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Non-angiogenic tumors grow in the absence of angiogenesis by two main mechanisms:
cancer cells infiltrating and occupying the normal tissues to exploit pre-existing vessels
(vascular co-option); the cancer cells themselves forms channels able to provide blood flow
(the so called vasculogenic mimicry). In the original work on vascular co-option initiated by
Francesco Pezzella, the non-angiogenic cancer cells were described as “exploiting” pre-
existing vessels. Vascular co-option has been described in primary and secondary
(metastatic) sites. Vascular co-option is defined as a process in which tumor cells
interact with and exploit the pre-existing vasculature of the normal tissue in which they
grow. As part of this process, cancer cells first migrate toward vessels of the primary tumor,
or extravasate at a metastatic site and rest along the ab-luminal vascular surface. The
second hallmark of vascular co-option is the interaction of cancer cells with the ab-luminal
vascular surface. The first evidence for this was provided in a rat C6 glioblastoma model,
showing that the initial tumor growth phase was not always avascular as these initial tumors
can be vascularized by pre-existing vessels. The aim of this review article is to analyze
together with vascular co-option, other alternative mode of vascularization occurring in
glioblastoma multiforme (GBM), including vasculogenic mimicry, angiotropism and trans-
differentiation of glioblastoma stem cells.

Keywords: angiotropism, glioblastoma, glioblastoma stem cells, vascular co-option, vasculogenic mimicry
CANONICAL AND ALTERNATIVE MODE OF
GROWTH OF TUMOR VASCULATURE

Three types of angiogenesis have been described in tumor growth: sprouting angiogenesis (1),
intussusceptive microvascular growth (IMG) (2), and glomeruloid vascular proliferation (3)
(Figure 1). Sprouting angiogenesis in tumor growth include the following stages: The basement
membrane is locally degraded on the side of the dilated peritumoral postcapillary venule situated
closed to the angiogenic stimulus; Interendothelial contacts are weakened and endothelial cells
migrate into the connective tissue; A solid cord of endothelial cells form; Lumen formation occurs
proximal to the migrating front, contiguous tubular sprouts anastomose to form functionally
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capillary loops, parallel with the synthesis of the new basement
membrane and the recruitment of pericytes (1).

In IMG, the vascular network expands by insertion of newly
formed columns of interstitial tissue structures (tissue pillars)
into the vascular lumen. IMG proceeds through these steps:
Protrusion of opposing capillary walls into the lumen and the
creation of a contact zone between facing endothelial cells;
Reorganization of their intercellular junctions and central
perforation of the endothelial bilayer; Formation of an
interstitial pillar core by invading supporting cells
(myofibroblasts, pericytes) and deposition of matrix, such
pillars ranging in diameter from 1 to 2.5 mm; Enlargement in
thickness of the pillars without additional qualitative alteration
(2). IMG occurs in different tumors, including colon and
mammary carcinomas, melanoma, B-cell non-Hodgkin’s
lymphoma and glioma (4).

A switch from sprouting to IMG might represent an adaptive
response to treatment with various antitumor and anti-angiogenic
compounds to restore the hemodynamic and structural properties
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of the vasculature enhancing tumor drug delivery and sensitivity
to treatments (5).

In glomeruloid vascular described in glioblastoma (6), small
glomeruloid bodies, so-called for their morphological
resemblance with the renal glomeruli, are recognizable
(Figure 2). Glomeruloid bodies are made up by small vessels
lined by hyperplastic endothelial cells surrounded by a
discontinuous layer of pericytes. Two types of glomeruloid
bodies might exist (6). The first, formed by an “active”
mechanism would be the one in which angiogenesis occurs
and the glomeruloid vessels are newly formed, possibly because
of the action of vascular endothelial growth factor (VEGF) (3).
The second type or “passive” is one in which no new vessels are
formed but pre-existing capillaries are coiled and folded by
metastatic cells which extravasate and then adhere to the
abluminal surface of the capillaries and pulling them into a
glomeruloid shape (6).

