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ABSTRACT

Detection of copy number variations (CNVs) is essen-
tial for uncovering genetic factors underlying human
diseases. However, CNV detection by current meth-
ods is prone to error, and precisely identifying CNVs
from paired-end whole genome sequencing (WGS)
data is still challenging. Here, we present a frame-
work, CNV-JACG, for Judging the Accuracy of CNVs
and Genotyping using paired-end WGS data. CNV-
JACG is based on a random forest model trained on
21 distinctive features characterizing the CNV region
and its breakpoints. Using the data from the 1000
Genomes Project, Genome in a Bottle Consortium,
the Human Genome Structural Variation Consortium
and in-house technical replicates, we show that CNV-
JACG has superior sensitivity over the latest geno-
typing method, SV2, particularly for the small CNVs
(≤1 kb). We also demonstrate that CNV-JACG out-
performs SV2 in terms of Mendelian inconsistency in
trios and concordance between technical replicates.
Our study suggests that CNV-JACG would be a use-
ful tool in assessing the accuracy of CNVs to meet
the ever-growing needs for uncovering the missing
heritability linked to CNVs.

INTRODUCTION

Copy number variations (CNVs) are imbalanced struc-
tural variants characterized by alterations in the number
of copies of DNA segments >50 bp (1). CNVs can alter
gene dosage, disrupt coding sequences and affect gene regu-

lation. They are also known to underlie Mendelian diseases
and, without a doubt, represent an essential portion of miss-
ing heritability in human complex diseases, such as neu-
rodevelopmental disorders and congenital anomalies (2–
7). It is therefore crucial to uncover the disease-associated
CNVs and affected genes; however, CNV detection by cur-
rent methods is prone to error and evaluating the accuracy
of CNV calls remains challenging.

Whole genome sequencing (WGS) is by far the most ef-
fective technology for detecting the full spectrum of CNVs
with single-nucleotide resolution at the breakpoints, espe-
cially those mostly uncharacterized CNVs in non-coding
regions (8–10). For paired-end short read WGS data, read-
depth (RD), read pairs (RP), split reads (SR) and assembly
(AS) are the commonly used CNV detection approaches,
yet each of these approaches has its caveats and limitations
in detecting CNVs of different sizes and types (11,12). RD
approach searches for regions with abnormal read depth
by assuming that the sequencing reads are uniformly dis-
tributed across the normal diploid genome, yet such as-
sumption is not necessarily valid in practice. Genomic re-
gions that are repeat-rich or with GC-bias tend to be highly
variable in read depth (12–16). Consequently, the RD ap-
proach lacks specificity in detecting CNVs in these prob-
lematic regions (11). RP approach identifies CNVs based on
RP with mapped insert size significantly different from ex-
pected, thereby making it insensitive to small deletions due
to the difficulty in detecting small differences in insert size
from normal background variability (17). SR approach uses
soft-clip reads spanning the breakpoints to detect CNVs. It
has the potential for precisely identifying the breakpoints
but is insensitive to large CNVs (11,12). Moreover, both RP
and SR approaches show obvious disadvantages in detect-
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ing non-allelic homologous recombination-induced CNVs
as the abnormal read-pairs and soft-clip reads can merely
be found due to the identical ‘low copy repeats’-induced
junction reads (18,19). Based on the above detection ap-
proaches, many CNV calling tools are now available but
the results vary significantly even among tools using the
same underlying approach. No single tool can detect all
sizes or types of CNVs with high sensitivity and precision
(10–11,20).

One straightforward strategy to improve precision is to
filter out all CNVs located in the repeat-rich or segmen-
tal duplication regions because these CNVs tend to be false
positive calls. Though simple, this strategy may lead to the
loss of clinically relevant CNVs as these problematic regions
comprise ∼55% of the human genome and some disease-
associated CNVs indeed fall on these regions (21–26). An-
other commonly used strategy is to integrate CNVs detected
by multiple tools and select highly confident and credible
ones consistently called by several tools. This strategy can
improve precision, at the cost of a higher false negative
rate, since the overlap between CNVs called by different
tools is low (20,27–30). Recently developed tools such as
SVmine and FusorSV, using data mining approach to com-
bine CNVs detected by various tools in a more optimized
way, were reported to offer superior sensitivity, specificity
and breakpoint accuracy over the individual tools (31,32).
More robust ways to assess the accuracy of CNVs are exper-
imental methods, such as quantitative and long polymerase
chain reaction (PCR), or manual curation using Integra-
tive Genomics Viewer (IGV) plot (33); however, both as-
sessment measures are labor and cost-intensive, especially
when a huge number of CNVs are to be assessed. A re-
cently published CNV genotyping tool named SV2 attempts
to evaluate the CNV accuracy in silico by considering four
features informative for the presence of CNVs: depth of
coverage, discordant paired-ends, split-reads and heterozy-
gous allele ratio (34). In fact, through our experience of
manual curation and PCR validation of CNVs from short
read WGS data (35,36), we noticed that other sequence fea-
tures in addition to those already included in the individual
RD/RP/SR detection tools, particularly those around the
potential breakpoints, can effectively distinguish true CNVs
from the noise. Here, we present an CNV genotyping frame-
work, named CNV-JACG, which takes into account 21 fea-
tures for each putative CNV and uses supervised random
forest (RF) to perform accuracy assessment and genotyp-
ing.

MATERIALS AND METHODS

The framework of CNV-JACG

CNV-JACG starts with extraction of 21 features (see the
section of ‘Feature extraction’ below) for each of the user-
input CNVs. After feature extraction, it applies the RF clas-
sifier, i.e. a pre-determined threshold for each of the 21 fea-
tures, trained on the true and false deletions and duplica-
tions respectively in training dataset to predict whether a
putative CNV is likely to be a true CNV.

