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Abstract

There are various fantastic biological phenomena in biological pattern formation. Mathemat-

ical modeling using reaction-diffusion partial differential equation systems is employed to

study the mechanism of pattern formation. However, model parameter selection is both diffi-

cult and time consuming. In this paper, a visual feedback simulation framework is proposed

to calculate the parameters of a mathematical model automatically based on the basic prin-

ciple of feedback control. In the simulation framework, the simulation results are visualized,

and the image features are extracted as the system feedback. Then, the unknown model

parameters are obtained by comparing the image features of the simulation image and the

target biological pattern. Considering two typical applications, the visual feedback simulation

framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells

and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of

vascular mesenchymal cells, the normal branching pattern and the branching pattern lack-

ing side branching for lung branching are obtained in a finite number of iterations. The simu-

lation results indicate that it is easy to achieve the simulation targets, especially when the

simulation patterns are sensitive to the model parameters. Moreover, this simulation frame-

work can expand to other types of biological pattern formation.

Introduction

Biological patterns with specificity and different functions are formed from single cells in the

development of higher organisms. It is reported that this process is controlled by a complex

network of biochemical reactions, which are under genetic control[1–3]. Research on the

mechanism of biological pattern formation is one of the key problems in developmental biol-

ogy. Although this problem has been investigated in the field of molecular biology[4, 5], bio-

chemistry[6], mathematics[7–10], mechanics[11, 12], and epidemiology[13–16] for many

years, it has long remained unclear.

In the study of biological pattern formation mechanisms, a prominent approach is the use

of mathematical models to investigate the logic of patterning. The mathematical model, which
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is usually a partial differential equation (PDE) system, describes the reaction and diffusion of

some chemicals, i.e., the so-called activator and inhibitor, and represents the biological pattern

by the solution of the PDE system. Many of these models have been supported by biological

experiments, such as the shells of molluscs[17], the skin of snake[18], the skin of marine angel-

fish[19, 20], and vascular mesenchymal cells (VMCs) self-organization[21, 22], the simulation

results are similar to the biological phenomena that are observed in experiments.

In most cases, an analytical solution cannot be obtained in a PDE system. The numerical

solution of a PDE system depends on the parameters of the equations, which represent the bio-

logical or chemical conditions in the biological pattern formation. Because there are usually

many parameters in a PDE model, it is critical to select the appropriate values for the parame-

ters after the model is determined. In previous studies, researchers needed to try large quanti-

ties of parameter combinations manually to obtain a satisfactory simulation result. Although

the parameter scopes can be narrowed by mathematical analysis, it still takes a long time to

complete the numerical simulation. For example, Eldar et al., in an investigation of drosophila

embryonic patterning, tried a total of 66000 parameter combinations in a reaction-diffusion

model and solved all of them numerically[23].

Some methods that estimated the parameters in pattern formation models were applied to

the study of Drosophila melanogaster and Drosophila gap gene circuits [24, 25]. These meth-

ods accelerate the simulations by optimization algorithm, but we need to design new method

for each model. In fact, the simulation result of the biological pattern formation is visualized as

an image. We evaluate the mathematical model and the model parameters by comparing the

simulation image to the image of the target biological pattern. A good simulation result has the

same pattern topology and similar pattern features as the target pattern. Taking pattern forma-

tion by VMCs as an example[21], we first compare the pattern topology, such as spots, stripes

or labyrinths, and we then compare the quantitative pattern features, such as the size of the

spots or the quantity of the stripes. The most similar simulation result is selected last. The

method of manual simulation guides us to achieve automated numerical simulation based on

visualization and feature comparison.

In this paper, a visual feedback simulation framework is proposed by applying feedback

control theory to calculate the unknown parameters of the mathematical model automatically.

In the simulation framework, the mathematical model and the numerical solution are analo-

gous to the controlled plant and the system output in control system. The pattern topology

and quantitative pattern features of the visualized numerical solution are extracted as system

feedback and compared to those of the target pattern (system input) to obtain the model

parameters (control input). The simulation framework searches model parameters nonlinearly

in high-dimensional parameter space, which is more efficient than manual searches.

