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Abstract 

Background:  Motif analysis methods have long been central for studying biological function of nucleotide 
sequences. Functional genomics experiments extend their potential. They typically generate sequence lists ranked 
by an experimentally acquired functional property such as gene expression or protein binding affinity. Current motif 
discovery tools suffer from limitations in searching large motif spaces, and thus more complex motifs may not be 
included. There is thus a need for motif analysis methods that are tailored for analyzing specific complex motifs moti-
vated by biological questions and hypotheses rather than acting as a screen based motif finding tool.

Methods:  We present Regmex (REGular expression Motif EXplorer), which offers several methods to identify over-
represented motifs in ranked lists of sequences. Regmex uses regular expressions to define motifs or families of motifs 
and embedded Markov models to calculate exact p-values for motif observations in sequences. Biases in motif dis-
tributions across ranked sequence lists are evaluated using random walks, Brownian bridges, or modified rank based 
statistics. A modular setup and fast analytic p value evaluations make Regmex applicable to diverse and potentially 
large-scale motif analysis problems.

Results:  We demonstrate use cases of combined motifs on simulated data and on expression data from micro RNA 
transfection experiments. We confirm previously obtained results and demonstrate the usability of Regmex to test a 
specific hypothesis about the relative location of microRNA seed sites and U-rich motifs. We further compare the tool 
with an existing motif discovery tool and show increased sensitivity.

Conclusions:  Regmex is a useful and flexible tool to analyze motif hypotheses that relates to large data sets in func-
tional genomics. The method is available as an R package (https​://githu​b.com/muhli​gs/regme​x).

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Motif discovery is a classical problem in sequence analy-
sis and its scope broadens with modern sequencing tech-
nologies. A large number of tools are designed to find 
enriched motifs in sequences, with the majority aimed 
at finding motifs that are enriched in a foreground set of 
sequences relative to a background set. This is optimal for 
sequences where a binary variable defines a foreground 
and a background. However, many experimental settings 
are associated with continuous variables where set-based 

methods are suboptimal. Instead of using a hard thresh-
old to divide a continuous variable into foreground and 
background, it is more powerful to take the magnitude of 
the continuous variable directly into account.

In the past two decades, motif enrichment methods 
have been developed that can exploit the ranking in a 
list of sequences, e.g. [1–9]. These methods seek to find 
the motifs that best correlate with the rank. Most com-
monly, this is achieved by exhaustively searching through 
the space of all simple motifs of a given length k (k-mers). 
K-mers, ranked by their correlation measures, are then 
output directly; clustered and used to define position 
weight matrices (PWMs); or used as seeds in a variety 
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of downstream algorithms to refine the top correlating 
motifs.

A general challenge of motif analysis, and specifically 
of methods based on an exhaustive search, is the rapid 
increase in search space with motif size and complexity. 
This problem has been addressed by using suffix trees, 
allowing exhaustive searches of large spaces such as all 
variable gap motifs up to a given length [4]. However, a 
functional motif may display a high degree of complexity 
that current methods does not meet. For example, many 
snoRNAs are known to bind their targets at two sites 
separated by a variable number of nucleotides leading to 
a composite motif. In addition, regulation of biological 
systems often relies on multiple factors acting in concert. 
For instance, endogenous RNAs have been shown to per-
turb regulatory networks consisting of multiple miRNAs 
[10]. It is thus valuable to be able to evaluate enrichments 
for a motif defined as subsets of binding sites in combina-
tion, as well as arbitrarily complex motifs, in a hypothesis 
driven way. Regular expressions are well suited to specify 
composite motifs even with variable gaps. Because of the 
large search space, regular expressions are not attractive 
for motif discovery algorithms, but for testing concrete 
hypotheses they are well justified. There are currently no 
tools available to calculate enrichment of motifs defined 
as regular expressions in ranked sequences, and we thus 
developed Regmex for this purpose.

A central aspect in motif analysis of ranked sequences 
is the significance evaluation of the motif rank correla-
tion. A number of approaches have been used, includ-
ing linear regression models [11], Wilcoxon rank sum 
tests [12], a Kolmogorov–Smirnov based approach [8], a 
Brownian bridge based approach [2], and methods that 
use variants of hyper geometric tests [1, 4, 9]. The various 
methods also have different approaches for motif scor-
ing. Examples include simple presence/absence scores 
for each sequence [8, 9]; dependence of sequence lengths 
and global base composition [1]; and probabilistic scoring 
that models base composition of every sequence in the 
rank list [2]. Presence/absence scores in particular suffer 
a risk of bias because sequence length and composition is 
not included in the score model, which is a problem if e.g. 
sequence lengths are biased in the rank. Also, presence/
absence score-based methods may be underpowered 
in situations where the number of motif occurrences in a 
single sequence matters.

