transplant will have had IL-1b. Indeed, compared to transplan-

tation from a WT donor, mice exhibited a lower pyruvate to

glucose flux. Jointly, it appears that IL-1b may mainly exert

autocrine/paracrine effects in adipose tissue that consequently

deteriorate metabolic adipose-liver crosstalk in obesity.

A Putative Pathway for Adipose IL-1b in the Pathogenesis
of Obesity-associated Morbidity

Our findings along with current literature may suggest the

following patho-physiological pathway: Diet induced obesity

induces adipose tissue inflammation that includes IL-1b up-

regulation, which contributes to the recruitment of adipose tissue

macrophages and to the induction of additional pro-inflammatory

cytokines. These in turn act to limit hyperplastic adipose tissue

expansion, thereby promoting ectopic fat accumulation both

within and outside adipose tissue (ATMs and hepatocytes,

respectively). Ectopic fat accumulation and adipose tissue–derived

inflammatory mediators, then contribute to hepatic steatosis,

hepatic insulin resistance, and augmented pyruvate-glucose flux.

Materials and Methods

Animals and Treatments
The study was approved in advance by Ben-Gurion-University

Institutional Animal Care and Use Committee, and was conduct-

ed according to the Israeli Animal Welfare Act following the

Guide for care and Use of Laboratory Animals (National-Research

Council, 1996). Male wild-type (WT) C57Bl/6 mice were

purchased from Harlan Laboratories (Rehovot, Israel). IL-1b
homozygote knock-out (IL-1bKO) mice on C57Bl/6 background

were generated and used [39,40] as described [41]. Animals were

housed, in the preclinical facility, 2–3 per cage in individually

ventilated cages, which were changed aseptically at least every

week in a class 2A1 biosafety cabinet. Animals were housed in

12:12 light:dark cycle at 20–24uC and 30–70% relative humidity

and had free access to reverse osmosis filtered water. Mice were

allowed free access to autoclaved normal rodent chow (NC, 11%

calories from fat, 65%- carbohydrates and 24%– protein,

Altromin, Lage, Germany). For diet-induced obesity studies, high

fat feeding (HFF) was initiated in parallel in IL-1bKO or WT mice

at age 6–7 weeks using diet consisting of 58.7% calories from fat,

25.5%- carbohydrate, and 15%- protein (Research Diets, New

Brunswick, NJ, D12492) as described in [42]. Due to occasional

sporadic cases of dental abscesses in IL-1bKO mice, all mice (WT

and KO) were given 1.25 ml 5% Enrofloxacin (Bayer Healthcare,

Leverkusen, Germany) in drinking water every second week, with

no effect of antibiotics on weight gain, development of glucose

intolerance or insulin resistance when on HFF. Blood was drawn

from the tail (100 ml) for fasting insulin and glucose measurements.

At the end of the experiment mice were killed with CO2 or

isoflurane, and tissues were obtained and processed as detailed in

following sections. Both C57Bl/6 strains showed a similar weight

gain on HFF compared to mice fed NC (Fig. S4A, B). Yet, while

WT-HFF mice progressively developed impaired insulin tolerance

and insulin resistance (by ITT and HOMA-IR, respectively, (Fig.

S4C–F, Fig. S5A–C)), IL-1bKO-HFF were protected against these

endocrine/metabolic effects of diet-induced obesity.

IL-1b Measurements
The levels were performed in serum by ELISA (Quantikine,

R&D Systems, cat-MLB00C), following the manufacturer’s

instructions with the following adjustments: orbital shaking

(500 rpm, 2 h) during the Assay-Diluent stage and the following

IL-1b conjugate step. This shaking was essential to decrease the

lower detection limit of the kit to 2.35 pg/ml (lowest concentration

in the standard curve, with a coefficient of variance (CV) of

14.9%).

