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Abstract.

BACKGROUND: Hypercoagulability in type 2 diabetes mellitus (T2DM) patients increases their risk of cardiovascular dis-
eases.

OBJECTIVE: The aim of this work was to investigate the hypercoagulation mechanism in T2DM patients in terms of circu-
lating tissue factor (TF).

METHODS: Whole blood coagulation tests by damped oscillation rheometry and dielectric blood coagulometry (DBCM)
were performed.

RESULTS: The average coagulation time was significantly shorter for T2DM patients than for healthy controls. In vitro ad-
dition of either anti-TF or anti-activated factor VII (FVIIa) antibody to hypercoagulable blood samples prolonged coagulation
times for one group of patients, while coagulation times remained short for another group. The levels of circulating TF were
estimated in the former group by measuring the coagulation times for blood samples from healthy subjects with addition of
various concentrations of TF and comparing them with the coagulation times for the group. The results indicated that the levels
of circulating TF were on the order of subpicomolar at most.

CONCLUSIONS: Circulating TF is at least partially responsible for a hypercoagulable group of T2DM patients, while an
abnormality in the intrinsic coagulation pathway probably occurs in the other group.
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1. Introduction

Type 2 diabetes mellitus (T2DM) is associated with an increased risk of thrombosis and cardiovascular
diseases [1,2]. In T2DM patients, there is a high rate of abnormal modulation of plasma proteins involved
in coagulation [3]. Such abnormalities may induce a hypercoagulable state and increase the risk of fatal
thrombotic events. Notably, previous studies reported that the level of tissue factor (TF) is increased in
circulating blood in patients with T2DM [4—6]. Because TF is normally not expressed in endocapillary
cells, it has been thought that TF is not exposed to circulating blood unless there is vascular damage.
However, both flow cytometry studies [7,8] and TF activity measurements using activated factor X (FXa)
assay [9,10] demonstrated the expression of TF on the surface of monocytes. It is known that circulating
TF exists in three forms: monocyte TF, microparticle TF shed from monocytes or other leukocytes
[6,11], and soluble TF [12]. The mechanism underlying the increased circulating TF observed in T2DM
has been discussed in terms of the inhibitory effect of insulin on TF synthesis in monocytes, which is
decreased by insulin resistance in T2DM [9,10]. On the other hand, Butenas et al. called attention to
the significant overestimation of circulating TF that may result from either binding of antibodies to the
inactive forms of TF in immunoassays or use of non-physiologically excess concentrations of activated
factor VII (FVIla) in FXa assays [13].

Even though there is still controversy about accurate quantification, the observation of increased cir-
culating TF in T2DM patients compared to healthy subjects appears to be valid at least qualitatively.
Furthermore, circulating TF pathway inhibitor (TFPI) is also increased in T2DM, probably owing to
some homeostatic mechanism to prevent thrombosis, as mentioned by El-Hagracy et al. [14]. The net
influence of circulating TF on blood coagulability might vary greatly among individual patients. There-
fore, a blood coagulation test that is sufficiently sensitive to detect hypercoagulability would provide an
easy method for individualized evaluation of thrombosis risk.

Standard blood coagulation screening tests such as the prothrombin time international normalized
ratio (PT-INR) and activated partial thromboplastin time (aPTT) have limited sensitivity to hypercoagu-
lation [15] because of the use of a large excess of coagulation initiators. Damped oscillation rheometry,
in contrast, allows quantitative measurement of clotting time without artificial activation of blood coag-
ulation, thereby providing a better estimate of hypercoagulability [16,17]. In addition, dielectric blood
coagulometry (DBCM) was developed, and a good correlation with damped oscillation rheometry has
been shown [18]. Recently, Chiba et al. [19] used DBCM to demonstrate hypercoagulation in respi-
ratory diseases including interstitial pneumonitis, lung cancer, chronic obstructive pulmonary diseases,
and sleep apnea syndrome. Hayashi et al. [20] summarized the principles of DBCM in a recent paper.

