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ABSTRACT The effect of heparin on the biosynthetic phenotype of rat vascular smooth muscle 
cells (SMC) was investigated in vitro. Addition of heparin to the culture medium of early 
passage rat SMC resulted in a marked (3-15-fold) increase of a cell layer-associated Mr 60,000 
protein that was sensitive to digestion by purified bacterial collagenase and contained signifi- 
cant amounts of hydroxyproline. Pulse-chase analysis of heparin-treated SMC revealed that 
the Mr 60,000 collagen was a primary and abundant product of these cells and was not 
processed extracellularly to a smaller form. The inductive effect of heparin could be mimicked 
by iota carrageenan or dextran sulfates but not by hyaluronic acid, dermatan sulfate, or 
chondroitin sulfates. The induction was concentration dependent with a maximal effect 
observed at a heparin concentration of 10/~g/ml. Synthesis of the Mr 60,000 collagen increased 
18-24 h after addition of heparin to the cultures. Following induction and subsequent removal 
of heparin, synthesis of the protein remained maximal for at least 12 h and required 72 h to 
return to a basal level. These data demonstrate that the biosynthetic phenotype of vascular 
SMC in vitro can be controlled, at least in part, by heparin and related polyanions and suggest 
a role for similar molecules endogenous to the vessel wall in the regulation of SMC function. 

The extracellular matrix is a complex assembly of collagens, 
glycoproteins, and proteoglycans whose components interact 
with each other and, in many cases, with the cell surface. 
Recent studies have indicated that the extracellular matrix, or 
specific components thereof, can influence the structural or- 
ganization (20, 42, 43) and behavior (17, 19, 26) of cells in 
vitro. In addition, cells can modulate their production of 
matrix molecules in response to changes in cell shape (2, 18) 
or growth state (1, 32). These observations document the 
existence of reciprocal interactions between a cell and its 
extracellular environment (3). 

We are interested in how vascular smooth muscle cells 
(SMC) ~ interact with their environment and how such inter- 
actions influence the behavior of these cells. Of particular 
interest to us is the role that heparan sulfate glycosaminogly- 
cans may play in determining the functional characteristics 
of SMC in vitro. This interest arises from observations that 
such molecules, produced in culture by vascular endothelial 
(15, 34) and smooth muscle cells (14, 45), are potent inhibitors 
of SMC growth (9, 14). This activity can be mimicked by 

l Abbreviation used in this paper. SMC, smooth muscle cells. 

THE JOURNAL OF CELL BIotOCV • VOLUME 100 FEBRUARY 1985 613 619 
© The Rockefeller University Press • 0021-9525185102/0613/07 $1.00 

heparin (9, 13, 22), which also inhibits SMC migration (28) 
and SMC phenotypic "modulation" to a growth factor-re- 
sponsive phenotype (12). Thus endogenous heparin-like gly- 
cosaminoglycans are believed to be important regulators of 
vascular SMC function in the vessel wall. 

We have recently reported that the secretory phenotype of 
cultured rat SMC is sensitive to the presence of exogenous 
heparin and related glycosaminoglycans (27). In the presence 
of these molecules, SMC secrete decreased amounts of type 
III relative to type I procollagens, release increased amounts 
of thrombospondin into the culture medium, and synthesize 
increased amounts of two noncollagenous secreted proteins 
(Mr 37,000 and 39,000). The induction of these latter proteins 
is rapid (within 1 h), dose dependent, glycosaminoglycan 
specific, reversible (within 1 h), and actinomycin insensitive. 
We believe that the production of these proteins may be 
regulated by heparin at a posttranscriptional level. 

In this report we describe the characteristics of induction 
of another heparin-inducible SMC protein. The synthesis of 
this molecule, a cell layer-associated 60,000-mol-wt collagen- 
ous protein, is markedly enhanced in SMC cultures treated 
with heparin or related polyanions. Further analysis of this 
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system may help clarify the function of short-chain collagen- 
ous proteins, the functional characteristics of heparin-treated 
SMC, and the mechanisms by which extracellular matrix 
molecules regulate the biosynthetic phenotype of specific cell 
types. 