Mesenchymal stem cells self-organization and organ branching are two types of typical bio-

logical pattern formation and have been investigated by many researchers through biological

experiments or mathematical analysis[26, 27]. In this paper, we design and implement the

visual feedback simulation framework and fulfill pattern formation simulations for VMCs and

lung development as two typical applications. The simulation processes and results indicate

that this simulation framework is effective and efficient, and it is easy to expand to other types

of biological pattern formation.

Methods

Visual feedback simulation framework for pattern formation

The visual feedback simulation framework calculates the unknown parameters of the mathe-

matical model, according to the visual differences between the target pattern and the simulation
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result, and then, it obtains a numerical solution of the model. As shown in Fig 1, the simulation

framework consists of three modules:

• Numerical simulation module: This module is equivalent to the actuator in the feedback

control system. In this module, the mathematical model with determined parameters is

solved, and the numerical solution is saved as an image as the system output.

• Pattern feature extraction module: This module is equivalent to the sensor in the feedback

control system. In this module, the pattern topology and quantitative pattern features of the

simulation image are extracted as system feedback.

• Parameter identification module: This module is equivalent to the controller in the feedback

control system. In this module, the pattern topology and quantitative pattern features of the

simulation image are compared to those of the target pattern (system input) to evaluate the

unknown model parameters. Then, groups of model parameters and their evaluations are

utilized to calculate the new model parameters.

The visual feedback simulation framework is designed as a software framework. We choose

the appropriate mathematical model according to the target biological pattern before running

the program because different phenomena of biological pattern formation are modeled by dif-

ferent types of reaction-diffusion PDE systems. As a result, the simulation framework can be

applied to various biological pattern formation simulations. In the simulation framework, we

optimize the model parameters by using a differential evolution (DE) algorithm[28]. As a type

of genetic algorithm, the DE algorithm is a simple and fast heuristic approach to obtaining a

global optimization in high-dimensional space.

As shown in Fig 1, the visual feedback simulation framework works by the following steps:

• Step 1 (Input setting): Specify the mathematical model based on the target biological pattern

[2, 7, 29]. Set the adjustable model parameters and their search scopes. Define the pattern

topology and quantitative pattern features of the pattern, and define the cost function to

evaluate the model parameters.

• Step 2 (Initialization): Set the target pattern topology and the quantitative pattern features

based on the target biological pattern. Set the group number of the model parameters in the

DE algorithm, and initialize all of the groups of model parameters randomly in the search

scopes.

• Step 3 (Numerical simulation): For each group of model parameters, numerically solve the

PDE system in the mathematical model. Visualize the numerical solution data as an image

that becomes the simulation result.

• Step 4 (Feature extraction): For each simulation image, if a Turing pattern is formed, then

extract the pattern topology and describe the pattern features quantitatively by the image

processing methods, such as image binarization, skeleton extraction, and edge detection.

• Step 5 (Parameter evaluation): Evaluate the model parameters by comparing the pattern

topology and quantitative pattern features. The evaluation value is smaller if the topology

and features are more similar to the target. The evaluation value is set to a very large value if

the Turing pattern cannot be formed with these parameters.

• Step 6 (Parameter identification): If the evaluation value is small enough or it reaches the

maximum number of iterations, the simulation framework stops running and outputs the

simulation result with the minimum evaluation. Otherwise, calculate groups of new model
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parameters by utilizing all of the groups of model parameters and their evaluations by the

DE algorithm; then, go to Step 3.

It is easy to extract and compare the image features automatically by image processing

methods due to the strong contrast and low noise of the simulation images; thus, the simula-

tion framework can run completely automatically. If it is difficult to extract the image fea-

ture, such as special requirements of simulation results or 3D simulations, then Steps 4 and 5

can be replaced by experts’ scores, which makes the simulation framework semi-automatic.

Either way, the simulation framework searches the model parameters nonlinearly in high-

dimensional parameter space, which is a more efficient way to identify the model parameter

values.

Visual feedback simulation framework of VMCs pattern formation

In embryonic development, mesenchymal stem cells aggregate and organize into patterned

tissues[27, 30]. Garfinkel et al. showed that multi-potential adult VMCs could self-organize

into patterns in vitro and that these patterns could be described and predicted by a reaction-

diffusion mathematical model[21]. In this paper, numerical simulations that correspond to

VMC pattern formation will be developed satisfactorily by the visual feedback simulation

framework.