Based on these issues, we see a need for a tool that 
calculates accurate sequence dependent p-values for 
motif observations and that allows hypotheses for flex-
ible motifs and motif combinations to be evaluated. 
We present Regmex, a motif enrichment tool, with a 
number of new features aimed at accurate significance 
evaluation. The tool is implemented in R and provide 

a simple interface to evaluate both concrete hypoth-
eses about given motifs in small scale experiments, 
e.g. the ranking of sequences with miRNA target sites 
in a miRNA perturbation experiment, and performing 
computationally efficient screens of large and com-
plex motif sets across many samples. Regmex makes 
use of two sequential steps (Fig.  1). First, sequence 
specific motif p-values are calculated, that depend on 
both sequence lengths and base compositions using 
an embedded Markov model. Similar ideas have been 
considered previously, yet not implemented in the con-
text of ranked sequences [13–16]. Second, depending 
on the problem and hypothesis, motif correlation with 
rank or the tendency of motifs to cluster along the list 
of sequences can be evaluated in one of three different 
ways:

1.	 A Brownian bridge based approach (BB).
2.	 A modified sum of ranks method which takes 

sequence properties into account (MSR).
3.	 A random walk based method which is sensitive to 

clustering of motif observations anywhere in the 
sequence list (RW).

Regmex makes use of regular expressions for defin-
ing motif models. It thereby allows far more complex 

Fig. 1  Flow diagram of the procedures for calculating sequence 
specific p-values and rank correlation or clustering p-value in Regmex
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motifs than simple k-mers, e.g., consecutive arbitrarily 
spaced sub-motifs.

We illustrate some of Regmex’s possibilities using 
both simulated and real data sets, where we confirm 
previously reported results on miRNA target motifs in 
3′UTR sequences of down-regulated genes in miRNA 
pertubation experiments. We further use Regmex’s 
capability to combine motifs and show that the pres-
ence of a U-rich motif (URM) strengthens this effect. 
This analysis further suggests that an upstream URM 
has more effect than a downstream one. Finally, we 
compare Regmex with two motif finding methods, 
Sylamer [1] and DRIMust [4], and find that Regmex 
and DRIMust have increased sensitivity over Sylamer 
while Sylamer is faster.

Materials and methods
Regmex
In this study, we introduce Regmex, a motif analysis 
tool available as an R package. Regmex is designed 
with flexibility in mind to study rank correlation or 
clustering of motifs in an ordered list of sequences.

Briefly, it takes as input a list of ranked DNA 
sequences, which could come from a genomics experi-
ment, and one or more motifs, each defined as a regu-
lar expression (RE) (Fig. 1). The output, in its simplest 
form, contains the rank correlation or clustering p-val-
ues (RCPs) for the input motifs. Alternatively, it is pos-
sible to get the underlying sequence specific p-values 
(SSPs) for motifs as well as count statistics, etc.

To illustrate the power of REs in a biological 
sequence context, we consider the following examples:

1.	 A stem loop structure, TTTCNNNGAAA, found in 
the 3′UTR of many key inflammatory and immune 
genes [17]. Although this is a simple RE, it captures 
64 11-mers in one expression, and Regmex reports 
the rank correlation p-value of the combined set.

2.	 A G-quadroplex structure, GGGLGGGLGGGLGGG, 
where L = (N|NN|NNN|NNNN).This is found e.g., 
in telomeric regions [18].

3.	 Any size open reading frame: 
ATG(NNN)*?((TGA)|(TAA)|(TAG)). This RE is an 
example of an enormous set, which would be difficult 
to obtain without an RE.

An advantage of REs is that they can capture any set 
of simple motifs. For example, a set of experimentally 
verified binding sequences can be expressed as a sin-
gle RE, with matching and p-value evaluation based on 
exactly this set.

Sequence specific motif p‑value calculation
Regmex calculates a motif rank correlation p-value 
(RCP) based on sequence specific p-values for observing 
the motif the observed number of times (nobs) or more. 
Briefly, from a deterministic finite state automaton (DFA) 
associated with the regular expression motif, we derive 
a sequence specific transition probability matrix (TPM), 
which is used to build an embedded TPM (eTPM) spe-
cific for nobs (Fig. 2). The SSP is subsequently read from 
the eTPM raised to the power of the sequence length. 
These steps are explained in more detail below.

Deterministic finite state automaton
For any regular expression, the corresponding DFA can 
be built, which is the initial step in the SSP calculation 
(Fig. 2b). The DFA starts in an initial state, accepts sym-
bols (i.e. nucleotides) on the edges and moves through 
the states. The end state corresponds to having observed 
the RE. The DFA used here recognizes an extended regu-
lar expression, as described in [19]. The routine used to 
build the DFA for a given regular expression is imple-
mented in Java, using [20], and supports standard regular 
expression operations (concatenation, union and Kleene 
star) and overlaps.