Input of CNV-JACG. CNV-JACG requires two types of
input: the genomic coordinates of CNVs and BAM file(s) of

the same or target sample(s). The coordinate file is a BED
file containing chromosome, start position (1-based), end
position and type (‘DEL’ or ‘DUP’) of the CNV(s) of in-
terest. The BAM file is the compressed binary version of a
Sequence Alignment/Map (SAM) file storing biological se-
quences aligned to a reference genome (37). We recommend
a basic quality control on the fastq file (e.g. by FastQC) be-
fore sequence alignment. The BAM file should contain the
‘SA’ tag, which could be generated by BWA ‘mem’ (38). For
multiple BAM files input, the target BAM files can be in-
putted as a list separated by comma for the –bam parame-
ter.

Selection of fixed genomic regions for scaling read depth-
related features. In order to accommodate WGS data of
various coverage, normalization is needed for features re-
lated to read depth, i.e. number of reads. To normalize ef-
ficiently, we searched for invariant genomic regions that
are depleted of CNVs and meanwhile closely resemble the
mean diploid coverage of all chromosomes. We first di-
vided the whole human reference genome (hg19) into non-
overlapping windows with size of 1Mb. We then used 100
in-house WGS data of healthy controls (paired-end 150 bp,
∼40×) to calculate the mean and standard deviation (SD)
of the sequencing depth for each window. For each auto-
some, we chose one window (i) with a mean depth resem-
bling the average (∼40×), (ii) having the lowest SD and (iii)
not overlapping any CNV reported in Database of Genomic
Variants (DGV) and GnomAD-SV (>50% reciprocal over-
lap) (39,40), which resulted in a selection of 22 fixed regions
(Supplementary Table S1). For each input BAM file, CNV-
JACG calculates the mean depth across these 22 selected
regions and uses the computed mean depth as the denom-
inator to scale the depth-related features (see below). This
scaling process would allow CNV-JACG to be robust for
both high and low coverage WGS data.

Feature extraction. A total of 21 distinctive features are
computed from the BAM file for the CNVs specified in the
user input BED file, including 13 characterizing the break-
points of CNVs, 6 featuring the region overlapped and 2
related to called variants within the CNV (Table 1):

(i) Features around the breakpoints
Features around the left and right breakpoints (150 bp
up- and downstream) are considered separately as the
feature signals for both breakpoints are not always iden-
tical.
a) Repeats at the breakpoints (n = 2): ‘Left.Repeat’

and ‘Right.Repeat’–– correspond to whether the
left/right breakpoint located within a repeat region
(simple repeat, repeat masker or segmental duplica-
tion; binary value: yes = 1; no = 0).

b) Orientation of RP at the breakpoints (n = 4): two
features –– ‘Left.RL’ and ‘Right.RL’ –– denote the
scaled number of RP at the left/right breakpoint
supporting right-left (RL) RP orientation while nor-
mal Illumina RP orientation is left-right, which in-
dicates the occurrence of tandem direct duplication
or translocation on the same chromosome (33,41–
43). Similarly, two features –– ‘Left.LL.RR’ and
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Table 1. Twenty-one features selected for RF classification of CNVs

Index Abbreviationsa Illustration Definition
1
2

Left.Repeat 
Right.Repeat

True if the left/right breakpoint is located within a 
repeat regionb respectively

3 
4 

Left.RL
Right.RL 

Scaled number of reads supporting right - left (RL) 
read pair orientation at left/right breakpoint

5 
6 

Left.LL.RR
Right.LL.RR

Scaled number of reads supporting left - left (LL) or 
right - right (RR) read pair orientation at left/right 
breakpoint

7
8
9

Left.SCR
Right.SCR
Left.Right.SCR

Scaled number of SCR supporting the CNV at left/right 
/both breakpoint(s)c. Left.Right.SCR is the sum of 
Left.SCR and Right.SCR

10
11

Left.SCR.cluster
Right.SCR.cluster

Left breakpoint

AC
ACGT

ACGTAA

Right breakpoint

TAGC
GC

TAGC

ACGTAA

Reference True if there is >1 SCR around the 
left breakpoint that can be aligned to the right 
breakpoint, and similarly for the right breakpoint

12 DI Scaled number of SCR with the same mapping 
orientation (i.e. direct, DI) for clipped and non-clipped 

sequences

13 IN Scaled number of SCR with inconsistent mapping 
orientation (i.e. indirect, IN) for clipped and the non-

clipped sequences

14 Mean.depth Scaled mean read depth 

15 Length Length of CNV
16 Microhomo Scaled number of reads with micro-homologous 

sequences around both breakpoints 

Reference
Repeats

Left breakpoint

Reference

Soft clip reads 
(SCR)

Left breakpoint

RL Illumina

LR Duplication: RL

Inversion: LL, RR

LL

RR

Reference
Clipped 

sequence Non-clipped

Reference
Clipped 

sequence Non-clipped

Left breakpoint Right breakpoint

Depth

17 GC GC content within the CNV region (0-100)
18 Repeat.Pct Percentage of length overlap with the repeat region
19 Common_SNP Number of common SNP(s) within the CNV 
20 Het_SNP Number of heterozygous SNP(s) within the CNV
21 Het_Prob Probability of heterozygosity of the CNV
a Left (Right) corresponds to features around the left (right) breakpoint
b Repeat region is defined as region of simple repeat, segmental duplication and that masked by RepeatMasker
c SCR: soft clip reads are defined as split reads where only part of the reads aligns to reference genome mapped to 150bp up- and 
down- stream of the left/right/both breakpoint
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‘Right.LL.RR’ –– represent the scaled number of RP
mapped at the left/right breakpoint, supporting left-
left (LL) or right-right (RR) RP orientation, which
indicates the occurrence of tandem/inserted inverted
duplication or inversion (33,41–43).