Mathematical model and numerical simulation. The VMC pattern formation is mod-

eled as the following PDE system, in which the concentrations of determined activator

Fig 1. The structure and process of the visual feedback simulation framework. The simulation framework consists of three modules:

the numerical simulation module, pattern feature extraction module and parameter identification module. Taking VMCs pattern formation

simulation as an example, the visual feedback simulation framework calculates two unknown parameters k, γ of the mathematical model,

according to the pattern feature differences between the target biological pattern and the simulation images. The numerical solution with the

optimal evaluation value is outputted as the simulation result of the biological pattern.

doi:10.1371/journal.pone.0172643.g001
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morphogen U and inhibitor morphogen V are distributed over a 2D domain[21].

@U
@t
¼ Dðr2UÞ þ g

U2

ð1þ kU2ÞV
� cU

� �

ð1Þ

@V
@t
¼ ðr2VÞ þ g½U2 � eV þ S� ð2Þ

In this dimensionless mathematical model, parameter D = DU/DV is the ratio of the diffu-

sion coefficients of the activator and inhibitor. Parameter γ is a scaling parameter that relates

the chemical kinetics, the spatial domain size, and the diffusion rates. Parameter k in the auto-

catalytic term governs the saturation level of the reaction. Parameters c and e represent the

first-order degradation rates of the activator and inhibitor, respectively, and S represents an

exogenous source of inhibitor.

We perform numerical simulation of the mathematical model on a 100 × 100 grid. The

PDE system is solved numerically by using the Euler method with no-flux boundary condi-

tions. Here, we use the pattern of concentration of the activator U to denote the cell pattern.

The solution of the variable U is saved as an image after image gray-scale transformation.

To improve the simulation efficiency, a parallel computing technique is applied in this frame-

work based on Graphics Processing Unit (GPU) and Compute Unified Device Architecture

(CUDA) programming.

Implementation of the visual feedback simulation framework. There are six parameters

in the mathematical model of the VMCs pattern formation. The parameters D, c, e have been

estimated experimentally or theoretically[21]. The scaling parameter γ, which relates to the

time scale of the biological kinetics and the length scale of the experimental domain, changes

in different experiments. The value of the parameter k is difficult to choose. We assume that

there is no inhibitor exogenous source in the experiment for simplicity. Therefore, the parame-

ters k and γ are selected to be the adjustable parameters in the visual feedback simulation

framework, whereas the other parameters are set to constants, with the values D = 0.005,

c = 0.01, e = 0.02, and S = 0. The search scopes of k and γ are set to [0, 0.35] and [0, 30000],

respectively, according to the Turing space analysis[29].

VMCs patterns in biological experiments include stripe, spot, and labyrinthine patterns,

which are set as the pattern topologies in the simulation framework. Furthermore, the pattern-

area-to-total-area ratio R1 and the perimeter-area ratio of the pattern R2 are utilized as quanti-

tative pattern features when we consider the pattern topology and pattern scale, such as the

size of the spots and the quantity of the stripes. The pattern-area-to-total-area ratio R1, which

is the ratio of the area of the cell region to the area of the total region, is utilized to distinguish

the pattern topologies. The perimeter-area ratio of the pattern R2, which is the ratio of the

perimeter of the cell region to the area of the cell region, is utilized to describe the pattern

scale, when the pattern topology has been determined. These two ratios are calculated by

counting the number of pixels in the binary image or the edge image of the pattern image (See

S1 Text for details of the image processing).

The cost function fVMCs is defined as

fVMCs ¼ ½ðR
1 � R1

tarÞ
2
þ ðR2 � R2

tarÞ
2
� � 105 ð3Þ

where R1
tar and R2

tar are the pattern-area-to-total-area ratio and perimeter-area ratio of the target

pattern. The difference in the quantitative pattern features is multiplied by 105 to make the

evaluation value close to an integer.
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Visual feedback simulation framework of lung development

Recent experimental work in lung development has described the branching patterns, includ-

ing side branching and tip bifurcation[31]. A 4-variable PDE system has been employed as a

mathematical model to describe the reaction and diffusion of the morphogens in lung develop-

ment, which led to the creation of lung branching patterns[32, 33]. We have also analyzed the

different branching patterns and pattern switches by altering the key parameters in the model

[34, 35]. In this paper, we use a visual feedback simulation framework to accomplish numerical

simulations of lung branching patterns.