In the present work, blood coagulation measurements of T2DM patient samples were performed using
both damped oscillation rheometry and DBCM to study the mechanism of hypercoagulation in T2DM,
and the clinical utility of DBCM was also assessed. First, the rheological approach was employed with
and without in vitro addition of anti-TF or anti-FVIla antibodies to confirm that circulating TF plays an
important role in the hypercoagulability in T2DM. Next, a feasibility study of DBCM was conducted to
evaluate hypercoagulability in T2DM patients. Finally, DBCM was used for nonclinical model experi-
ments carried out using blood from healthy volunteers. Extrinsic pathway inhibition by either anti-TF or
anti-FVIla antibody was confirmed for blood samples spiked with TF, and then the levels of circulating
TF were estimated by measuring coagulation times as the TF concentration was varied, and they were
compared with the coagulation times of T2DM patients.
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2. Materials and methods
2.1. Blood sources and reagents

This study was approved by the Ethics Committee of Tokyo Medical and Dental University. Whole
blood samples (1.8 mL) mixed with 0.2 mL of 3.13% trisodium citrate were obtained from healthy
volunteers and T2DM patients who had been hospitalized in the Department of Endocrinology and
Metabolism, Tokyo Medical and Dental University Hospital. Exclusion criteria included age younger
than 20 years or hemoglobin Alc (HbAlc) lower than 6.5% at the examination. All patients involved
agreed to participate in the study after they provided their informed consent and fulfilled the eligibility
criteria for enrollment. The clinical study of T2MD was performed in Tokyo Medical and Dental Uni-
versity, and the nonclinical part of the study was carried out at the laboratory of Sony Corporation at the
university.

Anti-TF monoclonal antibody and anti-FVIla polyclonal antibody were obtained from Cosmo Bio,
Ltd. (Tokyo, Japan) and Funakoshi Ltd. (Tokyo, Japan), respectively, and they were dissolved in distilled
water to a concentration of 1.0 mg/mL. To restart the blood coagulation process, a 250 mM aqueous
solution of calcium chloride (Wako Pure Chemical Industries, Ltd., Tokyo, Japan) was added to the
blood samples at a final concentration of 85 nL/mL, which were mixed just before rheological or DBCM
measurement was started. The reagent for the PT test, Dade Innovin, was obtained from Sysmex Corp.
(Kobe, Japan) and dissolved in 4 mL of distilled water according to the manufacturer’s instructions. The
TF concentration of this stock solution was approximately 67 nM, according to the literature [21-23].
In the present study, this solution was diluted 100 times in distilled water and further diluted in PBS for
serial dilutions, which, together with the calcium chloride solution, were added to and mixed with blood
samples just before DBCM measurement was started in the nonclinical part of the study.

2.2. Damped oscillation rheometry

Blood from each patient was dispensed into two polypropylene tubes. Anti-TF or anti-FVIla antibody
solutions (20.2 uL/mL) were added into one of the tubes (final antibody concentration of 20 pg/mL),
and the same volume of HEPES buffer (pH 7.4) was added into the other tube (a control) to equalize
the dilution rate of blood samples. The samples were gently mixed well and incubated at 37°C for
30 minutes.

Two damped oscillation rheometer apparatuses were used to simultaneously measure samples in the
absence and presence of the antibodies. The details of the method were described in the previous papers
[16,17]. Briefly, incubated blood samples were dispensed in a polypropylene sample tube just after
recalcification. The sample tube was placed in the holder of the rheometer, which is connected via a
torsion wire to a magnetic coil and maintained at 37°C. Direct current (DC) was introduced into the coil
between magnetic poles, which generated an initial rotational displacement in the measuring system.
When current was turned off, the system started a rotational damped oscillation, which produced an
induced electromotive force in the coil. Thus, a damped oscillation curve was detected as an output
voltage every 20 s, and a logarithmic damping factor (LDF) was obtained from the curve. In the present
experiments, the frequency was 1 Hz, the initial rotational angle was 20 degrees, and the shear rate on
the blood sample was estimated to be below 1 s~! [24,25]. After the measurement, the coagulation time
of the sample (#;) was obtained from analysis of LDF. The LDF value accurately reflects the fluidity of
the sample, and the initial change of LDF corresponds to the initiation of clot formation.
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2.3. DBCM