Markov embedding
The DFA graph structure can also be thought of as a 
Markov model, where instead of accepting symbols, it 
generates symbols on the edges with probabilities cor-
responding to the base frequencies in a given sequence. 
The Markov model can be represented by a transition 
probability matrix (TPM), which holds the probabili-
ties of moving between states of the DFA upon observ-
ing bases from the sequence (Fig. 2c). The TPM raised to 
the power of n, TPMn, holds the probability of moving 
between states after observing n bases.

We are interested in the SSP and thus need to have a 
probability model that takes nobs into account. Regmex 
does this by making a model expansion using the DFA as 
a template. We refer to this as an embedded DFA (eDFA) 
(Fig.  2d). Specifically, the template DFA is copied nobs 
times and outgoing edges of the end state(s) of the DFA 
template are moved to the corresponding states in the 
next template copy. This effectively allows the embedded 
model to count how many times the RE motif has been 
observed. The final state of the eDFA is absorbing, so no 
further motif observations are scored.

Again, the eDFA can be thought of both as an automa-
ton accepting symbols or as a Markov model generat-
ing symbols on edges. As above, Regmex constructs 
a transition probability matrix (eTPM) based on the 
eDFA (Fig. 2e). The eTPMn holds probabilities of moving 
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between states of the eDFA given a random sequence 
of length n with the observed base frequencies (Fig. 2f ). 
We can now extract the probability distribution of 
the RE motif in a given sequence by reading the row 

corresponding to the initial state (0,1) in the eTPMn. 
In particular the probability of observing the motif nobs 
number of times or more (the sequence specific p-value, 
SSP) can be read in the final state column of the initial 
state row (red field in Fig. 2f ).

Motif rank correlation p‑value
In the downstream analysis, Regmex uses the calcu-
lated SSPs when calculating the RCP. In Regmex, we 
have implemented three methods for evaluating motif 
rank correlation or motif clustering, which have differ-
ent strengths. These methods are based on Brownian 
bridge (BB), random walk (RW), and modified sum of 
rank (MSR) statistics. The concepts underlying these sta-
tistics are illustrated on a short list of 50 sequences with 
an enriched motif (Fig.  3). The bias in the distribution 
of motifs may vary depending on the analyzed problem 
and the choice of method used to evaluate the correla-
tion may differ in detection power. E.g., one test may be 
well-powered for detecting long motifs occurring rarely 
in the sequence list and another for detecting frequent 
short motifs.

Brownian bridge
This method is a re-implementation of the method devel-
oped by Jacobsen et al. [21] and recently implemented in 
cWords [2]. Our implementation differs in the calculation 
of the sequence specific p-values (SSPs) and in how we 
calculate the rank correlation p-value. The method calcu-
lates the max value D of a running sum of mean adjusted 
log scores of the SSPs

where lsi = −ln(pi + α),α is a score dampening factor set 
to 10−5 and ls is the mean of the log scores.

The running sum starts and ends in zero and hence is a 
Brownian bridge under the null model (see Fig. 3b). We 
identify the rank correlation p-value from the analytical 
distribution of max values of a Brownian bridge [22].

where n is the number of sequences in the sequence list.

Random walk statistics
The random walk (RW) method is similar to the use of 
random walks in the BLAST algorithm [23]. This method 
is sensitive to clustering of motifs anywhere in the 
sequence list. The sequence specific p-values (SSPs) for a 
motif are transformed into steps in a walk (Fig. 3c). Under 
the null model the motif is not enriched and the SSPs fol-
low the uniform distribution. The SSPs are transformed 

ri = ri−1 + lsi − ls,

Pr(M ≥ m) = 1− 2

∞
∑

k=1

(−1)ke−2k2m2/n,

a b

d

c

e

f

Fig. 2  a Motif in the form of a regular expression. Base coloring 
applies throughout the figure. b Deterministic finite state automaton 
(DFA) corresponding to the regular expression in a. Initial state is 
indicated in gray, and end state is indicated by a double circle. c 
Transition state probability matrix (TPM) associated with the model in 
b. d Embedded Markov Model (eDFA) for two observed occurrences 
of the motif. States are pre-indexed with the number of already 
observed motifs. e Embedded transition state probability matrix 
(eTPM) associated with the eDFA. The yellow matrix is an exact copy 
of the yellow matrix from c. The gray entries have zero probability. 
The transition probabilities from the end state of the DFA model (red/
orange entries in matrix from c) are shifted forward and contain the 
initial state of the next motif occurrence, except for any end to end 
transition probability (occurs for REs ending with a *), which remains 
in the DFA template (red entry). The final state of the eDFA ((2,4) in d) 
is an absorbing state with transition probability of 1 to itself, indicated 
in black. f Heat diagrams of the n-step eTPM reflecting the probability 
of moving between states in the eDFA, given a random sequence of 
length n with a specific base composition. The row corresponding to 
the initial state (0,1) holds the probability distribution of going from 
the start state to any state in the eDFA in n steps. The last entry of 
this row (red entry) holds the probability of the observed number of 
motifs (nobs) or more in the sequence (the SSP)
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into steps according to a scoring scheme where small 
p-values (SSPs) correspond to a positive step and large 
p-values correspond to a negative step. The exact scoring 
scheme is based on assumed motif densities in the fore-
ground relative to the background, so that higher motif 
densities give rise to higher walk values in local regions 
of the sequence list. The RW starts over from zero every 
time it reaches the lower bound of − 1. This makes the 
RW method sensitive to local runs of enriched motifs in 
the sequence list.