Portally-drained Mesenteric Fat Transplantation
The transplantation was performed at 8 weeks of age on WT

mice as described [17]. Briefly, both epididymal fat pads were

removed from WT or IL-1bKO donor mice, rinsed with 0.9%

saline and stitched to a recipient’s mesenterium using Assu-cryl 6.0

(Assut-Medical, Corgemont, Switzerland). Sham-operated control

mice undergone identical procedures and an artificial suture was

performed. The peritoneum was sealed by Assu-cryl 5.0. Surgical

skin wounds were closed by Reflex skin closure system (Stoelting,

Wood Dale, IL) and 7 mm clips (CellPoint Scientific, Gaithers-

burg, MD). Mice were given 2.5 ml 5%Enrofloxacin and 1.25 g

Dipyrone syrup (Vitamed, Binyamina, Israel) in drinking water for

3 days. After 4 weeks, during which weight gain was identical

between transplanted and sham-operated mice, mice were used for

metabolic assessment as described below.

Primary Mouse Hepatocytes and Co-culture with Adipose
Tissue Explants

Cell isolation was performed as described [43]. Briefly, livers

from WT mice or IL-1RIKO mice (purchased from The Jackson

Laboratory (Bar Harbor, ME)) were perfused via the inferior vena-

cava with Krebs Ringer buffer supplemented with 0.1 mM

EGTA, followed by the same solution with 0.5 mg/ml collagenase

Type1 (Worthington Biochemical Corporation, Lakewood, NJ).

Hepatocytes were collected, centrifuged, washed and plated

(0.256106 cells/well in 6 well collagenI-coated plates) with

DMEM containing 1 g/L glucose and 10% FBS followed by

DMEM/F12 (1:1) media for 24 hours. Cells were co-cultured for
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24 h with ,100 mg epididymal fat fragments from WT or IL-

1bKO mice on HFF after over-night relaxation. IL-1Ra (100 ng/

ml) was added where indicated to the medium. At the end of the

co-culture period explants were removed, and hepatocytes

stimulated with 100 nM insulin for 7 min. Cells were then washed

and lysates prepared for western blot analysis.

FACS Analysis of Adipose Tissue
Epididymal fat pads were excised and minced in 10 ml of

DMEM containing 4.5 mM glucose (without phenol-red), 2 mM

HEPES pH7.4, and 2%BSA. CollagenaseII (Sigma C6885; 1 mg/

ml) was added, and minced tissues were incubated at 37uC for

20 min with shaking. After removing large particles using 250 mm

sieves, 10 mM EDTA was added, followed by 2 centrifugations

(500 g, 5 min, 4uC) to separate floating adipocytes from the

stromal-vascular fraction (SVF) pellets. Following washing, cells

were re-suspended in 300 ml of staining buffer (PBS containing

2%FBS) containing FcBlock (BD-Biosciences, Franklin Lakes, NJ)

and stained with the following conjugated antibodies (all on ice,

10 min in the dark): CD45-APC, F4/80-PE-Cy7 (both from E-

Bioscience, San-Diego, CA) and CD11b-APC-Cy7 (BD-Pharmin-

gen, San-Diego, CA). Thereafter, cells were washed and pellets

were stained for 20 min with Bodipy 493/503 (3 mg/ml Bodipy

for 56106 cells, Invitrogen). Stained samples were further washed

and filtered using 100 mm mesh. Propidium Iodide (0.2 mg/ml,

Sigma) was added to all samples. Stained samples were analyzed

by FACS (Canto, BD-Biosciences, Franklin Lakes, NJ).

RNA Extraction and Quantitative RT-PCR
Total RNA from fat pads was extracted with the RNeasy lipid

tissue mini kit (Qiagen, Germantown, MD) and analyzed with

Nanodrop�. RNA (200 ng) was reverse-transcribed with High-

Capacity cDNA Reverse Transcriptase Kit (Applied Biosystems,

Foster City, CA). Taqman system (Applied-Biosystems, Foster

City, CA) was used for real-time PCR amplification. Relative gene

expression was obtained after normalization using the formula 2-

DDCT, using specific primers (Table S1).

Cell Lysates and Western Blot Analysis
Protein lysates (in RIPA buffer) and Western blot analysis were

performed as previously described [25], and bands quantified as

using ImageGauge software (Ver. 4.0, Fuji Photo-Film, Tokyo,

Japan) [44]. In each experiment an insulin-stimulated control

received a value of 1 arbitrary unit, and all samples intensities were

expressed as that value. Antibodies used were: anti-pro-IL-1b
antibody (Abcam, San-Francisco, CA); anti–pSer473-PKB/Akt

antibody, anti–pSer308-PKB/Akt antibody, anti-PKB/Akt anti-

body, anti-pSer9/21-GSK3b antibody, and anti-GSK3b antibody

were from Cell Signaling (Beverly, MA), anti-b-actin and anti-b-

tubulin were from Sigma (St. Louis, MO).