Dielectric responses in blood samples during the coagulation process at 37°C were recorded for
60 minutes at intervals of one or two minutes and a frequency range covering at least 1 kHz to 10 MHz
using DBCM prototype setups developed by Sony Corporation [18-20]. The effects of erythrocyte sed-
imentation were minimized by the prototypes’ design. Two kinds of methods were available. One was
a rotating method, where the prototype system automatically rotated a sealed sample holder by 180 de-
grees every minute. The sample holder was a plate capacitor-type consisting of a polypropylene cylinder
tube with two titanium electrodes (9 mm in diameter), squeezed into the top and bottom ends of the
tube. The other one was a non-rotating method based on use of polypropylene disposable cartridge with
titanium electrode inserts to be a plate capacitor-type. This cartridge was designed so that the sedimenta-
tion boundaries would not reach electrode height during measurements (see Supplemental Fig. S1 in the
reference [20]). Note that the applied AC voltages for measurements were lower than 300 mV (effective
voltage), where non-linear dielectric responses were negligible.

In the first phase of the DBCM study, the coagulation process of T2DM blood samples was monitored
in the absence of anti-TF and anti-FVIla antibodies. In the second phase, the inhibition effects of anti-TF
and anti-FVIla antibodies were tested, and the levels of circulating TF in T2MD samples were estimated
by nonclinical studies on samples from healthy subjects. To test the effects of the antibodies, the diluted
Dade Innovin solution was added to the sample blood at TF concentration of 0.6—0.7 pM, and the sample
was incubated at 37°C for 30 min with and without anti-TF or anti-FVIIa antibody (20.2 uL/mL), where
the rate of sample dilution was kept the same at 9% for all tested samples using physiological saline. The
calcium chloride solution was added just before the start of DBCM measurement. For the estimation of
the levels of circulating TF in T2MD samples, different concentrations of TF were added to the blood
samples together with the calcium chloride solution just before a measurement was started. The dilution
rate for all samples was kept equal at 12%.

2.4. Statistical analysis

Differences in the DBCM data sets were verified using Student’s ¢-test with the Bonferroni correction
for multiple comparisons. Three data sets, obtained by the rotating and non-rotating methods for T2DM
and by the rotating method for healthy controls were tested. Significance was defined as p < 0.016.

3. Results and discussion
3.1. Patient characteristics

The characteristics, laboratory data, and meditations of the T2DM subjects in this study are presented
in Table 1. The mean values of HbAlc indicate that the majority of the subjects had poorly controlled
plasma glucose levels.

3.2. The mechanism of hypercoagulability in T2DM

Figure 1 shows typical examples of rheological results for samples from T2DM and healthy subjects.
The start of fibrin polymerization induces drastic changes of viscosity and viscoelasticity of blood sam-
ples, and it appears as a rapid decrease of LDF. Such a time point is reflected in the definition of #. Thus,
t; indicates the initiation of clot formation. In the absence of anti-TF or anti-FVIIa, LDF values started
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Table 1

Characteristics of patients

213

Variable T2DM, rotating (n = 82) T2DM, non-rotating (n = 37)
Age, years 61.8 (13.0)/53.3-71.5 64.5 (10.1)/59.0-71.0

Sex, % male 62% 59%

HbAlc, % 8.9 (1.7)/7.9-9.8 9.6 (1.6)/8.4-10.4

LDL-C, mg/dL. 122 (35)/95-146 109 (33)/78-131

Fibrinogen, mg/dL 342 (69)/288-381 336 (81)/280-359

sCr, mg/dL 0.83 (0.31)/0.62-0.98 0.86 (0.49)/0.59-0.95

Hct, % 41.4 (4.2)/38.7-44.0 40.7 (4.8)/37.5-43.4

Platelet count, 10%/uL

22.3 (5.8)/18.2-26.1

24.1 (7.5)/20.7-27.1

Antiplatelet therapy, n 14 8
(aspirin, n) (10) (@)
(cilostazol, n) 2) (@))]
(sarpogrelate hydrochloride, n) 2) )

Warfarin, n 2 2

Insulin, n 39 21

OHA, n 11 0

Data are shown as mean (SD)/interquartile range.