Tumors can also grow without inducing angiogenesis, as
occurs in vessel co-option or vascular co-option (8),
A B C

FIGURE 1 | A drawing showing the three types of angiogenesis have been described in tumor growth: (A) sprouting angiogenesis, (B) intussusceptive
microvascular growth (IMG), and (C) glomeruloid vascular proliferation. Sprouting angiogenesis involves formation and outgrowth of sprouts; IMG involves the
formation of new vasculature where a pre-existing vessel splits in two; in glomeruloid vascular proliferation small glomeruloid bodies, so-called for their morphological
resemblance with the renal glomeruli, are recognizable.
FIGURE 2 | Glomeruloid vascular proliferation in a human glioblastoma multiforme bioptic specimen (arrow). Newly sprouted vessels arranged in tufted aggregates
resemble renal glomeruli. Adjacent vessels demonstrate other morphological forms of microvascular hyperplasia in glioblastoma. Blue toluidine staining. Original
magnification: x 25 (Reproduced from 7).
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vasculogenic mimicry and angiotropism (9). In the original work
on vascular co-option initiated by Francesco Pezzella, the non-
angiogenic cancer cells were described as “exploiting” pre-
existing vessels (10). Vascular co-option, described in primary
and secondary (metastatic) sites, is defined as a process in which
tumor cells interact with and exploit the pre-existing vasculature
of the normal tissue in which they grow. In vessel co-option,
tumors utilize alternative mechanisms besides angiogenesis to
obtain nutrients for growth through local tumor invasion and
proliferation along co-opted vessels. Cancer cells migrate along
the pre-existing vessels and infiltrate tissues between co-opted
vessels (8).

Vessel co-option was initially described in gliomas and lung
metastasis (11–13). The first event observed following co-option
was an increase in the levels of angiopoietin-2 (Ang-2) in the pre-
existing vessels surrounded by tumor cells (11), without increase
of VEGF expression, leading to vascular regression by
detachment of the endothelium from the basement membrane.
Ang-2 binds to its receptor Tie-2 inducing dissociation of the
mural cells from endothelial cells (11). Moreover, Angiopoietin-2
(Ang-2) increases the secretion of matrix metalloproteinase-2
(MMP-2) favoring human glioma cells invasive capacity (14).

In vasculogenic mimicry, first described in uveal melanoma
(15), tumor cells form vessel-like networks. In this condition,
tumor cells reverse to an embryonic-like phenotype and mimic
endothelial cells. Vasculogenic mimicry can serve as a marker for
tumor metastasis, a poor prognosis, worse survival, and the
highest risk of cancer recurrence.

Angiotropism (the pericytic-like location of tumor cells) is a
microscopic marker of migration of tumor cells along the
abluminal vascular surface (9). Glioma cells follow ab-luminal
surface of blood vessels (16) and migrate considerable distances
without employing intravascular dissemination (17).
VASCULARIZATION OF GLIOBLASTOMA
MULTIFORME

Glioblastoma multiforme (glioblastoma IDH-wild type) is the
most aggressive brain tumor with high recurrence and mortality
rate. To further limit the molecular heterogeneity of tumors
subsumed as ‘glioblastoma’, the upcoming 2021 World Health
Organization (WHO) classification of primary brain tumors will
introduce a definition of glioblastoma based on typical
histological features and the absence of IDH mutations (18).
IDH mutations characterize a subpopulation of glioblastomas
and indicate a better prognosis (18). The vasculature of IDH
mutated glioblastomas differs from that of IDH wild-type GBM,
including a lower frequency of vascular abnormalities in IDH
mutated glioblastomas (19).

With a median survival of 14-18 months and 5-year survival
rates of less than 5%, the prognosis of GBM patients is very poor
(20). The standard treatment for GBM patients is maximal
tumor resection followed by adjuvant radiotherapy and
adjuvant chemotherapy using alkylating agent temozolomide
(the “stupp protocol”, 21).
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One of the most significant features of GBM is the
hypervascularity and there is a significant correlation between
the degree of angiogenesis and prognosis (22). VEGF is highly
expressed in GBM and is correlated with the grade of malignancy
and prognosis (23, 24). Other angiogenic cytokines, including
hepatocyte growth factor (HGF), fibroblast growth factor-2
(FGF-2), platelet derived growth factor (PDGF), Angs, and
interleukin-8 (IL-8) are also up-regulated in GBM (24–27). In
GBM, tumor-associated macrophages (TAMs) crosstalk with
Treg cells to release pro-angiogenic and immune-suppressive
VEGF (28).