Histology
Haematoxylin-eosin and immunohistological staining were

performed in sections of paraffin-embedded epididymal fat and

livers exactly as described previously [45,46]. The number of

crown like structures (CLS) was determined in 6 different 610

fields from 3–6 mice per group. The percentage of steatosis in liver

histological sections was estimated in 6 different X10 fields from 3–

6 mice from H&E stained sections by two independent observers

blind to the treatment group. All pictures were taken using an

Olympus DP70 microscope. Oil red O staining of liver sections

was performed as described [47].

Fat Cell Size Estimation
The estimation was based on X10 magnification of histological

sections images (SPOT digital camera, Diagnostic Instruments,

Sterling Heights, MI). Images were converted into a binary format

with ImageJ (1.45S Wayne Rasband, NIH, USA) and compared

with the original images to ensure an accurate conversion. Cross-

sectional areas,350 mm2 was considered as technical artifact and

ignored. 50–100 cells/group were measured in 5–7 different X10

fields from 3–6 mice.

Computed Tomography (CT) Scanning
Scans were performed in mice anesthetized with Ketamine and

Xylasine (i.p., 100 and 10 mg/kg body weight, respectively) in

saline. Images were acquired on Philips Mx8000 IDT 16.

Pyruvate Tolerance Tests (PTT)
PTT was performed by i.p injection of 2 g/kg body weight

pyruvate in saline after over night fast, and tail blood measure-

ments every 15 minutes using a glucometer (Abbott, Alameda,

CA).

Statistical Analysis
Data are expressed as the mean6S.E.M. statistically significant

differences between two groups were evaluated using paired or

non-paired Student’s t–test as required (GraphPad software).

Correlation between liver weight and eWAT weight was assessed

using Spearman correlation. p,0.05 was considered statistically

significance.

Supporting Information

Figure S1 Increased adipose tissue expression of IL-1b
in diet induced obesity. (A) Quantitative real-time PCR

analysis of interleukin 1b (IL-1b), interleukin 1a (IL-1a) and

caspase1 (casp1) in epididymal adipose tissue of C57/Bl6 wild-type

(WT) mice during high fat feeding (HFF). Values are adjusted to

18S rRNA, and presented relative to age-matched littermates on

normal chow diet (WT-NC). n = 5–12 per group/time-point; *

p,0.05 compared to WT-NC at the same time point. (B)

Representative western blot and densitometry analysis of pro-IL-

1b in epididymal fat of 16 weeks high fat fed (HFF) or normal

chow (NC) wild-type (WT) mice. A value of one was assigned to

the mean pro-IL-1b to b-tubulin ratio in WT-NC. n = 5 in each

group; *p,0.05.

(PPT)

Figure S2 IL-1b contributes to macrophage lipid accu-
mulation. (A) J774.1 mouse macrophage cell line was incubated

with aggregated LDL or with 0.5 mM oleic acid in the absence or

presence of the indicated IL-1b concentrations. After 18 h cells

were stained with oil red o to stain neutral lipids, and light

microscopy images were taken. (B) Cells from 5 independent

experiments were dissolved with DMSO and absorbance was

determined using a microplate reader assigning an arbitrary value

of 1 to control cells incubated in the absence of either lipids or IL-

1. * p,0.05 compared to control.

(PPT)

Figure S3 High fat diet induced hepatic steatosis is
enhanced by IL-1b. Histological sections of livers of WT-NC,

WT-HFF, IL-1bKO-NC and IL-1bKO-HFF stained for haema-

toxylin and eosin (H&E). WT-HFF and IL-1bKO-HFF were also

stained for the neutral lipid stain Oil red O as detailed in methods.