Mathematical model and numerical simulation. The branching pattern formation in the

development of the lung is modeled by the following 4-variable PDE system. The variables in

the first three equations are concentrations of chemical morphogens: an activator A, an inhibi-

tor H, and a substrate chemical S; the variable Y in the last equation is a marker for cell differ-

entiation (Y = 1 means that the cell is differentiated).

@A
@t
¼ DAðr

2AÞ þ
cA2S
H
� mAþ rAY ð4Þ

@H
@t
¼ DHðr

2HÞ þ cA2S � nH þ rHY ð5Þ

@S
@t
¼ DSðr

2SÞ þ c0 � gS � εYS ð6Þ

@Y
@t
¼ dA � eY þ

Y2

1þ fY2
ð7Þ

In the first three equations of this model, Parameters DA, DH, DS and μ, v, γ represent the

diffusion coefficients and first-order degradation rates of the activator A, inhibitor H and sub-

strate S, respectively. Parameter c describes the increase rate of A and H by A and S. A and H
are up-regulated by differentiated cells Y at rates ρA and ρH, respectively. S is produced at a

constant rate c0 and is consumed by Y at a rate ε. In the last equation about Y, the parameters

d, e, and f are used to adjust the cell commitment.

The formation of the branching patterns is related to the dynamics among the variables in

the PDE model[36–39]. In Eqs (4)–(7), the inhibitor H serves to mediate the lateral inhibition,

while the substrate S provides the directional drive for forming the straight lines. For binary

branches, as the local activator (A) peak forms and migrates at the end of the branch tip[32],

the peak expands transversely. Then the lingering inhibitor peak forces the activator peak

into two daughter peaks, which leads to the branch bifurcation at the growing tip. For side

branches, new activator peaks insert at the side of an existing line due to the combination of

the inhibitor and the substrate. Then the side branches emerge when the attraction of the sub-

strate overcomes the lateral inhibition. As the consumption rate of S by Y (parameter ε)

increases, the branching pattern can switch from side branching to tip bifurcation[34].

The numerical simulation of the model is performed on a 200×200 grid, with no-flux

boundary conditions, using two-step Runge-Kutta methods. The initial conditions of the sim-

ulation are A = 0.001, H = 0.01, S = 1, and Y = 0, with a uniform distribution in space. The

solution of the variable Y in Eq (7) is directly saved as a 2D or 3D simulation image of the lung

branching pattern. The simulation finishes when the growth of the lung branching pattern

reaches a certain degree.

Automated numerical simulation of biological pattern formation
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Implementation of the visual feedback simulation framework. There are fourteen

parameters in the mathematical model of the lung branching pattern formation. Because the

model has not been fully verified in a biological experiment, we select only five key parameters

DH, μ, ρH, c0, ε, which are sensitive to the branching pattern topology or features, as the adjust-

able parameters to test the visual feedback simulation framework. The search scopes of these

parameters are set as follows: DH = [0.2, 0.3], μ = [0.1, 0.2], ρH = [0.00005, 0.00015], c0 = [0.01,

0.1], ε = [0.05, 0.15]. The lung branching patterns can be formed in these parameter scopes.

The other parameters are set to constants that appear as one of the parameter combinations in

Ref[34]: DA = 0.02, DS = 0.06, v = 0.04, γ = 0.02, c = 0.002, ρA = 0.03, d = 0.008, e = 0.1, f = 10.

In the study of the lung development, researchers have paid more attention to the pattern

topologies of the lung branching, such as domain branching or side branching and tip bifurca-

tion[31]. Therefore, we primarily analyze the pattern topologies in the simulation framework.

According to the branch characteristics in biological experiments and in previous simulations,

the lung branching patterns can be divided into four approximate categories: a zygomorphic

side branching pattern, alternating side branching pattern, tip bifurcation pattern and hybrid

branching pattern. The simulation images are shown in Fig 2. In the zygomorphic side branch-

ing pattern and alternating side branching pattern, there is a long main stalk in the middle,

and side branches grow on both sides. The zygomorphic side branching pattern is symmetric,

but the alternating side branching pattern is not. In the tip bifurcation pattern and hybrid

branching pattern, the main stalk bifurcates into two equal-sized branches from its apex, and

similarly, each branch splits into two daughter branches. Compared with the tip bifurcation

pattern, a hybrid branching pattern has side branches. These four different patterns are set as

pattern topologies in the simulation framework. Furthermore, we use the branch length d,

which is the distance between two adjacent branches, as a quantitative pattern feature (shown

in Fig 2), considering the biological concerns in lung development. The pattern topologies and

pattern features are extracted automatically by skeleton extraction and pixel scan. (See S1 Text

for details).