For significance evaluation, we find the probability of 
a walk with at least as high a max value under the null 
distribution. We do this using a recursion on an analytic 
expression for the max value distribution of random 
walks (see Additional file 1: Methods for details). Alter-
natively, we can use a geometric-like distribution (Gum-
bel distribution) as an approximation for the max value 
distribution [24].

Modified sum of ranks statistics
The modified sum of ranks (MSR) method is based on the 
idea of using a rank sum test to determine a rank bias in 
motif containing sequences. Rather than summing ranks, 
MSR uses a sum of scores specific for the sequences and 
motif. The scores are based on the sequence specific 
p-values, which eliminates bias from sequence com-
position and length. All motif observations are associ-
ated with a score that reflect the probability of the motif 
being found one or more times in the sequence, as well 
as the rank of the sequence. The score can be consid-
ered as a rank normalized for the probability of observ-
ing motifs in the sequence. In detail, let s1, s2, . . . , sN be 
a list of sequences ranked according to an experimental 
setting, and let ni denote the number of observed motifs 
in si. Under the null model, we assume ni ~ po(�i) with 
�i = −ln(1− pi) , where pi is the probability of observing 
at least one motif in the sequence. This follows from the 
probability mass function of the Poisson distribution,

since pi = 1− Pr(X = 0) = 1− e−�i we have 
�i = −ln(1− pi).

If we think of motif occurrences as a Poisson process, 
where our “time axis” is composed of consecutive inter-
vals of length �i ordered according to the experimental 
rank, motif occurrences are now, under the null hypoth-
esis, uniformly distributed across the whole interval [0, �.] 
where �. =

∑N
i=1 �i.

Pr(X = k) =
�
k

k!
e−�;

a

b

c

d

Fig. 3  a Sequences enriched with a 7-mer motif (ACG​TGA​T) as 
indicated with red marks. Upper bars indicate sequence lengths, 
lower bars indicate SSPs for the motif. b Brownian bridge for the 
7-mer motif in a (red) and for 500 random 7-mer motifs (gray). 
The RCP corresponding to the BB is indicated. c Random walk for 
the motif in a (red) and 500 random 7-mer motifs (black). The RCP 
corresponding to the RW is indicated. d Schematic of the MSR 
method. Lines represent sequences with lengths proportional to 
the probability of observing the motif one or more times. A motif 
occurrence is marked by an asterisk. The RCP corresponding to the 
motif distribution is indicated
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We now calculate a score rm , corresponding to the mid 
point of the interval (sequence) in which a motif was 
observed.

 We associate the score with motif occurrences in the 
sequence list. Under the null hypothesis, the probabil-
ity of observing a motif in a sequence is proportional to 
the interval length, and thus the expectation is that motif 
scores are uniformly distributed across the whole interval 
[0, �.] . Under the null model, the score for motif occur-
rences is thus normally distributed with mean �./2 and 
variance �.2/12.

We calculate the test statistic

where n. =
∑N

i=1 ni . The motif correlation p-value is 
p = 2[1−Φ(|W |)].

The MSR method is faster than the others because we 
need only the probability of observing one or more motifs 
in the sequence, which can be read from the TPM of the 
DFA (Fig. 2c) modified so that the end state is absorbing, 
and thus we do not need to construct the larger embed-
ded model.

Results
Combined motifs increase power
Because of different characteristics of the three methods 
for rank correlation evaluation, they perform differently 
in different scenarios. We illustrate their behavior when 
applied to a set of 1000 random sequences with a simple 
7-mer motif inserted up to 100 times in the upper half 
of the sequence list (Fig. 4a). In this particular scenario, 
the RW approach has the highest sensitivity, followed by 
the BB method and the MSR method. The RW method 
generally has a high sensitivity when the motif density is 
high, regardless of where in the sequence list it occurs.