Shown are representative images of X20 light microscopy fields for

H&E and oil red O.
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(PPT)

Figure S4 IL-1b contributes to the development of
fasting hyperinsulinemia in response to high-fat diet.
(A–B) Body weight dynamics in WT-NC, WT-HFF (n = 8–16)

and in IL-1b knockout mice on normal chow (IL-1bKO-NC) or

high fat diet (IL-1bKO-HFF) (n = 6–13) as a function of weeks of

dietary intervention. WT-HFF were not significantly different

from IL-1bKO-HFF in any of the time points, but differed

significantly (p,0.01) from WT-NC or from IL-1bKO-NC from

week 3 respectively. The same groups were assessed for fasting

insulin (C–D) and homeostasis model assessment insulin resistance

(HOMA-IR)(E–F). * p,0.05 compared to WT-NC.

(PPT)

Figure S5 IL-1b contributes to whole-body insulin
resistance in response to diet induced obesity. (A–B)
Insulin tolerance test (ITT, 0.2 U/Kg body weight after 3 h

fasting) after 12 weeks of HFF or normal chow, and (C) calculated

area under the curve (AUC). * p,0.05 compared to WT-NC.

(PPT)

Table S1 List of Taq-man primers for quantitative real-
time PCR.

(PPT)

Acknowledgments

We are grateful for Dr. Julia Rytka and Dr. Stephan Wueest, University of

Zurich, for helping us establish the mesenteric transplantation technique

and for excellent discussions and scientific input.

Author Contributions

Conceived and designed the experiments: ON HS HO TT ES JK IS YH

NB AR. Performed the experiments: ON HS HO TT ID JK YH ES.

Analyzed the data: RA EL YH DK NB ON HS HO ID JK YH NB AR ES

IS. Contributed reagents/materials/analysis tools: ON HS HO ID ES JK

IS RA EL RA YC EV. Wrote the paper: ON HS NB AR.

References

1. Moschen AR, Molnar C, Enrich B, Geiger S, Ebenbichler CF, et al. (2011)

Adipose and liver expression of interleukin (IL)-1 family members in morbid

obesity and effects of weight loss. Mol Med 17: 840–845.

2. Stienstra R, Tack CJ, Kanneganti TD, Joosten LA, Netea MG (2012) The

inflammasome puts obesity in the danger zone. Cell Metab 15: 10–18.

3. Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, et al. (2003)

Inflammatory cytokines and the risk to develop type 2 diabetes: results of the

prospective population-based European Prospective Investigation into Cancer

and Nutrition (EPIC)-Potsdam Study. Diabetes 52: 812–817.

4. Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, et al. (2007)

Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:

1517–1526.

5. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, et al. (2011)

The NLRP3 inflammasome instigates obesity-induced inflammation and insulin

resistance. Nat Med 17: 179–188.

6. Wen H, Gris D, Lei Y, Jha S, Zhang L, et al. (2011) Fatty acid-induced NLRP3-

ASC inflammasome activation interferes with insulin signaling. Nat Immunol

12: 408–415.

7. Stienstra R, van Diepen JA, Tack CJ, Zaki MH, van de Veerdonk FL, et al.

(2011) Inflammasome is a central player in the induction of obesity and insulin

resistance. Proc Natl Acad Sci U S A 108: 15324–15329.

8. Stienstra R, Mandard S, Tan NS, Wahli W, Trautwein C, et al. (2007) The

Interleukin-1 receptor antagonist is a direct target gene of PPARalpha in liver.

J Hepatol 46: 869–877.

9. McGillicuddy FC, Harford KA, Reynolds CM, Oliver E, Claessens M, et al.

(2011) Lack of interleukin-1 receptor I (IL-1RI) protects mice from high-fat diet-

induced adipose tissue inflammation coincident with improved glucose

homeostasis. Diabetes 60: 1688–1698.

10. Stienstra R, Joosten LA, Koenen T, van Tits B, van Diepen JA, et al. (2010) The

inflammasome-mediated caspase-1 activation controls adipocyte differentiation

and insulin sensitivity. Cell Metab 12: 593–605.

11. Kamari Y, Shaish A, Vax E, Shemesh S, Kandel-Kfir M, et al. (2011) Lack of

interleukin-1alpha or interleukin-1beta inhibits transformation of steatosis to

steatohepatitis and liver fibrosis in hypercholesterolemic mice. J Hepatol 55:

1086–1094.