The cost function fLung is defined as

fLung ¼ dþ ðd � dTar Þ
2

ð8Þ

d ¼
0 if PT ¼ PTTar

500000 if PT 6¼ PTTar

(

ð9Þ

where dTar represents the branch length of the target pattern and PT and PTTar represent the

pattern topologies of the simulation result and the target pattern. Here, δ represents similarity

of the pattern topologies. If the pattern topologies of the simulation result and the target pat-

tern are different, then the cost function is set to a very large value; if they are the same, the

cost function is calculated according to the quantitative pattern feature.

Results

Simulation results of VMCs based on the visual feedback simulation

framework

We set the VMC patterns in the first line of Fig 3 (Fig 3A–3C) to be the target patterns, and we

use the visual feedback simulation framework to perform the simulation. The quantitative pat-

tern features R1 and R2 of the target patterns are calculated first, as shown in Table 1. Then,

each R1,R2 combination is set as a simulation target, and the simulation framework obtains the

unknown model parameters and the simulation pattern. The second line of Fig 3 (Fig 3D–3F)

Automated numerical simulation of biological pattern formation
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shows the simulation images that correspond to three types of VMC patterns in biological

experiments. The values of the unknown model parameters, the quantitative pattern features

in the simulation images and the evaluation values of the cost function as well as the number

of simulations are listed in Table 2.

In Fig 3, the simulation images (Fig 3D–3F) from the simulation framework are compared

with the target biological patterns (Fig 3A–3C) and the simulation results in Ref[21] (Fig 3G–

3I). The pattern topologies of both types of simulations are the same as those of biological pat-

terns. However, for some of the pattern features, e.g., the sizes of the spots in the spot pattern

or the widths of the stripes in the stripe pattern and labyrinthine pattern, the simulation results

from the simulation framework are much more similar to biological patterns than the results

from the manual simulation because the simulation framework uses both the pattern topology

and the pattern features to perform the simulation. Compared to Tables 1 and 2, the quantita-

tive pattern features R1 and R2 of the simulation images are close to those of the target patterns.

The simulation results demonstrate that the simulation framework can achieve the pattern

Fig 2. Four different lung branching patterns in simulation. (A) Zygomorphic side branching pattern. (B)

Alternating side branching pattern. (C) Tip bifurcation pattern. (D) Hybrid branching pattern. There is a long

main stalk in the zygomorphic side branching pattern (A) and alternating side branching pattern (B). The side

branches in the zygomorphic side branching pattern are symmetric, while they grow alternatively in the

alternating side branching pattern. The main stalk bifurcates into two equal-sized branches in the tip

bifurcation pattern (C) and hybrid branching pattern (D). In comparison with the tip bifurcation pattern, there

are side branches in the hybrid branching pattern. The quantitative pattern feature of branching pattern, the

branch length d, is marked in pattern simulation images.

doi:10.1371/journal.pone.0172643.g002
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formation simulation by VMCs and obtain more similar simulation results than the manual

method.

The simulation patterns of all types of biological patterns are obtained in a finite number of

iterations in the simulation framework. It takes more time for the spot pattern simulation

because the values of the unknown model parameters are close to the lower limits of the search

Fig 3. Different VMC patterns in biological experiments[21] and in simulations. (A, D, G) Spot pattern.

(B, E, H) Stripe pattern. (C, F, I) Labyrinthine (stripe doubling) pattern. The first line (A-C) shows the target

patterns of the VMCs. The second line (D-F) shows the corresponding simulation patterns from the visual

feedback simulation framework in this paper. The third line (G-I) shows the corresponding simulation results in

Ref[21]. (A-C) and (G-I) are cropped for display, but the image scales are retained. The pattern topologies of

both types of simulation are the same as those of biological patterns. However, the quantitative pattern

features of the simulation results from the simulation framework are much more similar to the biological

patterns than the results of the manual simulation.

doi:10.1371/journal.pone.0172643.g003

Table 1. Quantitative pattern features of the VMC patterns.