c) Support of soft clip reads (SCRs) (n = 7):
three features –– ‘Left.SCR’, ‘Right.SCR’ and
‘Left.Right.SCR’ –– record the scaled number
of SCRs, excluding the secondary and PCR-
induced duplication reads, with sequence at the
left/right/both breakpoint(s) supporting the CNV
respectively. Two features –– ‘Left.SCR.cluster’
and ‘Right.SCR.cluster’ –– denote if there exists a
cluster of at least two SCRs on the left breakpoint
that can be aligned to the right breakpoint or to a
third position (for inserted duplication) (value: yes
= 1, no = 0) and likewise for the right breakpoint.
Two other features –– ‘DI’ and ‘IN’–– represent the
scaled number of SCRs with the direct/inversed
mapping orientation for clipped sequence and the
non-clipped sequence at both breakpoints.

(ii) Features for the region encompassed by the CNV

a) Mean depth of coverage: ‘Mean.depth’ ––represents
the scaled mean read depth of the CNV.

b) Length: ‘Length’ of the CNV (value > 50).
c) Microhomology: One feature–– ‘Microhomo’

––represents the scaled number of reads with the same
micro-homologous sequences around the breakpoints
(19). The discrepancy between the complementary
alignment cigar of the original and supplementary
aligned SCRs, e.g. CIGAR strings of 90M60S for the
original alignment and 88S62M for the supplementary
alignment may indicate that this is a read supporting
a 2-bp micro-homologous sequence.

d) GC content: GC content (‘GC’) within the CNV region
(value: 0–100).

e) Repeat Percentage: ‘Repeat.Pct’––denotes the propor-
tion of a given CNV region that overlap with Repeat-
Makser or/and segmental duplications (44,45).

f) Number of common SNP: ‘Common SNP’––denotes
the number of common single nucleotide polymor-
phisms (SNPs) with MAF > 0.1 in the 1000 Genomes
Project (1KGP) Phase 3 data that are located within
the CNV region (if any) (46).

(iii) The called variants within the CNV

Two features related to the variants called within the
CNV region, including the number of heterozygous SNPs
(‘Het SNP’ among the common SNPs mentioned in (ii)
f)), and the probability of heterozygosity of this CNV re-
gion (‘Het Prob’; calculated by Bayesian model P(Observed
Genotype| MAF in 1KGP)). For each 1KGP common SNP
position within the CNV region, we extracted the covered
reads from the bam file and defined the genotype as het-
erozygous if it has >3 reference allele support reads, >3 al-
ternative allele support reads and the proportion of alter-
native allele support reads > 0.2; meanwhile the probability
of heterozygosity was calculated by a Bayesian model men-
tioned above. The mean of the probability of heterozygos-

ity of all 1KGP common SNP positions was taken as the
‘Het Prob’ of the CNV region.

Rationale for defining true and false training CNVs
using trios. Among all public WGS data, the
individual––NA12878––from 1KGP has been most
extensively studied and has several versions of benchmark
CNVs available. Nevertheless, machine learning on a
limited number of CNVs, particularly for duplications, of
one individual cannot learn as broad the representation
of each feature as possible and poor generalization to
new data (47,48). We reasoned that high quality training
data with a good diversity-to-noise ratio can be obtained
from parent-offspring trios by considering the consistency
between calling tools and Mendelian inheritance, which
can be used to complement the more accurate but less
diverse small dataset. To illustrate this, sequencing data of
the NA12878 trio (including the parents: NA12891 and
NA12892) and the benchmark CNVs of NA12878 was
used. Consistently across three versions of benchmark
CNVs of NA12878 as well as the CNVs of NA12878
recorded in DGV, we observed that the CNVs set obtained
under both the two criteria: (i) inherited from either one of
the parents and (ii) detected by at least three tools achieved
the highest F1-score (Supplementary Figure S1). Whereas
the CNVs meet all these three criteria of (i) not inherited,
(ii) detected by only one tool and (iii) not recorded in
DGV database characterized mostly false CNV calls. These
criteria were thus used to define the true and false CNVs in
the training data.

Training data construction and random forest model training.
We applied the above criteria to our nine in-house trios to
generate training CNVs and built two classifiers, one for
deletions and another for duplications (35). We extracted
the aforementioned 21 features for each of these training
CNVs and evaluated the feature distribution among dif-
ferent groups (Supplementary Figures S2 and 3). We then
used this dataset to train the RF model. We applied the
R package ‘randomForest’ in the training process (49). Af-
ter parameter tuning, we used the optimal parameter ‘ntree
= 200, mtry = 10’ for deletion classifier and ‘ntree = 450,
mtry = 10’ for duplication classifier of which the out of bag
(OOB) error rate was the lowest after our iteration trial. The
importance of the 21 features was assessed using the stan-
dard output of RF as well as Boruta algorithm, which re-
cruits three random features as comparison, thereby the im-
portance of each feature could be more clearly decided (50).
We also evaluated the relationship between OOB error rate
and the size of training dataset by down-sampling the train-
ing deletions to subsets with 11 different size (five replicates
for each size).

Sequencing data

Six paired-end WGS datasets were used in this study
for training and performance evaluation. We used nine
parents-offspring trios (healthy parents + one child with
Hirschsprung disease (HSCR), East and Southeast Asian
ancestry) previously published (35), totaling 27 samples se-
quenced by Illumina HiSeqX Ten (2 × 150 bp, ∼35×),
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as the training data. Evaluation of the performance of
CNV-JACG was performed on HuRef/Venter genome
(NS12911), three trios from the Human Genome Structural
Variation Consortium (HGSV), two trios from 1KGP, one
trio from Genome in a Bottle (GIAB) consortium (read
length truncated from 2 × 250 bp to 2 × 150 bp) and on
11 pairs of technical replicates (11 DNA samples being se-
quenced twice, totaling 22 WGS data; 2 × 150 bp, ∼30×)
(36). More detail information of the publically obtained se-
quencing data were list in Supplementary Table S2. The de-
tails of sample preparation and sequencing pipeline for the
11 pairs of replicates were described in our previous studies
(35,36).