GBM vessels are characterized by structural and functional
abnormalities, including altered association between endothelial
cells and pericytes, leading to chronic hyperpermeability, vessel
leakage, poor vessel perfusion and delivery of nutrients (29). All
these morphological characteristics contribute to hypoxia,
interstitial fluid pressure and enhanced susceptibility to
metastatic invasion (30). Furthermore, hypoxia-mediated up-
regulation of pro-angiogenic factors secretion by inflammatory
and tumor cells, enhance vascular abnormalities.

Different types of neovascularization occur in GBM,
including vasculogenesis, angiogenesis, IMG (Figure 3),
vascular co-option, vasculogenic mimicry, and trans-
differentiation of glioblastoma stem-like cells (GSCs) in
endothelial cell-like cells (31, 32). When GSCs were cultured
ex vivo under endothelial favorable conditions, they expressed
typical endothelial markers, such as CD31, von Willebrand
factor (vWF), and Tie-2 (32, 33). Endothelial cells promote the
GSC phenotype in the perivascular niche through direct cell–cell
interactions by activating the Notch pathway in GSCs through
the expression of Notch ligands and release of nitric oxide (34–
37). Moreover, GSCs can secrete diffusible factors such as VEGF,
which recruit tumor blood vessels to the niche (38, 39). Other
modalities of interactions between tumor cells and endothelial
cells in GMB include microRNA-containing extracellular
vesicles, gap junctions and non-coding RNAs (40–43).
VASCULAR CO-OPTION IN
GLIOBLASTOMA

C6 rat glioma cells co-opted brain vessels at early stages soon
after their orthotopic injection (11). After serial transplantation
of human derived GBM cells, early passaged tumor cells co-
opted the brain vasculature, while at later passaged, angiogenesis
occurs. Spheroids from human glioma patient tumors co-opt the
host vasculature, showing an aggressive infiltrative growth
pattern (44).

In GBM, tumor cells displace astrocytic endfeet from
endothelial cells, leading to abnormal blood-brain barrier
(BBB) permeability and loss of astrocytic-mediated glio-
vascular coupling (17, 45–47). Caspani et al. (46) studied
interactions occurring between GBM cells and pericytes
associated with brain blood vessels and demonstrated that
GBM cells produced cytoplasmic expansions denominated
flectopodia which adhere to pericytes, forming hybrid cells.
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OTHER ALTERNATIVE MECHANISMS OF
VASCULAR GROWTH IN GLIOBLASTOMA

Orthotopic injection of GSCs in immunocompromised mice
generated large anaplastic tumor xenografts, showing a vessel
wall formed by endothelial cells derived from GSCs (33). GSCs
support vascular function by generating pericytes in a process
enhanced by hypoxia (48). Endothelial cells induce GSCs
features in differentiated GBM cells through FGF-2 (49), and
tumor-derived endothelial cells share the same somatic
mutations as GBM cells, suggesting that tumor endothelial
cells derive from GMB cells (31).

In GBM, vasculogenic mimicry is characterized by the
activation of epithelial-mesenchymal transition (EMT)-related
proteins, such as Twist1 (50), up-regulation of IL-6 expression in
glioma cells (51), and trans-differentiation of GSCs into mural
cells (52).
RESISTANCE TO ANTI-ANGIOGENIC
THERAPY IN GBM

Resistance to anti-angiogenic treatment can be intrinsic, when it
is observed at the beginning of the treatment, or acquired, i.e.,
that it affects the relapsing disease after an initial response to
therapy (53).