MATERIALS AND METHODS 

Cell Culture: Rat aortic SMC were grown from explants as described 
previously (28). Cells were grown at 37"C in a humidified, 5% CO2 environment 
in Waymouth's medium supplemented with 10% fetal calf serum (Rehatuin, 
lot No. 63004, Rebels Chemical Co., Kankakee, IL; Hy-clone, lot No. 20122, 
Sterile Systems Inc., Logan, UT), 100 U/ml penicillin, 0.1 mg/ml streptomycin, 
and 0.4 zg/ml butyl-p-hydroxybenzoate. Cells were used in the first or second 
passage and were overconfluent at the time of metabolic labeling (see Fig. l). 

Glycosaminoglycans: Heparin (type I, 167 USP U/rag, from porcine 
intestinal mucosa), was obtained from Sigma Chemical Co. (St. Louis, MO), 
as were hyaluronic acid and dextran sulfates (Mr 5,000 and 500,000). Chon- 
droitin-4-sulfate, chondroitin-6-sulfate, and dermatan sulfate were purchased 
from Miles Laboratories Inc. (Elkhart, IN). The low-anticoagulant-activity 
heparins ("RD" heparin, Mr = 5,000, 69 USP U/rag and a hexasaccharide 
fraction, Mr = 2,700, 26 USP U/rag) were provided by Hepar Industries 
(Franklin, OH). iota carrageenan was a gift of Dr. T. Wight (University of 
Washington). 

Analytical Methods: Cell cultures were grown to overconfluence in 
20- or 35-mm multiwell tissue culture plates (Costa.r, Data Packaging, Cam- 
bridge, MA). Cells were treated with glycosaminoglycans (usually at 100 t~g/ 
ml) in the presence of 10% fetal calf serum for periods up to 72 h. Cultures 
were then metabolically labeled with 50/~Ci/ml [2,3-aH]proline (New England 
Nuclear, Boston, MA; 37.5 Ci/mmol; Amersham, Arlington Heights, IL; 33 
Ci/mmol) in Waymouth's medium lacking proline and supplemented with 
antibiotics, 0.1 mg/ml BSA, 50 #g/ml sodium ascorbate, and 80 zg/ml ~- 
aminopropionitrile for up to 24 h at 37"C. At the time of harvest, the medium 
was removed and processed separately for SDS PAGE as described elsewhere 
(27). Cell layers were briefly rinsed with PBS and then lysed in 0.5 M NI-KOH 
at 4"C containing protease inhibitors at final concentrations of 3 #g/ml pepstatin 
and 0.2 mM phenylmethylsulfonyl fluoride. Proteins were precipitated in 10% 
trichloroacetic acid, dissolved in SDS PAGE sample buffer as described by 
Laemmli (24), neutralized as required with l M NaOH, and resolved on 8% 
separating gels containing urea. Except where indicated, gels were run reduced 
in the presence of 2 mM dithiothreitol. Gels were impregnated with dimethyl 
sulfoxide followed by 2,5-diphenyloxazole (5), dried, and exposed to X-Omat 
x-ray film (Kodak, Rochester, NY) at -70"C. Quantitation of radioactivity in 
protein bands was achieved by optical density scanning using a Helena Quick- 
Scan densitometer (Helena Laboratories, Beaumont, TX). Underexposed gels 
were scanned to insure linear conditions. Data were normalized to the intensity 
ofa 43,000-mol-wt band that was not affected by heparin treatment. 

For quantitative data, radioactivity was determined in aliquots of acid- 
insoluble material. Data from heparin-treated SMC were normalized to controls 
by correcting for the specific activity of intracellular proline (7). The DNA 
content of cultures was obtained using a fluorescent dye-binding assay as 
described by Labarca and Paigen (23). 

Collagenase digestions were preformed by incubating acid-precipitable ra- 
diolabeled cell layer proteins with purified bacterial collagenase (Form III, 
Advance Biofactures, lnc., Lynbrook, NY) for 90-120 rain at 37°C in a calcium 
acetate/HEPES buffer system (35). After incubation, proteins were reprecipi- 
tated and prepared for SDS PAGE as described above. For quantitative deter- 
mination of collagen production, the amount of radioactivity remaining in the 
supernatant following reprecipitation was determined and expressed as per- 
centage of the total incorporated counts (35). 

Determination of hydroxyproline/proline ratios in proteins present in ex- 
cised gel bands was performed essentially as described previously (40). Briefly, 
specific bands were excised from Coomassie Blue-stained gels, washed with 
25% 2-propanol followed by 10% methanol, lyophilized, and digested with 
proteinase K (40 #g/ml, 0.05 M NH4HCO3, pH 8.0) for 18 h at 37°C. The 
resulting supernatant was lyophilized, then hydrolyzed in 6 N HCI for 24 h at 
108°C. Samples were subsequently run on a Dowex DC1A column to separate 
radiolabeled proline from hydroxyproline. 