This is in contrast to both the MSR and BB methods, 
which are more sensitive to enrichment in the begin-
ning or end of the sequence list. The rank sum derived 
nature of the MSR method yields a higher sensitivity for 
enrichment in the ends of longer sequence lists, while 
the BB method is highly superior in short sequence lists 
with moderate enrichment (see Additional file 1: Figure 
S1). For extremely long sequences, such as genomes or 
long chromosomal segments, the Markov chain embed-
ding underlying the BB and RW methods may become 
computationally demanding due to growth of the eTPM 
with number of motif occurrences. In such cases, the 

rm =
∑m−1

i=1 �i +
∑m

i=1 �i

2
.

W =
√
n

�.

(

∑N
i=1 niri

n.
−

�.

2

)

∼ N

(

0,
1

12

)

MSR method is the better choice as it depends on the 
simpler TPM model of a single motif occurrence, which 
makes enrichment calculations in long sequences less 
memory demanding and faster.

The use of differential scores, such as SSPs, over sim-
ple binary scores, has clear benefits. For instance, rank 
correlation of common and individually insignificant 
motifs can be better evaluated because their impact on 
the rank correlation is moderated by the significance 
of the observation. The same argument applies to rare, 
highly significant motifs. This, combined with RE motif 
definition, is useful in the case of evaluating rank cor-
relation of combinations of motifs.

We used Regmex to evaluate rank correlation of 
combinations of inserted motifs in a set of random 
sequences. First, we inserted four different simple 
7-mers up to 100 times at random positions in the 
upper half of the ranked sequences. We looked at the 
behavior of Regmex when defining motifs as REs cap-
turing different subsets of the 7-mers including from 
one up to all four (i.e. REs defined to capture presence 
of any member of the subset). We clearly see the effect 
of combining multiple simple motifs in a set (Fig. 4b).

When searching for motif 1 or 2 (RE = m1|m2), we 
see a marked increase in detection sensitivity start-
ing at around 20 inserted motifs. As expected, this 
increases with number of inserted motifs. Rank corre-
lation increases even more dramatically for the motif 
subsets of three or four 7-mers. We note that the SSPs 
become less significant when including more 7-mers 
in the motif, but because the number of inserted motif 
observations in the enriched end of the sequence list 
increases (up to 400 for four 7-mers vs. 100 for a single 
7-mer), the RCP becomes more significant.

We next looked at the behavior of Regmex when cal-
culating rank correlation of multiple motifs present in 
the same sequences. Such calculations may be relevant 
when two or more different factors acting on the same 
sequences could explain the sequence ranking. To this 
end, we inserted the four 7-mers together in the same 
sequences. This was done up to 100 times in the upper 
half of the sequence list.

We used Regmex to calculate RCPs for subsets of the 
combined motifs, i.e. RE motifs designed to capture 
the presence of one up to all four 7-mers in the same 
sequence. The SSPs now increase in significance with 
the number of 7-mers in the RE subset. As expected, 
the detection power of the combined motifs is much 
higher than that of a single simple motif (Fig. 4c). These 
simulations show how more complex motifs, such as 
motif sets, can be captured by REs with great increase 
in power.
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U‑rich motifs and miRNA seed target sites as combined 
motifs
As an example of a scenario where combinations of 
motifs are relevant, we looked for rank correlation of 
miRNA seed site targets in combination with a U-rich 
motif (URM) in a number of miRNA over-expression 
data sets. URMs are known to bind HuD/ELAVL4 [25] 
and their presence in 3′UTRs has been shown to corre-
late with down regulation in several miRNA over-expres-
sion experiments [21]. Based on this finding, a model 
was proposed where URMs augment miRNA induced 
destabilization of target mRNAs [21]. We used Regmex 
to calculate RCPs for 7-mer miRNA seed site targets and 
combinations of the target and the URM with sequence 
UUU​UAA​A, as identified in [21]. This was done using 11 
different miRNA over-expression data sets [26, 27].

We first calculated RCPs for the miRNA seed site tar-
gets in 3′UTR sequences. For all data sets, we saw low 
RCPs for the miRNA seed site target corresponding to 
the overexpressed miRNA, demonstrating a correlation 
between the motif and down-regulated genes (Table  1). 
We next calculated RCPs for the miRNA seed site targets 
and URM in combination. To this end, we constructed 
REs of the form (UN*S)|(SN*U), where U denotes the 
URM, S denotes the miRNA seed site target, and N 
denotes any nucleotide. This RE will capture all combi-
nations of the URM and the seed site in either order. As 
expected, based on the previous findings [21], we consist-
ently saw an even lower RCP for the RE motif capturing 
both the seed target and the URM (Table 1). The experi-
ment thus verifies earlier results showing URM 3′UTR 
presence correlating with down-regulation.