Resistance to VEGF pathway inhibitors involves different
mechanisms, including normalization of tumor blood vessels,
alternative mechanisms of vessel formation, hypoxia,
recruitment of inflammatory cells and immature myeloid cells
(53). The most accepted hypothesis for acquired resistance to
anti-angiogenic therapies is based on the induction or up-
regulation of other pro-angiogenic factor pathways, including
IL-8, FGF-2, PDGF and Angs (53). PDGF-BB can induce GBM
formation when overexpressed with the RCAS system (54).

Non-angiogenic growth is an important mechanism of
acquired resistance to anti-angiogenic therapy. Tumor cells
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might evade anti-VEGF therapies using existing vasculature
and increasing the fraction of co-opted vessels (55). Vascular
co-option has been proposed to be a mechanism of resistance to
anti-VEGF therapies (56–58). In GBM, the aberrant vasculature
favor increasing resistance and limitations to the efficacy of
conventional therapies.

Anti-VEGF antibody treatment increased the fraction of co-
opted vasculature in human glioblastoma cells injected into nude
rat striatum (59). Treatment of GBM with a monoclonal
antibody against VEGF receptor-2 (VEGFR-2) induces co-
option of quiescent cerebral vessels (60). Modified GBM-
resident endothelial cells express lower levels of VEGFR and
this might ultimately dampen the efficacy of anti-VEGF therapies
(61). Vascular co-option has been observed in GBM after anti-
angiogenic therapy with cediranib (62).

Intravital imaging identified ephrin-B2 on endothelial cells
and GSCs as an important regulator of vessel co-option and B11,
a single-chain variable fragment directed against ephrin-B2
efficiently blocked cooption and tumor growth (13, 63).
Chemotherapy and/or radiation therapeutic might increase
GSC subpopulation and emerging tumor-derived endothelial
cells. For instance, irradiated GSCs express Tie2, migrate
towards VEGF, and form tubes on Matrigel in vitro (64).
Moreover, temozolomide combined or not with bevacizumab,
potentiates tumor-derived endothelial cell incorporation in
vessels from xenograft models (65). In this context, GSC trans
differentiation contributes to both resistance to anti-angiogenic
therapies and re-vascularization following chemotherapy and/
or radiation.

Bevacizumab obtained clinical approval by the US Food and
Drug Administration for the treatment of GBM at progression
after standard chemoradiotherapy. Bevacizumab inhibits
angiogenesis and tumor growth in pre-clinical models of GBM
(59, 66–68), and in combination with radiotherapy and
chemotherapy with temozolomide was associated with a
significant improvement of progression free survival (PFS), but
only a modest improvement of overall survival (OS) (69–71).
However, bevacizumab in combination with temozolomide or
A B

FIGURE 3 | Two examples of tumor vessels, respectively, with a low and high number of connections of intraluminal tissue folds with the opposite vascular wall,
expression of intussusceptive microvascular growth in II malignancy grade tumor specimen (A), compared with IV malignancy grade (B). Blood vessels have been
identified by immunohistochemical reaction with an anti-CD31 antibody. Original magnification: x 60 (Reproduced from 4).
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lomustine, respectively, did not prolong OS in patients with
newly diagnosed or recurrent GBM in phase III clinical trials
(71–73).

Several tyrosine kinase inhibitors, which inhibit PDGF
receptor (PDGFR) and transforming growth factor beta (TGFb),
were ineffective in clinical trials (74–76). Chemotherapeutic
stress after temozolomide treatment increase HIF response in
recurrent GBM, leading to trans-differentiation of GSCs to
endothelial cells, promoting vasculogenic mimicry (77).

Immune check-points inhibitors might induce an improved
immune response against the co-opting cancer cells and might
synergize with anti-angiogenic therapies (78). Immune check-
points inhibitors have been successfully used in GBM mouse
models (79–83), while immunotherapy is not working in human
glioblastomas (84)”.

Blockade of VEGF, Ang-2, and PD-1 increased the survival of
GBM-bearing mice in comparison to anti-VEGF and anti-Ang-2
alone (85). Targeting endothelial PAK4 promoted GBM vessel
Frontiers in Oncology | www.frontiersin.org 5
normalization, which in turn improved engineered chimeric
antigen receptor T cells (CAR-T) infiltration and extended
mouse survival (86).
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