CNV calling

We used four complementary tools: CNVnator (based on
RD) (51), Delly (based on SR and RP) (52), Lumpy (based
on SR, RP and RD) (53) and Seeksv (based on SR, RP and
RD) (54) to call CNVs. These tools were selected as a result
of our survey on the currently available CNV detection tools
in terms of their underlying detection method, popularity,
running time, resources consumption, persistence in soft-
ware update, ease-of-use, and most importantly, their com-
plementarity and accuracy (10–12,20,55). The parameter
for ‘bin-size’ in CNVnator was set as 50 bp and the param-
eters in the other three tools were set as default. As Seeksv
incorporates duplications into insertions, we extracted in-
sertions with depth higher than 100× as the putative dupli-
cations detected by Seeksv. The putative CNVs <50 bp or
not on ‘regular’ chromosomes were removed. Then, for each
individual, we generated a file combining CNVs detected by
any of these four tools termed ‘pre-detection’ in this study.
CNVs detected by multiple tools and with >50% reciprocal
overlap were merged using BEDtools (56), and the break-
point retained with the priority of Lumpy, Delly, Seeksv and
lastly CNVnator. This program for merging CNVs from dif-
ferent tools is also included in CNV-JACG framework.

It is noteworthy that the tools used to produce the in-
put CNV pre-detection set are not limited to the four tools
mentioned above. To demonstrate this, we applied two more
tools: GRIDSS (based on SR, RP and AS) (57) and SvABA
(based on SR, RP and AS) (58) with default parameters to
the six trios listed in Supplementary Table S2.

Performance evaluation of CNV-JACG and comparison with
SV2

We compared the performance of CNV-JACG with that
of SV2 (34) using the same dataset. SV2 assesses the accu-
racy of CNVs using support vector machine (SVM) model
trained on both high and low coverage WGS data, including
NA12878 and other 1KGP samples. The default parameter
was used when running SV2 and the CNVs passing all the
filters with the ‘PASS’ mark were extracted for comparison.
All the input BAM file used for evaluation were generated
by Illumina short read technology as mentioned above. Two
CNVs with >50% reciprocal overlap were considered as the
same CNVs. All the P-values were calculated by two-sided
t-test.

Comparing the sensitivity using benchmark CNVs in 1KGP
and GIAB. For NA12878 from 1KGP, we used deletions
present in all the following three versions as the final bench-
mark deletions: the deletions produced by the tools of (i)
SVclassify, (ii) MetaSV and (iii) those generated based on
long-reads sequencing platform of PacBio (27,59–60) (see
‘DATA AVAILABILITY AND MATERIALS’).

For the Ashkenazim trio HG002-HG003-HG004 from
GIAB, we downloaded the consortium defined ‘high confi-
dent and sequence resolved’ tier 1 SV result (61) (see ‘DATA
AVAILABILITY AND MATERIALS’) and extracted the
deletions satisfying all of the following criteria as the bench-
mark: (i) ‘PASS’, (ii) Illexactcalls ≥3, i.e. called by at least
three tools based on Illumina short read sequencing data,
(iii) NumTechsExac ≥ 2, i.e. discovered by at least two tech-
nologies, (iv) ‘MendelianError = FALSE’ and (v) the geno-
types for both parents are not missing. The benchmark dele-
tions of NS12911 were also downloaded from GIAB (see
‘DATA AVAILABILITY AND MATERIALS’).

We did not consider duplications in this evaluation be-
cause duplications were not included as part of the bench-
mark sets. We used CNV-JACG and SV2 to assess the accu-
racy of the above benchmark deletions and calculated the
sensitivity by the number of deletions predicted to be true
positive, against the number of true/reference deletions.

Comparing the false positive rate using NA12878 and Ashke-
nazim trio. To compare the false positive rate of CNV-
JACG and SV2, we first defined the negative deletions as
those detected by only one tool (out of the four tools:
CNVnator, Delly, Lumpy and Seeksv) and not present in
the benchmark deletion sets (>50% reciprocal overlap). In
order to acquire highly confident negative deletions, for
NA12878, we used the union set of the three benchmark
versions mentioned above as the benchmark deletion set.
For the Ashkenazim trio (HG002, HG003 and HG004), the
unfiltered ‘high confident and sequence resolved’ tier 1 dele-
tions defined by GIAB were used as the benchmark deletion
set. Next, we assessed the accuracy of these negative dele-
tions by CNV-JACG and SV2 and calculated the false pos-
itive rate by the proportion of negative deletions that was
predicted to be true.

Comparing Mendelian inconsistent rate using six trios. We
applied CNV-JACG and SV2 to the pre-detected CNVs of
six trios (Trio 1–6, Supplementary Table S2). We then cal-
culated the Mendelian inconsistent rate (MIR) of CNVs
(the number of non-inherited CNVs present only in the off-
spring divided by the total number of CNVs in the off-
spring) per offspring. With a sensitive pre-detection CNV
set, violation of Mendelian inheritance most likely reflects
false positives in the offspring, together with smaller num-
ber of false negatives in the parents as well as rare occur-
rence of true de novo CNVs as a result of germline or postzy-
gotic mutation. Thus, we considered MIR as an alternative
indicator of the level of overall false positive rate (62).