12. Harman-Boehm I, Bluher M, Redel H, Sion-Vardy N, Ovadia S, et al. (2007)

Macrophage infiltration into omental versus subcutaneous fat across different

populations: effect of regional adiposity and the comorbidities of obesity. J Clin

Endocrinol Metab 92: 2240–2247.

13. Bergman RN, Kim SP, Hsu IR, Catalano KJ, Chiu JD, et al. (2007) Abdominal

obesity: role in the pathophysiology of metabolic disease and cardiovascular risk.

Am J Med 120: S3–8; discussion S29–32.

14. Kabir M, Catalano KJ, Ananthnarayan S, Kim SP, Van Citters GW, et al.

(2005) Molecular evidence supporting the portal theory: a causative link between

visceral adiposity and hepatic insulin resistance. Am J Physiol Endocrinol Metab

288: E454–461.

15. Sabio G, Das M, Mora A, Zhang Z, Jun JY, et al. (2008) A stress signaling

pathway in adipose tissue regulates hepatic insulin resistance. Science 322:

1539–1543.

16. Wueest S, Rapold RA, Schumann DM, Rytka JM, Schildknecht A, et al. (2010)

Deletion of Fas in adipocytes relieves adipose tissue inflammation and hepatic

manifestations of obesity in mice. J Clin Invest 120: 191–202.

17. Rytka JM, Wueest S, Schoenle EJ, Konrad D (2011) The portal theory

supported by venous drainage-selective fat transplantation. Diabetes 60: 56–63.

18. Konrad D, Rudich A, Schoenle EJ (2007) Improved glucose tolerance in mice

receiving intraperitoneal transplantation of normal fat tissue. Diabetologia 50:

833–839.

19. Shaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS (2010) Dynamic,

M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during

high-fat diet–induced obesity in mice. Diabetes 59: 1171–1181.

20. Lagathu C, Yvan-Charvet L, Bastard JP, Maachi M, Quignard-Boulange A, et

al. (2006) Long-term treatment with interleukin-1beta induces insulin resistance

in murine and human adipocytes. Diabetologia 49: 2162–2173.

21. Jager J, Gremeaux T, Cormont M, Le Marchand-Brustel Y, Tanti JF (2007)

Interleukin-1beta-induced insulin resistance in adipocytes through down-

regulation of insulin receptor substrate-1 expression. Endocrinology 148: 241–

251.

22. Matsuki T, Horai R, Sudo K, Iwakura Y (2003) IL-1 plays an important role in

lipid metabolism by regulating insulin levels under physiological conditions.

J Exp Med 198: 877–888.

23. Suzawa M, Takada I, Yanagisawa J, Ohtake F, Ogawa S, et al. (2003) Cytokines

suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/

NIK cascade. Nat Cell Biol 5: 224–230.

24. Cawood TJ, Moriarty P, O’Farrelly C, O’Shea D (2006) The effects of tumour

necrosis factor-alpha and interleukin1 on an in vitro model of thyroid-associated

ophthalmopathy; contrasting effects on adipogenesis. Eur J Endocrinol 155:

395–403.

25. Nov O, Kohl A, Lewis EC, Bashan N, Dvir I, et al. (2010) Interleukin-1beta may

mediate insulin resistance in liver-derived cells in response to adipocyte

inflammation. Endocrinology 151: 4247–4256.

26. Xu H, Barnes GT, Yang Q, Tan G, Yang D, et al. (2003) Chronic inflammation

in fat plays a crucial role in the development of obesity-related insulin resistance.

J Clin Invest 112: 1821–1830.

27. Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, et al. (2010) Weight loss

and lipolysis promote a dynamic immune response in murine adipose tissue.

J Clin Invest 120: 3466–3479.

28. Persson J, Nilsson J, Lindholm MW (2008) Interleukin-1beta and tumour

necrosis factor-alpha impede neutral lipid turnover in macrophage-derived foam

cells. BMC Immunol 9: 70.

29. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage

activation. Nat Rev Immunol 8: 958–969.

30. Shaul ME, Bennett G, Strissel KJ, Greenberg AS, Obin MS (2010) Dynamic,

M2-like Remodeling Phenotypes of CD11c+ Adipose Tissue Macrophages

During High Fat Diet-Induced Obesity in Mice. Diabetes 59: 1171–1181.