LDL-C: low-density lipoprotein cholesterol, sCr: serum creatinine concentration, OHA: oral hypoglycemic agent.
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Fig. 1. Typical LDF curves, where open and filled circles correspond to the data without and with added anti-TF or anti-FVIla
antibody, respectively, and positions of #; are indicated with arrows. Panels (a) and (b) show the curves for T2DM samples
with and without significant effects of added anti-TF antibody, respectively. Panels (c) and (d): same as panels (a) and (b),
respectively, but for added anti-FVIla antibody instead of anti-TF antibody. Panel (e) corresponds to a healthy subject, and
panel (f) shows a case where #; cannot be determined because of significant artifact from fast erythrocyte sedimentation.

to decrease earlier in T2DM patients (Fig. 1(a)—(d)) than in healthy subjects (Fig. 1(e)). This result is
supported by the reported #; ranges of 24.1 £ 6.2 and 31.2 &£ 5.5 minutes for T2DM cases and healthy
subjects, respectively [17], and suggests the presence of hypercoagulability in T2DM. The decrease in
LDF reflects the decrease in fluidity during fibrin polymerization and subsequent network formation.
Therefore, the rate of decrease in LDF after # would depend on the rate of thrombin production and
the amount of thrombin produced in individuals, that is, the rates of sequential activation of coagulation
factors. Thus, the rate of decrease in LDF is also informative, although detailed discussion about it is
beyond the scope of the present study.
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Figure 1(a) and (b) represent two groups of T2DM samples that showed different responsiveness to
added anti-TF antibody. For approximately half of the T2DM samples tested, inhibition of TF induced
a prolonged coagulation process suggested by increased # compared to #; for healthy subjects, as ex-
emplified by Fig. 1(a) and (e). On the other hand, for the rest of the samples, #; remained short even
after addition of anti-TF antibody, as exemplified by Fig. 1(b). Similar results, as shown in Fig. 1(c) and
(d), were observed for the case of inhibition of TF-FVIla complex formation with anti-FVIla antibody,
where the extrinsic coagulation pathway is restricted. These findings indicate that circulating TF is at
least partially responsible for the hypercoagulability in the former group of T2DM patients.

An abnormality in the intrinsic coagulation pathway is another potential cause of the hypercoagula-
bility in T2DM. Feener et al. [26] recently reviewed the role of plasma kallikrein in diabetes. Kallikrein
is a serine protease that converts factor XII (FXII) to activated FXII (FXIIa) upstream of the intrinsic
coagulation cascade. Kedzierska et al. [27] reported higher plasma concentrations of prekallikrein (the
precursor of kallikrein) in human type 1 diabetics than in non-diabetic subjects, while Clermont et al.
[28] reported increased plasma prekallikrein in diabetic rats. Furthermore, Iwata and Kaibara [29] re-
ported the presence of erythroelastase-IX, which converts factor IX (FIX) to an activated form (FIXa), on
human erythrocyte membranes, and erythroelastase-IX activity was found to be higher in T2DM patients
than in healthy controls [17]. In the intrinsic coagulation cascade, FIX is activated by activated factor
XI (FXIa), and FXIa is produced by the catalytic activity of FXIla, which is activated by kallikrein.
Thus, increased activity of either kallikrein or erythroelastase-IX may induce a hypercoagulable state
of the intrinsic coagulation cascade. From the arguments above, it is expected that # for T2DM pa-
tients with elevated kallikrein and/or erythroelastase-IX activities but low circulating TF levels should
not be prolonged by anti-TF or anti-FVIIa antibody, because the hypercoagulability originates from the
abnormality in intrinsic coagulation.