RESULTS 

Effects of Heparin on SMC Morphology and 
Protein Synthesis 

The morphology of rat SMC in early passage was not 
significantly affected by treatment with heparin or other gly- 
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cosaminoglycans (Fig. 1, a and b). Cells used in these experi- 
ments were maintained in culture at least 1 wk after visual 
confluency, which allowed the cells to achieve a multilayered, 
overconfluent state (Fig. I c). Under these conditions, SMC 
growth and migration (two functions known to be inhibited 
by heparin) are expected to be minimal. 

Protein synthesis by SMC, treated with heparin for 72 h 
and metabolically labeled with [3H]proline for 24 h, did not 
markedly differ from control values (Table I). Total proline 
incorporation was increased, however, as a result of an in- 
crease in the specific activity of intracellular radioactive pro- 
line (data not shown). Quantitation of the relative amounts 
of collagen produced by control and heparin-treated SMC is 
also presented in Table I. In the presence of heparin, SMC 
produce and secrete into the culture medium 20-45% more 

FIGURE 1 Phase-contrast photomicrographs of second-passage rat 
aortic SMC in different culture conditions. (a) Control SMC, 96 h 
after plating at sparse density. (b) SMC treated with 100 #g/ml 
heparin for 72 h. Significant alteration in cell morphology is not 
observed. (c) Overconfluent multilayered SMC culture maintained 
>1 wk after visual confluency, x 360. 



TABLE I 

Effects of Heparin on SMC Protein and Collagen Synthesis 

Collagenase-sensi- 
t ire cpm 

Total incor- 
poration Cell layer Medium 

cpm X lO~[gg % 
DNA 

Control SMC 4.29 5.5 13.7 
Heparin-treated SMC 4.47 9.8 16.3 

SMC cultures were treated for 72 h with 100/~ml heparin, then labeled for 
24 h with [3H]proline. Incorporation of radioactivity into acid-precipitable 
proteins was determined, corrected for the specific activity of free intracel- 
lular proline, and normalized to DNA content. Proteins were subsequently 
digested with purified bacterial collagenase and the amount of radioactivity 
present in digested proteins was assayed. The efficacy of collagenase treat- 
ment was verified by SDS PAGE. Data are from a typical experiment. Note 
that heparin-treated SMC produce significantly increased amounts of colla- 
genase-sensitive molecules relative to other proteins. This effect is noted in 
both cell layer and medium compartments. 

collagenase-digestible proteins relative to other proteins than 
do control cells. Similar results were obtained when quanti- 
tation of collagen synthesis was accomplished using specific 
digestion with purified bacterial collagenase (Table I) or by 
determination of the radioactive hydroxyproline content in 
total culture proteins (data not presented). 

Induction by Heparin and Nature of the Mr 
60,000 Protein 

Early passage rat SMC incubated with heparin produced 
increased amounts (3-15-fold over controls) of a cell layer- 
associated protein with an apparent molecular weight, accord- 
ing to globular protein standards, of 70,000 (Fig. 2). The 
protein was removed from the cell layer by trypsin digestion, 
which suggests that it is extracellular (data not shown). The 
mobility of the protein on SDS PAGE was not affected by 
reducing agents, indicating that the molecule lacks inter- and 
probably intra-chain disulfide bonds (Fig. 2, lanes 2 and 3). 
Concurrent SDS PAGE analyses of both cell layer and me- 
dium proteins in each experiment established that the increase 
in radioactivity in the induced protein was not a result of 
preferential heparin-augmented deposition of the protein into 
the cell layer compartment. The effect therefore appears to be 
related to an enhancement in the rate of synthesis of this 
protein. 

The induced protein was selectively digested from cell layer 
preparations when samples were treated with purified bacte- 
rial collagenase (Fig. 2, lanes 4 and 5), suggesting the presence 
ofcollagenous sequences. The relative content of hydroxypro- 
line in the protein was determined from excised gel bands. 
Such analysis indicated, for the induced protein, a hydroxy- 
proline/proline ratio of 0.80. Similar analysis of the a 1 chain 
of type I collagen revealed a hydroxyproline/proline ratio of 
0.82. Thus, the heparin-inducible protein appears to contain 
appreciable collagen-like sequences by two criteria. 