Pattern R1 R2

Spot pattern 0.22 0.31

Stripe pattern 0.40 0.56

Labyrinthine pattern 0.46 0.67

doi:10.1371/journal.pone.0172643.t001
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scopes. If we perform simulation in a tradition way, we must traverse the search scope of every

parameter. Taking the stripe pattern as an example, if the search scopes of the model parame-

ters k and γ are set to [0.08, 0.17] and [2000, 30000] and the sampling intervals are 0.01 and

2000, respectively, we need a total of 10�15 = 150 simulations. Fig 4 shows the evaluation val-

ues of the parameter combinations. We obtain the minimum evaluation value (= 22) when k
and γ are 0.13 and 16000, which are similar to the results of the visual feedback simulation

framework. However, we perform only 35 simulations to obtain the result. It can be seen that

the simulation framework provides a more efficient way to perform simulations because the

model parameters are searched nonlinearly in a high-dimensional parameter space.

Simulation results of lung branching based on the visual feedback

simulation framework

For the target patterns, we use the pulmonary vascular patterns in lungs in Ref[33], including

normal branching pattern in the lung of wild type mouse and branching pattern that lacks

side branching in MGP transgenic lung (Fig 5A and 5B). The normal branching pattern and

branching pattern without side branching are classified as the hybrid branching pattern and

Table 2. Simulation results of the VMC patterns.

Pattern Values of model parameters Quantitative pattern features Evaluation value Simulation number

k γ R1 R2

Spot pattern 0.01 1136 0.2017 0.3044 37 152

Stripe pattern 0.15 14401 0.4145 0.5469 38 35

Labyrinthine pattern 0.2 21375 0.4524 0.6397 98 53

doi:10.1371/journal.pone.0172643.t002

Fig 4. The evaluation values of the model parameters k and γ in their search scopes. The minimum evaluation value 22 (marked

as white point) is obtained when k = 0.13 and γ = 16000, which are similar to the results of the visual feedback simulation framework

with k = 0.15 and γ = 14401.

doi:10.1371/journal.pone.0172643.g004
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tip bifurcation pattern respectively, and the quantitative pattern features d are set to 15 and 20

pixels. We use the visual feedback simulation framework to perform the simulations. Fig 5C

and 5D and Table 3 show the corresponding simulation patterns and simulation results.

In Fig 5, the simulation images (Fig 5C and 5D) from the simulation framework are com-

pared with the branching patterns in the biological experiments (Fig 5A and 5B) and the simu-

lation results in Ref[33] (Fig 5E and 5F). For the branching pattern without side branching,

both of the simulation results (Fig 5D and 5F) are similar to the biological branching pattern

(Fig 5B), and it is relatively easy to find the results. As shown in Table 2, the simulation frame-

work obtains the proper branching pattern after approximately 180 simulations. For the

Fig 5. Lung branching patterns in biological experiments[33] and in simulations. (A, C, E) Normal

branching pattern. (B, D, F) Branching pattern without side branching. The first line (A and B) shows the target

patterns of the lung branching. The second line (C and D) shows the corresponding simulation patterns of the

simulation framework. The third line (E and F) shows the corresponding simulation results in Ref[33]. For the

branching patterns without side branching, both of the simulation results (D and F) are similar to the biological

branching pattern (B). For the normal branching pattern, both of the simulation results (C and E) have side

branching, but the branching topology of the simulation results using the simulation framework (C) is more

similar to that of the biological pattern (A), as shown by the marked branching structures.

doi:10.1371/journal.pone.0172643.g005
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normal branching pattern, both of the simulation results (Fig 5C and 5E) have side branching.

However, the branching topology of the simulation result using the simulation framework is

more similar to that of the biological pattern, such as the marked branching structures in Fig

5A and 5C. Furthermore, there are many parameters in the mathematical model of lung

branching, and we found that the normal branching pattern with side branching is very sensi-

tive to the model parameters in the simulation. It is difficult and time-consuming to find this

pattern by traversing the search scope of every parameter with a fixed sampling interval. How-

ever, by using the simulation framework, the simulation loop of the normal branching pattern

ends in approximately 270 iterations, which saves a large amount of time.

We attempt to perform 3D simulations of lung branching using the simulation framework.