The examples in the pair of Fig. 1(a) and (c) and the pair of Fig. 1(b) and (d) are considered to corre-
spond to the hypercoagulability related to the extrinsic and intrinsic coagulation pathways, respectively.
The damped oscillation rheometer can clearly differentiate the two groups. However, during the study, it
was found to have difficulty in performing measurements for blood samples with elevated sedimentation
rates. Figure 1(f) shows a typical case where #; cannot be determined because of the strong artifact due to
erythrocyte sedimentation on the LDF curve. It was recognized that this factor cannot be ignored for our
subsequent study, because T2DM samples tend to exhibit accelerated erythrocyte sedimentation, proba-
bly due to increased plasma fibrinogen. One of the possible solutions is to improve data analysis using
periodic damped-oscillation curves [30]. In the present study, however, DBCM was used as a method to
minimize the artifact from erythrocyte sedimentation [20], as described in the following section.

3.3. Hypercoagulability in T2DM studied by DBCM

The main dielectric response of blood is known to be interfacial polarization on erythrocyte mem-
branes that is usually observed over a frequency range of hundreds of kHz to tens of MHz, while a
large parasitic contribution from electrode polarization is also observed at lower frequencies [31]. Fig-
ure 2(a) shows typical dielectric dispersion curves as a function of time for a T2DM sample, where the
stepwise decreases in permittivity (¢") with increasing frequency correspond to electrode polarization
and interfacial polarization. Although the dielectric dispersion curve changed as the coagulation process
proceeded, this is not clearly observable in Fig. 2(a). To more clearly visualize the change, therefore, &’
at each frequency as a function of time was normalized with respect to the value at the first time point, &f,
as shown in Fig. 2(b), where the normalized permittivities decreased and increased in frequency regions
around 5 kHz and 10 MHz, respectively, as the coagulation proceeded.
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Fig. 2. Typical DBCM response for a T2DM sample. Panel (a) shows the change in the dielectric dispersion curve during the
progression of blood coagulation, and panel (b) is the same data normalized to the dielectric dispersion curve at the first time
point. The frequency range for this measurement was 100 Hz to 110 MHz.
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Fig. 3. Normalized permittivity change at 10.7 MHz extracted from Fig. 2(b).

From this observation, it was found that the time-dependent curve of normalized ¢’ in the high fre-
quency region, particularly at 10.7 MHz, is informative for analyzing coagulation time, clot strength, and
other parameters related to, for example, fibrinolysis; the details of the analysis were summarized in the
previous study [20]. Even though DBCM provides various parameters to characterize the coagulation
and fibrinolysis processes, in the present study, the focus was on a single parameter, #,, which is a char-
acteristic time as defined in Fig. 3 and correlates well with # from damped oscillation rheometry [18].
Figure 4 shows the comparison of # values obtained for T2DM samples and non-diabetic controls. The
averages t, are significantly shorter for the T2DM groups than for the control group, though a certain
number of T2DM samples are distributed in the normal range of #,. T2DM samples distributed below
the lower limit of the normal range corresponded to the hypercoagulable patients, while we did not find
certain correlations between #, and other variables such as HbAlc, LDL-C, sCr, and age in the present
study.

3.4. Confirmation of extrinsic pathway inhibition by anti-TF and anti-FVIla antibodies

The effectiveness of anti-TF and anti-FVIIa antibodies for inhibition of TF was checked under a well-
controlled condition using a model system to establish the basis of our discussion on the circulating
TF in T2DM in Section 3.2. Figure 5 shows normalized DBCM responses for a healthy subject with
and without in vitro addition of TF and/or the antibodies. With addition of 0.6-0.7 pM TF without the
antibody, the DBCM response is shifted to the left direction in shorter times (from the curve (1) to (2) in
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Fig. 5. DBCM responses from a healthy subject at 10 MHz normalized by the minimum and maximum values of permittivity.
The black curve (1) shows the control sample without TF and antibodies, and the red curve (2) demonstrates the acceleration
of the DBCM response by addition of TF to the sample blood. Simultaneous addition of TF and anti-TF antibody (3) or TF and
anti-FVIIa antibody (4) prolongs the DBCM response in comparison with (2). On the other hand, addition of anti-TF antibody
(5) or anti-FVIla antibody (6) without TF shows responses similar to the control (1).