We next redetermined the molecular weight of this protein 
(assuming its collagenous nature) by comparing its mobility 
on SDS PAGE with that of CNBr peptides of type I collagen 
(Fig. 2). These data suggested a molecular weight of 60,000, 
a figure we use throughout this paper. 

Our unpublished experiments indicate that unknown fac- 
tors in serum control, in part, the degree to which the Mr 
60,000 collagen is induced by heparin; the response varied 
among different lots of serum. The protein can be induced in 

FIGURE 2 Induction of short-chain collagen by heparin. Multilay- 
ered SMC were treated with 100/zg/ml heparin in control culture 
medium (Waymouth's plus 10% fetal calf serum) for 72 h. Cultures 
were then metabolically labeled with [3H]proline in medium con- 
taining heparin but lacking serum for 24 h. Radiolabeled cell layer 
proteins were harvested into protease inhibitors and prepared for 
SDS PAGE and visualization by fluorography. Equal amounts of 
radioactivity were applied to lanes 1-3 and to lanes 4 and 5. Lane 
1, control cell layers. Lane 2, cell layer proteins after treatment of 
cells with heparin. Note increased density of a band migrating with 
an apparent Mr = 70,000 (arrow), according to globular protein 
standards as shown to the left (Mr X 10-3). Lane 3, heparin-treated 
SMC cell layer proteins run under nonreducing conditions. All other 
lanes were run in the presence of dithiothreitol. Reducing agents 
do not affect the migration of the heparin-induced protein. Lanes 
4 and 5 specific digestion of the heparin-inducible protein with 
bacterial collagenase. Radiolabeled cell layer proteins were har- 
vested into protease inhibitors as described, incubated with bac- 
terial collagenase for 90 min at 37°C, reprecipitated, and prepared, 
on a different gel than lanes 1-3, for SDS PAGE and fluorography. 
Cell layer proteins incubated with buffer alone (lane 4) or with 
collagenase (lane 5) are shown. Shown to the right are positions of 
migration of type I collagen standards. Indicated are relative mobil- 
ities of the a l  chain (M, 94,000), the CNBr cleavage products t~2- 
CB3-5 (M, 63,300), al-CB7 (M, 24,700), a l -CB6 (M, 17,600), and 
the SMC collagen (arrow). The heparin-inducible collagen exhibits 
an apparent molecular weight, based on SDS PAGE analysis, of 
60,000. 

sparse or confluent cells and, in our hands, in early passage 
cells more so than in later passage cells. 

MAIACK AND BORNSTEIN 

Pulse-Chase Analysis of the Mr 60,000 Collagen 
A pulse-chase analysis of heparin-treated SMC cell layers 

was performed to search for a possible precursor of the 60,000- 
mol-wt collagen. Cells were pulse-labeled for 1 h with [aH]- 
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proline, then chased for 1-6 h in the presence of a 10-fold 
excess of nonradiolabeled proline. The 60,000-mol-wt colla- 
gen appeared in the cell layer as a conspicuous band after the 
1-h pulse (no chase) and was associated with the cell layer in 
significant amounts throughout a 6-h chase (Fig. 3). The 
increase in intensity of the labeled band over the 6-h period 
can best be explained by a low level of incorporation of 
residual radioactive proline and a relatively slow turnover of 
intracellular protein pools. In other experiments, the 60,000- 
mol-wt band was observed in the cell layer as soon as 15 min 
after a 15-min pulse. In contrast, the a l  and a2 chains of type 
I collagen, which are secreted as procollagens and are largely 
processed extracellularly to constituent a-chains before incor- 
poration in the cell layer (6), did not appear in the cell layer 
until 2 h after the pulse. Concurrent analysis of medium 
proteins indicated that the 60,000-mol-wt collagen was not 
secreted into the medium in appreciable amounts. These data 
indicate that in the presence of heparin, the Mr 60,000 colla- 
gen is a primary and abundant secretory product of rat SMC. 
The data do not conclusively eliminate the presence of a 
short-lived intracellular precursor to the 60,000-mol-wt mol- 
ecule or the initial secretion of the protein into the culture 
medium before incorporation in the cell layer. Under the 

culture conditions employed in this study, the Mr 60,000 
collagen was not processed extracellularly to a smaller form. 