We next asked whether RCPs are of similar magni-
tude when the URM is downstream or upstream of the 
seed target. Here we used Regmex with two REs: SN*U 

for a downstream URM and US*S for an upstream 
URM. We observed low RCPs for both the downstream 
and upstream case for all miRNAs, indicating that 
URM correlates with down-regulation regardless of its 

a

b

c

Fig. 4  Regmex behavior in different scenarios, for 1000 sequences, 
each of length 1000 bases. a Comparison of p-value output for the 
different rank correlation methods used in Regmex. One 7-mer motif 
(ACG​TGA​T) is inserted as indicated in the first half of the sequences. 
In replicates with no insertion the BB method was used, but the other 
methods gave similar results. Error bars indicate standard error of 100 
replicates. b Up to four different 7-mer motifs are inserted randomly 
in the first half of the sequences. p-value output from Regmex using 
the BB method is plotted against the number of inserted motifs. RE 
motifs define sets of one up to all four 7-mers as indicated, e.g., m1 | 
m2 = (ACG​TGA​T)|(GCA​TTG​T). c Sets of four 7-mer motifs were inserted 
at fixed positions randomly among the first half of the sequences, so 
that motifs occur together in the same sequences. p-value output 
from Regmex using the BB method is plotted against the number of 
inserted motifs. RE motifs define sets of combinations of one up to all 
four 7-mers as indicated, e.g., m1 & m2 = (ACG​TGA​TN*GCA​TTG​T)|(GCA​
TTG​TN*ACG​TGA​T), where N denotes any nucleotide

▸
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relative position to the seed target (Table 1). Notably, we 
found that RCPs were lower when the URM was found 
upstream of the seed target compared to downstream. 
This could indicate a stronger effect of the miRNA when 
the URM is located upstream.

The example above illustrates how Regmex can be used 
to test well-defined hypotheses involving combinations 
of motifs defined as REs. The results confirm earlier find-
ings and further suggests that the strength of the effect of 
U-rich motifs on miRNA regulation is moderated by the 
relative position upstream or downstream of the target 
sites.

Comparison and time complexity
As stated above, Regmex differs from other tools in not 
being a motif finding algorithm, but rather a tool for eval-
uating hypotheses about given motifs. A comparison with 
existing tools is thus restricted to scenarios where we can 
directly compare the output of Regmex with the output 
of an existing method. This is possible for the Sylamer 
method [1] which can return p-values for a complete set 
of k-mers as output, which is feasible with Regmex as 
well. We compared the two methods using data from a 
miRNA experiment in which miR-430 was injected into 
zebrafish [28]. The same data set was used in the origi-
nal Sylamer manuscript [1]. We evaluated rank correla-
tion p-values for all 4096 6-mer motifs. We used both the 
original data set rank and a randomly re-sampled gene 
rank to simulate a data set without any rank enriched 
motifs. Finally we used this re-sampled data set as the 
background for a spike-in run where we added an enrich-
ment of a 10-mer motif.

For the original gene rank, both Regmex and Sylamer 
found that the two 6-mers with the lowest p-value were 
part of the seed site target of miR-430 (AGC​ACT​T). 
However, the p-values reported by Regmex were orders 
of magnitude lower than those of Sylamer (Fig.  5a, d). 
Moreover, Regmex reported an additional seven 6-mers 
that contained five bases of the seed with a flanking base 
at either side as well as two 6-mers with a single mis-
match and one with two mis-matches (p < 0.05, Bonfer-
roni corrected). Both Sylamer and Regmex found two 
6-mers which were not related to the seed site, and were 
not similar between the methods. The Sylamer method 
showed a tendency to report systematically inflated 
p-values, although they did not reach significance once 
corrected for multiple testing (Fig. 5a). The Regmex tail 
distribution had a more balanced appearance which indi-
cate that more motifs could be enriched, yet below the 
significance level. When analyzing the re-sampled data 
set, we saw a small but systematic inflation of all p-val-
ues reported by Sylamer, and a single motif crossed the 
significance threshold (Fig.  5b). The Regmex method 
reported p-values close to the expected random uni-
form distribution (Fig. 5e). Finally, the evaluation on the 
10-mer spike-in data set showed that both methods were 
capable of finding all five 6-mers included in the spike-in 
(Fig. 5c, f ). In addition, Sylamer reports one 6-mer with 
five matching bases and an A overhang, whereas Regmex 
reports three such 6-mers with overhangs A, C and T. 
Both methods have zero false discoveries. Running Reg-
mex with the Brownian Bridge setting increased sensitiv-
ity further with lower p-values and yet another significant 
one base overhang 6-mer, although now a false positive 
6-mer occurs (Additional file 1: Figure S3).

We further compared Regmex’ performance with that 
of a more recent method, DRIMust [4], which can be set 
to output k-mers like Sylamer, although only those with 
p-values less than 0.01 (Table  2). Results for individual 
6-mers overlapping the 10-mer spike-in motif in the re-
sampled gene list indicate that Regmex has the higher 
significance for all fully overlapping 6-mers, although 
DRIMust finds two additional 5-base overlapping motifs 
significant.