Fig. 5). The sample corresponding to curve (2) is considered a simplified model of the hypercoagulation
state of T2DM due to circulating TF. Addition of both anti-TF and anti-FVIIa antibodies to this model
system partially compensated for the effects of TF and shifted the DBCM responses (curves (3) and (4))
in the right direction toward the control (curve (1)). Addition of either anti-TF or anti-FVIIa antibody
without TF did not affect the DBCM response, because curves (5) and (6) in Fig. 5 were very close to
the control curve (1). Therefore, it was confirmed that DBCM can monitor the inhibition of TF by the
antibodies, and that circulating TF is a probable contributor to the hypercoagulability in the subset of
T2DM corresponding to Fig. 1(a) and (c).
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Fig. 6. TF concentration dependence of #¢ in healthy subjects (three individuals are shown by different colors). The open
circle shows the normal range of prothrombin time (PT) against reagent concentration of screening PT tests with international
normalized ratio (INR) and international sensitivity index (ISI) values close to one.

3.5. Estimation of circulating TF levels in T2DM

Assuming that circulating TF is the main factor responsible for shortened ¢, in a subset of T2DM
samples, we were interested in actual blood levels of TF and attempted to estimate them by using DBCM
to see if the unrealistic overestimation reported by Butenas et al. [13] with immunoassays or an FXa
assay could be avoided. For that purpose, a series of t, values associated with addition of TF at different
concentrations into blood samples obtained from healthy subjects was determined. Notably, ¢, remained
almost constant at low concentrations of TF up to about ten femtomolars and then started to decrease
linearly when plotted on a log-log scale (Fig. 6); by extrapolation, it reached the region of prothrombin
time (PT) for screening PT tests.

For the hypercoagulable T2DM group, # ranged between 10 and 20 min (Fig. 4). The horizontal
dashed line in Fig. 6 corresponding to 7 of 15 min intersects with the data points approximately at
subpicomolar TF concentrations. Therefore, the level of circulating TF in T2DM is in the order of
subpicomolar at most, which is more than ten times lower than the previously reported values [5,14,32,
33].

Based on our estimate, however, the baseline TF concentration in healthy subjects is unknown. To
be precise, therefore, the discussed TF level in T2DM is only a relative value. Nevertheless, Butenas et
al. concluded that physiologically active TF in blood from healthy subjects is less than 20 femtomolars
[13]. If that is the baseline level of TF in healthy subjects, the present rough estimation of the TF level
in T2DM is still valid as the plasma concentration. Another limitation of the present work is TFPI,
because its effects were not taken into account. Because TFPI may be increased in T2DM [14,33], the
present analysis can lead to underestimation due to differences in TFPI concentrations between T2DM
and healthy subjects.

4. Conclusions

The present study indicated that there are at least two hypercoagulability mechanisms involved in
T2DM. One mechanism is dependent on circulating TF levels, and the other is TF-independent. Al-
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though the clinical importance of circulating TF, including the risk of fatal thrombotic events, still re-
mains an open question, the possibility of discriminating the types of hypercoagulability shown in this
study is promising for the development of a personalized medicine tool in the future. Because DBCM is
a sensitive tool for testing hypercoagulability, further development of DBCM-based assays will enable
the evaluation of individual coagulation states. At the same time, clarifications of how comorbidities,
medications, and physical characteristics affect hypercoagulability in T2DM are very important, but
multivariate analyses of data from a much larger scale of study than the present work are needed for this.
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