Comparing concordance rate using 11 pairs of technical repli-
cates. To evaluate the robustness of our method, we also
applied CNV-JACG and SV2 to the pre-detected CNVs
of 11 pairs of technical replicates to evaluate their perfor-
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mances. We generated these technical replicates through
sequencing the DNA samples of 11 individuals twice us-
ing the same machine, under the same library prepara-
tion and sequencing protocols. In theory, we expected to
detect nearly identical CNVs in each pair of replicates;
however, false CNVs induced by sequencing artifacts, false
positive/negative CNVs detected by CNV calling tools, and
other unpredictable factors can lead to genotype discor-
dance between the replicates (63). We defined the concor-
dance rate by the number of CNVs present in both replicates
over the number of CNVs detected in each individual and
thereby resulting in two concordance rates for each pair of
replicates. Here, we considered the CNVs concordance rate
as an alternative indicator for the performance of different
methods, for which, the higher the better.

RESULTS

Overview of CNV-JACG

CNV-JACG is an open-source framework based on RF
for Judging the Accuracy of CNVs and Genotyping
CNVs (https://github.com/sunnyzxh/CNV-JACG). Our
framework considered a comprehensive set of 21 features in
training and in assessing CNVs accuracy. All the 21 features
are selected for their superior abilities in differentiating
true and false CNVs (Supplementary Figures S2–4) based
on our prior experience of experimental validation and
manual curation (35–36,64), which include (i) 13 features
characterizing the breakpoints of CNVs, (ii) six features of
the region overlapped and (iii) two related to called variants
within the CNV (Table 1, Figure 1 and ‘MATERIALS
AND METHODS’ section). CNV-JACG can execute in
two modes: (i) the individual-based accuracy-judgement
mode that predicts true from putative CNVs of a given
sample and (ii) the population-based genotyping mode
that predicts the presence/absence of CNVs of interest for
all target samples.

Training of random forest classifiers

We assembled a training dataset of 19,525 true and 25,268
false deletions, and 570 true and 1,506 false duplications de-
fined by inheritance and consensus between CNV callers us-
ing nine in-house trios (27 samples, see ‘MATERIAL AND
METHODS’ section). Down-sampling of the training dele-
tions shown a negative relationship between OOB error rate
and the number of training deletions (Supplementary Fig-
ure S5), indicating that an adequate number of training data
is needed in order to achieve a low OOB error rate. Two
RF classifiers were built for deletions and duplications, re-
spectively, based on the selected 21 discriminating features.
For each of these features, a marked difference in the dis-
tribution between the true and false groups for both dele-
tions (Supplementary Figure S2) and duplications (Supple-
mentary Figure S3) was observed in the training set. The
standard RF output ‘Mean Decrease Accuracy’ and ‘Mean
Decrease Gini’ showed the ranked importance of each fea-
ture (Supplementary Figure S4B and D). In addition, all
features were proven to be important by Boruta algorithm,
with ‘Mean.depth’, ‘Length’ and ‘DI’ showing the greatest
discriminatory power for deletions, and ‘Length’, ‘Left.RL’

and ‘Repeat.Pct’ for duplications (Supplementary Figure
S4A and C) (50). The OOB error rate for deletion and du-
plication training is 1.29 and 2.94%, respectively.

Performance evaluation using benchmark CNVs

The performance of CNV-JACG was first assessed using
three sets of short-read WGS data of (i) a 1KGP sample
(NA12878) and (ii) the Ashkenazim trio HG002-HG003-
HG004 in GIAB and (iii) the HuRef/Venter genome
(NS12911), based on the available benchmark deletions.
The results were compared with those of SV2 with respect to
sensitivity, i.e. the proportion of benchmark deletions that
were successfully predicted to be true. Duplications were
not considered in this evaluation as they were not included
as part of the benchmark sets.

For the well-studied sample NA12878, there are three
versions––SVclassify, MetaSV and PacBio––of benchmark
deletions available (the numbers are 2350, 2671 and 4495,
respectively), which showed varying levels of overlap (Fig-
ure 2A). Of note, for PacBio data, 45% of the deletions are
uniquely called. This is because PacBio long-read sequenc-
ing approach is more powerful in detecting small deletions.
Around 82% (3674 out of 4495) of the deletions detected
by PacBio are small (≤1 kb), among which only 42% (1527
out of 3674) could be detected using the Illumina short-
read approach (65). As CNV-JACG targets on short-read
sequencing data, we therefore retained only the 2067 dele-
tions shared by all the three versions as the final benchmark
deletions of NA12878. In addition, for each of the final
benchmark deletions, the breakpoints of the three versions
are not always identical. Larger deviation in the positions of
the breakpoints was found between sequencing approaches
(long-read sequencing of PacBio versus short-read sequenc-
ing of MetaSV and SVclassify) than between different de-
tection tools on data sequenced by the same platform (Fig-
ure 2B). For fair comparison, we kept the original break-
point positions of each version, and evaluated the sensitiv-
ity separately.

As shown in Figure 2C, CNV-JACG significantly out-
performed SV2 overall irrespective of the benchmark dele-
tion versions (sensitivity: 0.90 versus 0.77 for PacBio, 0.90
versus 0.81 for MetaSV and 0.91 versus 0.82 for SVclas-
sify, respectively). Of note, the improvement in sensitiv-
ity was more profound for the small deletions ≤1 kb. In-
terestingly, while the sensitivity of SV2 was similar and
higher for MetaSV and SVclassify (0.81 and 0.82, respec-
tively), a much lower sensitivity of 0.75 was observed when
using PacBio benchmark deletion version. In contrast,
CNV-JACG performed consistently well for small deletions
among all three breakpoint versions (0.89, 0.90, 0.90, for
PacBio, MetaSV and SVcalssify, respectively), which sug-
gested that CNV-JACG is more insensitive for breakpoint
deviation than SV2.