Two key parameters, ρH and c0, are chosen as unknown model parameters for simplicity. We

evaluate each parameter combination manually by giving a score to each 3D simulation result

due to the difficulties of 3D image processing. The branching pattern that has only horizontal

branches and less branching is set as the simulation target. As shown in Fig 6, the simulation

framework obtains the proper simulation result after approximately 90 simulations, with the

optical parameter values ρH = 0.00072, = 0.126. The 2D and 3D simulation results indicate that

this simulation framework can achieve the pattern formation simulation for lung branching.

Discussion

Pattern formation in developing biological systems is controlled by genes. Mathematical

modelling can be used to describe and predict the essential steps in the processes. Because the

interactions of these complex processes are usually nonlinear, the mathematical models of pat-

tern formation are usually PDE systems. A numerical solution of a PDE system depends on

the parameters of the equations. It is important and time-consuming to choose the appropriate

values of the parameters to obtain the appropriate simulation result. In this paper, a visual

feedback simulation framework is proposed to solve the problem of model parameter identifi-

cation in biological pattern formation simulation. With the basic principle of feedback control,

the simulation framework visualizes the simulation result and extracts the image features,

including the pattern topology and pattern features, as system feedback. Then, the unknown

parameters of the mathematical model are calculated, according to the differences between the

image features of the simulation image and the target biological pattern.

Considering two typical applications, the visual feedback simulation framework is utilized

to accomplish satisfactory pattern formation simulations for VMCs and lung development.

Many different patterns, including the spot, stripe, and labyrinthine patterns of VMCs, the

normal branching pattern and branching pattern without side branching for lung branching

are obtained by the simulation framework in a finite number of iterations, which verifies the

effectiveness and flexibility of the simulation framework.

The simulation framework extracts the pattern topology and pattern features by image pro-

cessing and compares those features automatically, which enables it to overcome some of the

weaknesses of manual image comparison, such as quantitative comparisons (e.g., the size of

the spots in a spot pattern or the width of the stripes in a stripe pattern and the labyrinthine

Table 3. Simulation results of the lung branching pattern.

Pattern Values of model parameters d Evaluation value Simulation number

DH μ ρH c0 ε
normal branching pattern 0.2135 0.1514 6.8×10−5 0.023 0.321 14 1 270

branching pattern lack of side branching 0.384 0.153 4.8×10−4 0.151 1.018 18 4 180

doi:10.1371/journal.pone.0172643.t003
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pattern of the VMCs) and detailed comparisons (e.g., the branching structure in the normal

branching pattern in lung). We obtain more objective simulation results in the visual feedback

simulation framework by defining an appropriate cost function to evaluate the image differ-

ences between the simulated image and the target pattern. At the same time, the simulation

framework can have the advantage of manual simulation by combining the experts’ scores, to

enable us to obtain better simulation results.

Whether using a cost function or experts’ scores, the simulation framework searches the

model parameters nonlinearly in a high-dimensional parameter space. This approach is a

more efficient way to achieve simulation targets, especially simulation patterns that are sensi-

tive to the model parameters, compared to using traditional manual simulation, in which the

parameters are traversed linearly in parameter space. Furthermore, the simulation framework

is easy to expand to other types of biological pattern formation by using different mathematical

models and extracting different pattern features. Numerical simulation of biological pattern

formation is greatly improved by using the visual feedback simulation framework.

In the process of simulation, we obtain various types of simulation patterns in given param-

eter spaces. These simulation patterns can help us understand the mathematical model and

discover new phenomena in biological pattern formation. Furthermore, delay feedback is

widely existed in the real world. For example, time delay and spatial diffusion in the

Fig 6. 3D simulation result by using the simulation framework. The branching pattern that has only

horizontal branches and less branching is set as the simulation target. The corresponding model parameters

are calculated semi-automatically based the experts’ scores.

doi:10.1371/journal.pone.0172643.g006
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mathematical model are utilized to explain the herbivore outbreak[40–42]. We can analysis

the phenomena in deep by using the simulation framework.

It is found that the convergence speed of the simulation is seriously affected by the search

scopes and the initial values of the parameters in the DE algorithm. In the future, we will focus

on the search algorithm for global optimization and feature extraction for various types of bio-

logical pattern formation and expand the application of the visual feedback simulation frame-

work, which will accelerate the verification and selection of the mathematical model and

promote research on biological pattern formation mechanisms.
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