The increased sensitivity of Regmex comes at the cost 
of computational speed. For the runs above, the time 
required was 2 s per 6-mer motif on one 2.67 GHz core. 
Sylamer runs ~ 1000 times faster on the same hardware 
setup. However, the built-in parallelization in Regmex 
makes exhaustive screens like this feasible in minutes 
with an 8 core machine. The reason for the difference is 
likely explained by the complexity of the required oper-
ations. For Regmex, the time complexity of evaluating 
the sequence specific probability of observing a k-mer 
in a sequence of length l is O

(

(knobs)
3log(l)

)

 , where nobs 

Table 1  Rank correlation p-values for  URM (U) and  seed 
target (S) motifs

p-values for RE motifs involving URM (U) and miRNA seed site targets (S) in 
different combinations for miRNA over-expression data sets. All p-values were 
calculated with the Brownian bridge method. N denotes any nucleotide

miRNA Seed target 
(S)

(SN*U)|(UN*S) UN*S SN*U Refs.

miR-7 2.6e−03 1.5e−13 2.4e−11 9.6e−05 [26]

miR-9 6.6e−09 1.5e−17 2.6e−19 1.2e−05 [26]

miR-16 1.8e−178 7.3e−147 5.7e−65 9.2e−76 [27]

MiR-106b 2.5e−99 9.7e−158 4.5e−145 1.8e−58 [27]

MiR-122a 3.2e−02 4.1e−05 7.6e−04 2.7e−02 [26]

MiR-128a 6.6e−19 2.2e−48 4.7e−33 8.2e−21 [26]

MiR-132 2.4e−08 3.7e−27 3.9e−33 1.2e−07 [26]

MiR-133a 5.1e−04 9.4e−09 5.7e−06 4.3e−03 [26]

MiR-142 2.4e−05 1.4e−13 1.0e−11 6.0e−05 [26]

MiR-148b 6.3e−09 1.9e−11 3.2e−12 3.4e−04 [26]

MiR-181a 7.9e−17 3.9e−53 2.4e−46 5.1e−18 [26]
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is the number of k-mer observations in the sequence. 
This is due to the need of lifting the embedded transi-
tion probability matrix (dimension knobs ) to the power 
of l  . In typical applications, nobs and k are rather small. 
Neither Sylamer nor DRIMust have probabilitiy evalua-
tion connected to motif observation in individual 
sequences, and thus cost at this level is thus associated 
only to the search for the motif in the sequence, O(l).

Discussion
We have introduced Regmex, an R package for ana-
lyzing the distribution of motifs in ranked sequences. 
The method is available as an R package (https​://githu​
b.com/muhli​gs/regme​x). Regmex differs from current 
motif analysis methods by combining powerful RE motif 
definitions with accurate sequence specific significance 
evaluation and three different correlation score statis-
tics. Regmex can be customized for different settings 

and offers customization options such as capturing of 
sequence di-nucleotide dependencies and motif over-
laps. Alternative outputs such as sequence specific 
motif probabilities (SSP) and number of observed motifs 
(nobs) combined with simple data formats and support 
for parallelization make Regmex well suited for a range 
of problems. Regmex thus expands the set of tracta-
ble motif correlation problems that current methods 
can handle. Although Regmex is capable of traditional 
exhaustive k-mer screens as other methods [1, 2], it is 
designed for testing specific, potentially complex, motif 
oriented hypotheses that arise from functional genom-
ics experiments. In particular, Regmex can accurately 
evaluate rank correlation significance for arbitrary com-
bined sets of previously defined simple motifs, such as 
sets of binding k-mers from an unrelated transcription 
factor binding experiments or combinations of miRNA 
seed sites. It is important that such sets are from a dif-
ferent experiment to avoid circularity, i.e. not from e.g. a 
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Fig. 5  Quantile-quantile plots for observed and expected p-values of 6-mer motif runs. a–c, runs using Sylamer. d–f, runs using Regmex with 
the Modified Rank Sum method. The comparison employed a data set of mir-430 overexpression in zebrafish that was also used in the original 
presentation of Sylamer. In a and d, the un-modified data set was used. In b and e, the gene rank was randomly re-sampled. In c and f, the 10-mer 
AAT​GCC​CGGT was spiked into the re-sampled sequence rank from b and e: a single motif was inserted 100 times randomly among the top 500 
ranked sequences and two motifs were inserted 50 times among the first 100 sequences. Gray lines indicate Bonferroni corrected significance at 
the 0.05 level

https://github.com/muhligs/regmex
https://github.com/muhligs/regmex
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motif discovery analysis on the same data set. This is also 
relevant for investigations of competitive endogenous 
RNAs, snoRNA target sites, etc. Such motifs are not eas-
ily defined with other models such as PWMs, which also 
lack the position dependency structure present in a regu-
lar expression model. That said, PWM models defines full 
distributions over k-mers and have become the standard 
model for transcription factor binding sites; they would 
thus be relevant to include in future versions of the 
software.