31. Zeyda M, Farmer D, Todoric J, Aszmann O, Speiser M, et al. (2007) Human

adipose tissue macrophages are of an anti-inflammatory phenotype but capable

of excessive pro-inflammatory mediator production. Int J Obes (Lond) 31: 1420–

1428.

32. Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions

linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:

367–377.

33. Fujiki K, Kano F, Shiota K, Murata M (2009) Expression of the peroxisome

proliferator activated receptor gamma gene is repressed by DNA methylation in

visceral adipose tissue of mouse models of diabetes. BMC Biol 9: 70.

34. Sniderman AD, Bhopal R, Prabhakaran D, Sarrafzadegan N, Tchernof A (2007)

Why might South Asians be so susceptible to central obesity and its atherogenic

consequences? The adipose tissue overflow hypothesis. Int J Epidemiol 36: 220–

225.

Adipose IL1b in Fat-Liver Crosstalk in Obesity

PLOS ONE | www.plosone.org 11 January 2013 | Volume 8 | Issue 1 | e53626



35. Kim JY, van de Wall E, Laplante M, Azzara A, Trujillo ME, et al. (2007)

Obesity-associated improvements in metabolic profile through expansion of
adipose tissue. J Clin Invest 117: 2621–2637.

36. Trak-Smayra V, Paradis V, Massart J, Nasser S, Jebara V, et al. (2011)

Pathology of the liver in obese and diabetic ob/ob and db/db mice fed a
standard or high-calorie diet. Int J Exp Pathol 92: 413–421.

37. Persson H, Wallmark H, Ljungars A, Hallborn J, Ohlin M (2008) In vitro
evolution of an antibody fragment population to find high-affinity hapten

binders. Protein Eng Des Sel 21: 485–493.

38. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, et al. (2010) NLRP3
inflammasomes are required for atherogenesis and activated by cholesterol

crystals. Nature 464: 1357–1361.
39. Rider P, Carmi Y, Guttman O, Braiman A, Cohen I, et al. (2011) IL-1alpha and

IL-1beta recruit different myeloid cells and promote different stages of sterile
inflammation. J Immunol 187: 4835–4843.

40. Carmi Y, Rinott G, Dotan S, Elkabets M, Rider P, et al. (2011)

Microenvironment-derived IL-1 and IL-17 interact in the control of lung
metastasis. J Immunol 186: 3462–3471.

41. Horai R, Asano M, Sudo K, Kanuka H, Suzuki M, et al. (1998) Production of
mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta,

and IL-1 receptor antagonist shows that IL-1beta is crucial in turpentine-

induced fever development and glucocorticoid secretion. J Exp Med 187: 1463–

1475.

42. Ovadia H, Haim Y, Nov O, Almog O, Kovsan J, et al. (2011) Increased

adipocyte S-nitrosylation targets anti-lipolytic action of insulin: relevance to

adipose tissue dysfunction in obesity. J Biol Chem 286: 30433–30443.

43. Berry MN, Friend DS (1969) High-yield preparation of isolated rat liver

parenchymal cells: a biochemical and fine structural study. J Cell Biol 43: 506–

520.

44. Bloch-Damti A, Potashnik R, Gual P, Le Marchand-Brustel Y, Tanti JF, et al.

(2006) Differential effects of IRS1 phosphorylated on Ser307 or Ser632 in the

induction of insulin resistance by oxidative stress. Diabetologia 49: 2463–2473.

45. Elgazar-Carmon V, Rudich A, Hadad N, Levy R (2008) Neutrophils transiently

infiltrate intra-abdominal fat early in the course of high-fat feeding. J Lipid Res

49: 1894–1903.

46. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, et al. (2005) Adipocyte

death defines macrophage localization and function in adipose tissue of obese

mice and humans. J Lipid Res 46: 2347–2355.

47. Hao HX, Cardon CM, Swiatek W, Cooksey RC, Smith TL, et al. (2007) PAS

kinase is required for normal cellular energy balance. Proc Natl Acad Sci U S A

104: 15466–15471.

Adipose IL1b in Fat-Liver Crosstalk in Obesity

PLOS ONE | www.plosone.org 12 January 2013 | Volume 8 | Issue 1 | e53626