For the Ashkenazim trio, we obtained 2920, 2437
and 2443 benchmark deletions from the samples HG002,
HG003 and HG004, respectively (‘MATERIAL AND
METHODS’ section, Figure 2D). As the deletions were
derived from at least 30 callers from five different read
datasets, inevitably a large portion of the given breakpoints
represent the approximate positions refined from all differ-

https://github.com/sunnyzxh/CNV-JACG


NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 3 7

Figure 1. The workflow of CNV-JACG. The top right panel shows the general workflow of CNV-JACG, which takes bam file(s) and bed file (containing
the coordinates of CNVs to-be assessed) as input and goes through the feature extraction, prediction, genotyping processes and finally output the result
containing the predicted category (‘true’ or ‘false’), genotype (number of copy) as well as the value of each feature. The top left panel is a schematic
diagram of the process of RF model training. Through a bootstrapping sampling process, the model learns from the true and false CNVs about the pattern
of 21 features and generate N trees readily for predicting the true and false category for a test CNV. The bottom panel is a schematic diagram of feature
extraction, the mapping reads in orange/blue indicates soft-clip reads, and they are mapped to the region with their same color in the reference. The
features in yellowish brown are extracted from mapping reads, and those in green are extracted from reference genome as well as the external repetitive
region (including RepeatMasker and segmental duplication), the features in purple are extracted from mapping reads and external common SNPs of 1000
Genomes Project.

ent callers rather than the precise breakpoints (61). Similar
to the scenario of NA12878 above, under the influence of
breakpoint deviation, the sensitivity of SV2 was low for all
of the three samples (on average: 0.36), which was mainly
driven by the low sensitivity of detecting small deletions
(averaging 0.30). In contrast, CNV-JACG performed much
better irrespective of the size (on average 0.71 for all dele-
tions, and 0.68 for small size deletions). Of note, for large
deletions >1 kb, CNV-JACG achieved a much higher sen-
sitivity of 0.95 than SV2 (0.84), even though theoretically
SV2 should had its best performance given the relatively
stronger signals of features used (depth of coverage, discor-
dant paired-ends and split-reads) in the case of large dele-
tions (Figure 2E). For NS12911, we obtained 3013 bench-
mark deletions, which were detected based on genome-wide
long Sanger reads and WGS data (2 × 100 bp, 40× and
100×) (29,66). Similarly, CNV-JACG had higher sensitiv-
ity than SV2 (0.71 versus 0.54) for smaller deletions, and for
deletions >1 kb, CNV-JACG achieved a much higher sen-
sitivity of 0.91 (Figure 2D and E).

To evaluate the minimal coverage that CNV-JACG could
work sensitively, we down-sampled the bam file of NA12878

(48.8×) to coverages of 1×, 5×, 10×, 15×, 20×, 25×,
30×, 35× and 40× and performed the sensitivity compar-
ison with SV2 separately. For simplicity, we used only the
MetaSV breakpoints, since both CNV-JACG and SV2 have
intermediate sensitivities under MetaSV breakpoints (Fig-
ure 2C). As shown in the Supplementary Figure S6, CNV-
JACG worked well with coverage of at least 10×. The sensi-
tivity reaches 0.85 at 10× coverage and starts to converge at
15× (close to 0.9). In view of this, we recommended a min-
imum of 10× genomic coverage for assessing the accuracy
of CNVs using CNV-JACG.

To further evaluate the false positive rate, we obtained
6,564, 6,275, 5,066, 6,169 negative deletions for NA12878,
HG002, HG003 and HG004 respectively (see ‘MATERIAL
AND METHODS’ section). After accuracy assessment of
these negative deletions by CNV-JACG and SV2, the false
positive rate was calculated by the proportion of negative
deletions that was predicted to be true. As shown in Ta-
ble 2, in general, CNV-JACG achieved a lower false positive
rate than SV2 for all the four samples, indicating that CNV-
JACG was not only more sensitive, but also had a lower false
positive rate than SV2.
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Figure 2. Sensitivity comparison of CNV-JACG and SV2 using benchmark deletions in sample NA12878, NS12911 and trio HG002-HG003-HG004. (A)
The Venn diagram of the overlap deletions of PacBio, MetaSV and SVclassify for sample NA12878. (B) The breakpoint distances for each of the 2067
shared deletions between each pair of three deletion versions. (C) The sensitivity of SV2 and CNV-JACG for the benchmark deletions of different length
under three versions of breakpoint positions: PacBio, SVclassify and MetaSV. (D) The number of benchmark deletions (>1 and ≤1 kb) of each member
of the trio HG002-HG003-HG004 and NS12911. (E) The sensitivity of SV2 and CNV-JACG on the benchmark deletions of HG002, HG003, HG004 and
NS12911. P values were calculated by two-sided t-test, * <0.05; ** <0.01; *** <0.001; **** <0.0001.

Table 2. False positive rate of CNV-JACG and SV2 using benchmark
deletions

Sample Tool
False

deletion
Predicted

as true
False positive

rate

NA12878 SV2 6564 245 0.0373
CNV-JACG 6564 237 0.0361

HG002 SV2 6275 206 0.0329
CNV-JACG 6275 188 0.0299

HG003 SV2 5066 169 0.0333
CNV-JACG 5066 167 0.0329

HG004 SV2 6169 203 0.0329
CNV-JACG 6169 199 0.0322

Evaluation of Mendelian inconsistency using trios

We next evaluated the Mendelian inconsistency using WGS
data of six trios comprising two trios from the 1KGP, three
trios from HGSV and one trio from GIAB. The Mendelian
inconsistency is particularly relevant to studies of rare dis-

eases in which truly de novo CNVs are believed to be more
deleterious and may have larger phenotypic effects. In fact,
observed Mendelian inconsistency reflects the combined
phenomenon of false negatives in the biological parents,
false positives in the offspring, as well as true de novo CNVs.
As the number of de novo CNVs was estimated to be 0.05–
0.16 per genome (67–70) and the pre-detection using four
complementary tools is expected to capture most of the true
CNVs in our study, the majority of the Mendelian inconsis-
tent CNVs is believed to be false positives in the offspring.
Hence, we consider MIR as a good proxy for evaluating the
overall level of false positive rate of different methods (62).