The early presence of this protein in the cell layer as a 
primary SMC product suggests that the 60,000-mol-wt protein 
is a unique cellular product of rat SMC and is not produced 
as a heparin-induced cleavage product of a larger molecule. 
This finding is further supported by preliminary observations 
that mRNA extracted from these cells directs the in vitro 
translation of a low molecular weight collagenase-sensitive 
protein which we believe corresponds to the 60,000-mol-wt 
collagen described in this study (unpublished observations). 

Glycosaminoglycan Specificity of Induction of the 
Mr 60,000 Collagen 

We analyzed the effects of various glycosaminoglycans on 
the induction of the 60,000-mol-wt collagen. As presented in 
Fig. 4, only heparin exerted a detectable effect on synthesis of 
this protein. Other glycosaminoglycans (hyaluronic acid, 
chondroitin-4-sulfate, dermatan sulfate, chondroitin-6-sul- 
fate) had no effect. The inductive effect of heparin could be 
mimicked by iota carrageenan or dextran sulfates (not shown), 
suggesting that molecular charge or degree of sulfation may 
play a determining role in the glycosaminoglycan-cell inter- 
action. Lower molecular weight, low anticoagulant heparin 
fractions were also effective in inducing the 60,000-mol-wt 
collagen, which establishes that the heparin effect is not related 
to anticoagulant activity. Studies are ongoing to determine 
the active moieties in our heparin preparations. 

Dose-Response Analysis of Induction of the Mr 
60,000 Collagen by Heparin 

The concentration dependence of induction of the 60,000- 
mol-wt collagen synthesis by heparin was examined. As shown 
in Fig. 5, 1 ~g/ml heparin had a small but detectable effect 
on the production of this protein by SMC cultures. Maximal 
induction was observed at heparin concentrations >10 ~g/ 
ml. These data are similar to the dose-response characteristics 
determined for heparin inhibition of growth (9) and migration 
(28). 

FIGURE 3 Pulse-chase analysis of the M, 60,000 collagen. SMC 
cultures were treated with 100 ~.g/ml heparin for 72 h before pulse- 
labeling with 100 ~.Ci/ml [3H]proline for 1 h. Radiolabeled proteins 
were chased for 1-6 h as indicated. Cell layer proteins were 
processed for SDS PAGE and fluorography as described. Positions 
of migration for al  and a2 chains of type I collagen as well as that 
of the Mr 60,000 collagen are indicated. Note the initial presence 
of the Mr 60,000 collagen as a major cell layer product during the 
1-h pulse, and the absence of the processing to smaller forms as 
typically observed for other collagenous proteins. 

Time Courses of Induction and Deinduction of 
the Mr 60,000 Collagen by Heparin 

The t ime courses o f  heparin induction and deinduction of 
synthesis of the 60,000-mol-wt collagen are presented in Fig. 
6. In the experiment shown, the 60,000-mol-wt protein was 
produced in increased amounts only in SMC cultures treated 
with heparin for 24 h. Other experiments performed with 
shorter labeling periods indicated that the induction was first 
detectable 18 h after addition of heparin. Following induction 
and removal of heparin from the cultures, synthesis of the 
60,000-mol-wt protein remained maximally induced for at 
least 12 h. By 24 h, synthesis had declined but remained 
higher than control values even 48 h after heparin removal. 
In our previous studies of the action of heparin on vascular 
SMC using protocols identical to those used in this study (27, 
28), we had demonstrated an immediate cessation of the 
heparin-mediated effect when cells were washed and refed 
control culture medium following heparin treatment. We 
therefore are confident that the reversal data we present are 
not due to incomplete removal of heparin from the cultures. 
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FIGURE 4 Glycosaminoglycan specificity of induc- 
tion of the Mr 60,000 collagen. SMC cultures were 
treated for 72 h in the presence of 100 #g/ml of the 
glycosaminoglycans indicated. Cultures were then 
metabolically labeled with [3H]proline for 24 h in the 
presence of glycosaminoglycan. Cell layer proteins 
were harvested and processed for SDS PAGE and 
fluorography as described. Position of migration of the 
Mr 60,000 collagen is indicated. Lane 1, control cell 
layers. Lanes 2-6, cell layer proteins after treatment 
of cultures with heparin (lane 2), hyaluronic acid (lane 
2), chondroitin-4-sulfate (lane 4), dermatan sulfate 
(lane 5), and chondroitin-6-sulfate (lane 6). Other 
polyanions tested are listed in the text. Note that only 
heparin is effective in inducing synthesis of the Mr 
60,000 collagen. 