Regmex offers three alternative ways of evaluating 
motif rank correlation, which differ in their null models. 
For the RW method, the null model is that motifs occur 
at random given the sequence compositions and lengths. 
The RW method is sensitive to stretches of low SSPs any-
where in the sequence list, and thus may find use in spe-
cial cases where enrichment is expected off the ends. This 
could be the case if a sequence list represents consecutive 
functional sets of sequences, such as a gene ontologies or 
expression clusters. Both the MSR and the BB methods 
are more sensitive to motifs occurring in the ends of the 
list, but have subtle differences in their null models. For 
the MSR method, the number of observed motifs in the 
sequence list is fixed, and only their distribution among 
the sequences varies under the null. For the BB method, 
the null is a uniform distribution of SSPs. Although this 
would suggest a bias for motifs occurring more fre-
quently than expected, the transformation of SSPs into 

a Brownian bridge via a running sum normalizes for this 
effect. Thus both of these methods should be robust to 
motif occurrence bias. As noted (Fig.  3 and Additional 
file 1: Figure S1), the MSR and BB methods have differ-
ent sensitivity in different scenarios. The MSR method 
tends to be more sensitive than the BB method for longer 
sequence lists and vice versa.

The accuracy introduced by the embedded model 
comes at the cost of computational speed. Com-
plex motifs can sometimes lead to large DFA models, 
which may cause memory use problems [29]. This is 
a known issue for DFAs built to recognize REs. Even 
REs with manageable DFAs can lead to memory use 
issues when using the embedded models of the BB 
and RW approaches, since the model grows with num-
ber of motif observations. The example presented for 
the G-quadroplex motif has 80 states, and if observed 
n times will give rise to an 80 × n eTPM model. Ideas 
to avoid this have been presented previously [29, 30]. 
In practice, however, there is often a negative corre-
lation between motif complexity (i.e. TPM size) and 
sequence length, so that the eTPM matrix will tend to 
lie in a manageable size range. One can think of exam-
ples where such scenarios do not apply, however. Short 
motifs appearing often in long sequences would yield 
a potentially large eTPM. In such scenarios, it is advis-
able to either use the MSR method, which make use of 
the TPM rather than the larger eTPM.

Regmex is intended for applications where concrete 
hypotheses about motifs are evaluated on genomics data. It 
is possible, as illustrated in the comparison section, to per-
form exhaustive screens of simple motifs such as k-mers. 
The user should note that the output of Regmex is raw p-val-
ues, and when doing screens with multiple motifs, a multi-
ple testing correction procedure is needed. The user should 
therefore employ a proper multiple testing correction, e.g. a 
Bonferroni correction, following motif evaluations.

Generally, motif analyses of data sets where ranking of 
DNA or RNA sequences may be explained by measured 
factors such as gene expression, holds promise to reveal 
novel biological insights. This is particular true if applied 
across large data sets. Regmex facilitates this type of anal-
ysis because rather than finding motifs, it is aimed at ana-
lyzing motifs. In contrast to other tools, this means that 
quantitative rank correlation outputs from Regmex can 
be used as a variable to correlate with other measured 
factors across many samples. Regmex can for instance be 
used to draw a full landscape of motif correlations for all 
k-mers across many samples. Such type of analysis may 
give sufficient data points to reveal novel association 
between motifs and correlated factors.

Table 2  Rank correlation p-values for  URM (U) and  seed 
target (S) motifs

p-value outputs for 6-mer motifs overlapping a 10-mer spiked into a randomly 
re-ordered gene list for three methods, Regmex, Sylamer and DRIMust. Motif 
bases overlapping the 10-mer spike-in are in capital

n.s. Not significant

*Most significant method

Regmex
Brownian bridge

Regmex 
modified rank 
sum

DRIMust Sylamer

GCC​CGG​ 1.23e−230* 5.91e−70 3.07e−116 1.20e−34

CCC​GGT​ 1.77e−210* 4.55e−52 8.19e−110 5.95e−27

TGC​CCG​ 9.90e−200* 3.35e−49 1.23e−98 4.13e−50

ATG​CCC​ 6.63e−125* 1.73e−24 2.09e−65 2.89e−42

AAT​GCC​ 1.76e−60* 1.90e−10 7.78e−38 1.44e−29

CCGGTa 1.91−45* 1.09e−05 6.55e−31 5.00e−06

CCGGTt 2.80e−17* 0.020 2.58e−15 n.s.

CCGGTg 6.49−11* n.s. 1.27e−09 n.s.

CCGGTc 1.16e−06 0.0044 1.06e−11* n.s.

tAATGC​ n.s. n.s. 0.00014* n.s.

cAATGC​ n.s. n.s. 0.0018* n.s.
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