For all deletions, the mean MIR was the highest for the
unfiltered pre-detection CNVs (0.288). Assessment of accu-
racy by SV2 decreased the mean MIR to 0.197 and the re-
duction was more striking by CNV-JACG (to 0.085, P-value
= 1.3 × 10−2). In addition to having the lowest Mendelian
error rate, CNV-JACG retained more deletions (mean n =
2901) when compared to SV2 (mean n = 1658) (Figure 3A).
For all duplications, CNV-JACG also achieved the lowest
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Figure 3. The Mendelian inconsistency rate and number of CNVs in six trios. The box plots of the Mendelian inconsistent rate (MIR) and number of
detected deletions (A) and duplications (B) for all, ≤1 kb, and >1 kb obtained by pre-detection, SV2 and CNV-JACG (denoted by different color) for
six trios are shown. MIR is the proportion of CNVs that present only in the child but in neither of his/her biological parents. Pre-detection indicates the
combined CNV calls detected by CNVnator, Delly, Lumpy and Seeksv. SV2 and CNV-JACG indicate the CNV calls (subset of Pre-detection) assessed to
be true by each of them. Boxes denote the interquartile range (IQR). Ranges of whiskers are at most 1.5-fold of the IQR from the box and points outside
the whiskers are outliers. P-values were calculated by two-sided t-test.

mean MIR of 0.363 (P-value = 3.6 × 10−3 compared to
SV2) with more duplications retained (mean n = 930) in
contrast to a higher mean MIR of 0.552 for duplications
in SV2 (mean n = 100) (Figure 3B). The superior outperfor-
mance of CNV-JACG compared to SV2 was observed for
both small ≤1 kb and large >1 kb CNVs, interestingly, for
deletions, the improvement was more significant for small
deletions, while for duplications, the advancement was more
obvious for large ones (Figure 3). These results showed that
CNV-JACG substantially improves the overall accuracy of
CNVs and outperforms SV2 in terms of MIR for both dele-
tions and duplications.

To demonstrate that CNV-JACG is generalizable to
callers other than the four we used in training dataset, in
addition to the above comparison wherein the training and
testing data were generated from the same set of four callers
(LUMPY, DELLY, CNVnator and Seeksv), we also gener-
ated the testing data by applying another set of three callers
(CNVnator, GRIDSS and SVaba) while keeping the train-
ing data unchanged. For this new testing data, we observed
a very similar result as the original testing data such that
CNV-JACG had lower MIR than SV2 while retaining more
CNVs (Supplementary Figure S7), suggesting that the per-
formance of CNV-JACG is robust against the choice of
callers in the testing dataset.

Evaluation of concordance using 11 pairs of technical repli-
cates

As another independent evaluation of our method, we ap-
plied CNV-JACG and SV2 to WGS data of 11 pairs of tech-
nical replicates from our laboratory. The performance was
evaluated based on the CNVs concordance rate between
each pair of technical replicates, which was defined as the
proportion of CNVs present in both individuals within each
replicate (‘MATERIAL AND METHODS’ section).

As shown in Figure 4A, for all deletions, the pre-detection
had the lowest mean concordance rate of 0.55, SV2 achieved
a higher mean concordance rate of 0.83 while CNV-JACG
had the highest value of 0.85 (P-value = 0.065, compared
to SV2). In addition to having the best concordance rate,
CNV-JACG also kept a reasonable mean number of 3280
deletions (pre-detection: n = 12309, SV2: n = 1548). For
all duplications, CNV-JACG had a mean concordance rate
(0.57) significantly higher than that of pre-detection and
SV2 (0.52, P-value = 1.3 × 10−6 and 0.51, P-value = 1.6 ×
10−3), respectively) while retaining more duplications than
SV2 (on average: 564 versus 67, Figure 4B). The outperfor-
mance of CNV-JACG was more significant for the small
CNVs than for the large ones, in particular, CNV-JACG
achieved a substantially higher mean concordance rate of
0.69 for smaller duplications (≤1 kb; mean n = 36) com-
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Figure 4. Concordance of CNVs called between 11 pairs of technical replicates. Box plot of concordance and number for deletions (A) and duplications
(B) for all, ≤1k and >1k size range, under pre-detection, SV2 and CNV-JACG (denoted by different box color). Pre-detection indicates the combined CNV
calls detected by CNVnator, Delly, Lumpy and Seeksv. SV2 and CNV-JACG indicate the CNV calls (subset of pre-detection) assessed to be true by each of
them. Each box consists of 22 values, e.g., we calculated two concordance rates for both cases of each replicate pair. Boxes denote the IQR, and the ranges
of whiskers are at most 1.5-fold of the IQR from the box, the points outside whiskers are outliers. P-values were calculated by two-sided t-test.

pared to 0.48 (P-value = 1.1 × 10−12) for pre-detection
(mean n = 279) and 0.30 (P-value = 4.2 × 10−5) for SV2

(mean n = 3) (Figure 4). These results suggested that CNV-
JACG outperformed SV2 in terms of CNVs concordance
for both deletions and duplications.

Computational consideration

The computation time depends on the coverage of WGS
data and the number of CNVs to be assessed. For a conven-
tional setting, processing a single genome of ∼30× WGS
data, with ∼3000 to be assessed CNVs in a single thread
took about 4GB of RAM and 30 min on an Intel Xeon E5–
2683 v4 2.1GHz processor.