Rather, the biological response generated in response to hep- 
arin and leading to induction of the Mr 60,000 collagen 
appears to involve processes that are not immediately revers- 
ible. 

DISCUSSION 
We have examined the effects of heparin and other glycos- 
aminoglycans on the biosynthetic phenotype of cultured rat 
vascular SMC. Our results indicate that heparin-like mole- 
cules may play an important regulatory role in determining 
the amounts and types of proteins produced by these cells 
(27). In this paper we describe the stimulatory effects of 
heparin on the synthesis of a low molecular weight (60,000) 
collagenous protein. This induction is specific for heparin and 
certain other highly sulfated polyanions, is dose dependent, 
and occurs with relatively long time courses of induction and 
deinduction. In this discussion we consider the nature of the 
Mr 60,000 coUagenous protein and the implications of our 
data for the regulation of vascular SMC function by endoge- 
nous vessel wall glycosaminogiycans and the regulation of 
biosynthetic phenotype in general by components of the 
extracellular matrix. 

Nature of the Mr 60,000 Collagen 
In recent years a number of novel, low molecular weight 
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collagenous proteins have been described (16, 17, 29, 36, 39, 
41). Of particular interest among these, with respect to our 
data, is a 59,000-mol-wt collagen identified in cultures of 
chick cartilage chondrocytes (8, 16, 17, 41). The M~ 60,000 
SMC collagen exhibits several properties that are identical to 
the 59,000-mol-wt chondrocyte collagen: (a) both have very 
similar molecular weights; (b) neither contains disulfide bonds 
(41); (c) both contain similar amounts of hydroxyproline (17); 
and (d) both appear to be inducible by matrix components 
(17). Studies are ongoing to determine whether molecular 
similarities exist between these two proteins. The 60,000-mol- 
wt collagen may also be related to CP-45, a pepsin-resistant 
collagenous peptide described from cultures of guinea pig 
aortic SMC (29). 

The Heparin-induced SMC Phenotype 
Heparin treatment of vascular SMC in vitro causes inhibi- 

tion of growth (9, 10, 22), inhibition of migration away from 
an experimental wound (28), and "modulation" to a growth 
factor-responsive phenotype (l 2). In addition, the prolifera- 
tion of SMC in vivo following endothelial injury has been 
shown to be inhibited by heparin (13). The production of 
heparin-like inhibitory molecules by cultured endothelium (9, 
10) and SMC (14), together with the inhibitory data men- 
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FIGURE 5 Dose-response analysis of induction of the Mr 60,000 
collagen by heparin. SMC cultures were treated with 0-100 pg/ml 
heparin for 72 h before metabolic labeling with [~H]proline for 24 
h in the presence of heparin. Radiolabeled cell layer proteins were 
prepared for SDS PAGE as described and visualized by fluorogra- 
phy. The optical density of the 60,000-mol-wt collagen band was 
determined by quantitative gel scanning and was normalized to 
that of a 43,000-mol-wt band that was not affected by heparin. 
Note that heparin is effective in significantly inducing synthesis of 
the 60,000-mol-wt collagen at concentrations greater than 10 pg/ 
ml. 
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Time courses of induction and deinduction of the Mr 
60,000 collagen by heparin. SMC cultures were treated with 100 
pg/ml heparin for 0, 12, 24, or 36 h (left). Additional cultures were 
treated with heparin for 36 h, washed, and re-fed control culture 
media without heparin for 12, 24, 48, or 72 h (right). Cultures were 
metabolically labeled with [3H]proline for the final 12 h of each 
treatment period, Radiolabeled cell layer proteins were resolved 
on SDS PAGE, visualized by fluorography, and analyzed using 
quantitative gel scanning. The optical density of the 60,000-mol-wt 
collagen band was determined and normalized to the intensity of a 
43,000-mol-wt band that was not affected by heparin. Induction of 
the Mr 60,000 collagen by heparin can be observed, in this experi- 
ment, only after 24 h of heparin treatment. An elevated level of 
synthesis is maintained for at least 48 h, and requires 72 h to return 
to control levels. 

tioned above, have led to the concept that endogenous hepa- 
fin-like glycosaminoglycans may regulate SMC growth in 
vivo. 

On the basis of our biosynthetic studies, we propose that 
the effects of heparin on SMC are pleiotropic in nature and 
reflect a characteristic heparin-induced "phenotype" in which 
many cellular characteristics are altered. We have found that 
in the presence of heparin, cultured rat SMC release increased 
amounts of a protein with a reduced Mr of 180,000 (throm- 
bospondin), secrete decreased amounts of type III relative to 
type I procollagen, and synthesize markedly increased 
amounts of two noncollagenous proteins (Mr 37,000 and 
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39,000) (27). The available data, including a rapid (1 h) time 
course of induction and deinduction and the insensitivity of 
the stimulatory effect to actinomycin suggest that synthesis of 
these latter two proteins is regulated by heparin at a posttran- 
seriptional or translational level. In addition, as presented in 
this paper, heparin-treated SMC produce markedly increased 
amounts of a cell layer-associated, short-chain (M~ 60,000) 
collagenous protein. In contrast to the 37,000- and 39,000- 
mol-wt proteins (27), the induction of this molecule by hep- 
arin requires at least 18 h and is not immediately reversible. 
Synthesis of the Mr 60,000 collagen may be" regulated by 
heparin by several mechanisms. Heparin may regulate the 
level of translatable 60,000-mol-wt collagen mRNA at a tran- 
scriptional level or at the step of mRNA processing or stabi- 
lization. Alternately, heparin may induce the synthesis of the 
60,000-mol-wt collagen by increasing the rate of translation 
of a preexisting pool of mRNA. Studies are ongoing to differ- 
entiate among these possibilities. 

It is possible that the induction of the Mr 60,000 collagen 
is related, in some causal fashion, to heparin inhibition of 
SMC growth or migration. The reported time courses of 
inhibition of these phenomena (9, 28) are supportive of such 
an hypothesis, as are the dose-response curves (10, 28). A 
definitive answer to this question must await isolation of 
native 60,000-mol-wt collagen in chemical amounts and sub- 
sequent analysis of its biological functions. 

The Heparin-inducible SMC System As a Model 
for Regulation of Biosynthetic Phenotypes by the 
Extracellular Matrix 

Recently, much attention has focused on the possible role 
of extracellular matrix molecules in regulating cellular gene 
expression (see reference 3 for a recent review). Modulation 
of the biosynthetic phenotype of capillary endothelial cells 
(26), mammary epithelial cells (25), and chick chondrocytes 
(17) has been demonstrated following culture of these cell 
types on collagen matrices. In these systems, however, it is 
difficult to differentiate between alterations in protein expres- 
sion resulting from cell-matrix interactions per se or from 
subsequent changes in cellular shape, a known determinant 
of cellular protein synthesis and biosynthetic phenotype (2, 
21). 

Demonstrable effects of individual soluble matrix mole- 
cules on cells have also been described. Several reports have 
detailed quantitative regulation of connective tissue synthesis 
by exogenous glycosaminoglycans (30, 33, 44). Recently, Sug- 
rue and Hay (42) demonstrated that addition of soluble 
collagen, laminin, or fibronectin to cultured corneal epithelial 
cells resulted in profound reorganization of the basal cyto- 
plasm. Fibronectin has been shown to increase the phospho- 
rylation of specific membrane proteins (37, 38) and may act, 
in soluble form, as a competence factor for flbroblasts (4). 
These observations, together with recent data suggesting the 
presence of specific "receptors" for matrix components on 
cell surfaces (e.g., reference 31), argue that certain cell-matrix 
interactions may elicit cellular responses independent of ma- 
trix-induced alterations in cell shape, possibly by a receptor- 
ligand mechanism. 

At present, little is known concerning the interaction of 
heparin or active heparan sulfate glycosaminoglycans with 
SMC. A recent report (11) described the specific binding 



(50,000-100,000 sites per cell, KD ~ 10 -9 M) and uptake (into 
clathrin-coated pits) of  heparin by cultured bovine aortic 
SMC. The functional consequences of  heparin-SMC inter- 
actions are not known but may include subtle cytoskeletal 
rearrangements, phosphorylation of  specific membrane or 
cytoplasmic proteins, generation of  an intracellular "second 
messenger," or internalization and transport of  heparin to an 
intracellular site of  action. Investigation of  the molecular 
mechanisms underlying the induction of  the Mr 60,000 SMC 
collagen by heparin are ongoing and will, it is hoped, develop 
our understanding of  how components of  the extracellular 
matrix can direct the expression of  specific cellular products. 
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