DISCUSSION

In this study, we describe CNV-JACG, a simple RF-based
framework that efficiently assesses and improves accuracy
of CNVs called from WGS data. CNV-JACG is distinctive
from the existing state-of-the-art CNV assessment meth-
ods in its utilization of machine learning coupled with the
completeness of considering 21 discriminating features, es-
pecially those ignored by current detection tools. Such ap-
proach allows us to sensitively and accurately assess both

deletions and duplications over a wide range of sizes, par-
ticularly for small CNVs ≤ 1 kb that are undetectable by
earlier CNV detection technologies such as SNP array. Al-
though the detection of the small CNVs improves substan-
tially using WGS data, they are still largely missed due to
weak read depth signals and indistinguishable abnormity
in insert size from the background for tools based on RD
and/or RP methods. Even SR based tools can detect these
small CNVs with higher sensitivity, the results are usu-
ally prone to false discovery for those located on GC-rich
and repeat regions due to the high mapping error of junc-
tion reads in these regions. Given the limitations of these
three commonly used detection methods, it is necessary to
conduct post-detection accuracy assessment by considering
more comprehensively the features that can characterize the
genuineness of CNVs.

The substantial improvement of CNV-JACG over the
latest assessment method SV2 lies not only in our usage
of a unique, comprehensive set of discriminating features
but also in its insensitivity to breakpoint deviation. This
is particularly important as many CNV detection tools are
now available, choosing multiple tools and merging the call
sets become favorable in many CNV studies. Moreover, the
merging strategies varies considerably, though >50% recip-
rocal overlap is most widely used. The coordinates of the
final merged CNVs can be the maximum-range of all CNV
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calls, the positions shared by most of the detection tools, or
the positions given by the tool the researcher trusts most,
or more often the approximate boundaries of copy number
variable region than the precise breakpoints. As the degree
of breakpoint deviation is theoretically negative correlated
with the signal of split-reads, the breakpoint deviation could
be a potential reason for the false negative result of the as-
sessment tool. For SV2, when assessing small CNVs ≤ 1 kb,
the signals of the two features: depth of coverage and dis-
cordant paired-ends, are generally weak. In this situation,
SV2 relies heavily on the number of split-reads spanning the
given coordinates, which makes SV2 very sensitive to break-
point deviation. In contrast, CNV-JACG considers features
around 150-bp up- and downstream of the given coordi-
nates rather than focusing on the exact given positions, and
combines many other features rather than just the number
of split-reads when assessing ≤1 kb CNVs. This strategy al-
lows CNV-JACG to be less sensitive to the breakpoint de-
viation and results in a much higher sensitivity against the
benchmark dataset compare to SV2.

A critical strategy of our method is the utilization of trio
WGS as training data. We showed that it is in fact feasible
to use credible high coverage WGS data together with cri-
teria of inheritance and concordance between CNV calling
tools to generate a more extensive training dataset of true
and false CNVs while minimizing noise. This can overcome
the limitations of using the single or small set of benchmark
CNVs; for example, in the case of NA12878 where there is
no duplication in the benchmark versions generated based
on short-read WGS data and with small number of bench-
mark deletions available. In this study, we did not use the
27 high coverage WGS data of 1KGP Phase 3 as training
data as SV2 and FusorSV did (32,34,71). One of the ma-
jor concerns is the unmatched read type with our in-house
data (read length: 250bp vs 150bp), which might induce bias
when doing prediction. The other concern is the absence of
false CNV set required by RF in the public data, which, in
contrast, could be easily generated using trio data. Of note,
our nine in-house WGS trios could be easily extended with
similar performance to other trios for generating training
datasets, e.g. the Trio 1–5 listed in Supplementary Table S2
(Supplementary Figure S8); however, it is noteworthy that
optimal performance may not be achieved if the training
dataset is heterogeneous in terms of read length (Supple-
mentary Figure S9).

By applying the RF trained on the trio WGS data, we
demonstrated that CNV-JACG outperformed SV2, achiev-
ing higher sensitivity across all sizes and versions of bench-
mark deletions. The lower Mendelian inconsistency and
higher CNV concordance would advance the discovery of
CNVs implicated in complex and rare diseases; however, the
performance of CNV-JACG in assessing the accuracy of du-
plications shows room for improvement. Although the use
of nine in-house WGS trios could produce training dupli-
cation data, we cannot directly evaluate the prediction ac-
curacy due to the lack of useful benchmark duplications.
For instances, all the three benchmark sets of NA12878 do
not include benchmark duplications and only five confident
duplications can be obtained from DGV Gold Standard
and Stringent Variants (>80% reciprocal overlap with the
duplications detected by at least two tools we used here).

Although CNV-JACG performed better than SV2 in de-
tecting these five benchmark duplications (Supplementary
Table S3), this comparison lacked credibility due to the
small sample size. On the other hand, the indirect indicators
of Mendelian inconsistency rate and concordance for pre-
detected duplications showed much limited improvement by
CNV-JACG than for pre-detected deletions, which could be
attributed to both the higher complexity of duplications and
the smaller number of duplications for training. To over-
come this challenge, a larger training data for duplications
is needed.

In summary, CNV-JACG is a simple, easy-to-use frame-
work for accuracy assessment and genotyping of CNVs.
By supervised learning of a comprehensive set of 21 dis-
criminating CNV features, CNV-JACG has superior perfor-
mance in both sensitivity and accuracy and can be applied
to any pair-end WGS data. Our study suggests that CNV-
JACG will be a useful tool in assessing CNV accuracy for
uncovering the genetic risk of CNVs for both population
and family-based studies.
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