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1 Laboratory of Eco-Epidemiology, Department of Ecology, Genetics and Evolution, Universidad de Buenos Aires, Buenos Aires, Argentina, 2 Centers for Disease Control

and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, Georgia, United States of America, 3 Department of Environmental Studies, Emory University, Atlanta,

Georgia, United States of America, 4 Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America, 5 Unité Mixte de Recherche,
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Abstract

Background: Establishing the sources of reinfestation after residual insecticide spraying is crucial for vector elimination
programs. Triatoma infestans, traditionally considered to be limited to domestic or peridomestic (abbreviated as D/PD)
habitats throughout most of its range, is the target of an elimination program that has achieved limited success in the Gran
Chaco region in South America.

Methodology/Principal Findings: During a two-year period we conducted semi-annual searches for triatomine bugs in
every D/PD site and surrounding sylvatic habitats after full-coverage spraying of pyrethroid insecticides of all houses in a
well-defined rural area in northwestern Argentina. We found six low-density sylvatic foci with 24 T. infestans in fallen or
standing trees located 110–2,300 m from the nearest house or infested D/PD site detected after insecticide spraying, when
house infestations were rare. Analysis of two mitochondrial gene fragments of 20 sylvatic specimens confirmed their species
identity as T. infestans and showed that their composite haplotypes were the same as or closely related to D/PD haplotypes.
Population studies with 10 polymorphic microsatellite loci and wing geometric morphometry consistently indicated the
occurrence of unrestricted gene flow between local D/PD and sylvatic populations. Mitochondrial DNA and microsatellite
sibship analyses in the most abundant sylvatic colony revealed descendents from five different females. Spatial analysis
showed a significant association between two sylvatic foci and the nearest D/PD bug population found before insecticide
spraying.

Conclusions: Our study shows that, despite of its high degree of domesticity, T. infestans has sylvatic colonies with normal
chromatic characters (not melanic morphs) highly connected to D/PD conspecifics in the Argentinean Chaco. Sylvatic
habitats may provide a transient or permanent refuge after control interventions, and function as sources for D/PD
reinfestation. The occurrence of sylvatic foci of T. infestans in the Gran Chaco may pose additional threats to ongoing vector
elimination efforts.
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Introduction

Disease eradication or elimination programs depend on time-

limited intensive campaigns and are likely to fail if resistance to

insecticides or drugs (i.e., malaria) or sylvatic transmission cycles

(i.e., yellow fever) occur. Chagas disease is the most important

vector-borne disease in Latin America in terms of disability-

adjusted lost years, with an estimated 10–18 million people

infected with Trypanosoma cruzi [1]. Elimination of domestic or

peridomestic (hereafter abbreviated D/PD) populations of the

insect vectors of T. cruzi through residual spraying with insecticides

has shown varying degrees of success depending on the species and

the occurrence of sylvatic foci. Several vector species occupy

sylvatic habitats and show different degrees of domestication, such

as T. dimidiata in Central America, Panstrongylus megistus, T.

brasiliensis and T. pseudomaculata in Brazil, Rhodnius ecuadoriensis in

www.plosntds.org 1 October 2011 | Volume 5 | Issue 10 | e1365



northern Peru and Ecuador, and T. pallidipennis and related species

in Mexico [2–4]. Species of sylvatic or peridomestic triatomines

that were not recognized as control targets have emerged as

primary vectors of T. cruzi in geographically defined areas over the

last two decades [e.g., 5]. For species such as R. prolixus, house

reinfestations may also be driven by invasion from peridomestic or

sylvatic foci [6].

Triatoma infestans historically is the main vector of human T. cruzi

infection. In 1991, this species was the target of a regional

elimination program (the Southern Cone Initiative) that inter-

rupted vector- and blood-borne transmission to humans in Chile,

Uruguay, Brazil, eastern Paraguay and parts of Argentina [7].

However, only limited success in the elimination of T. infestans and

interruption of vector-borne transmission has been achieved in the

Gran Chaco region due to repeated reinfestations even in areas

under intensive professional vector control [8]. The Gran Chaco,

an ecoregion of 1.3 million km2 mainly spanning northern

Argentina, Bolivia and Paraguay, has high levels of poverty and

is hyperendemic for Chagas disease [9]. Recurrent reinfestation

after residual spraying with insecticides and lack of a sustainable

vector surveillance program result in renewed parasite transmis-

sion 3–5 years after community-wide vector control campaigns

[10–13]. The obstacles to the elimination of T. infestans in the Gran

Chaco may stem from different processes yet to be identified

conclusively.

The Southern Cone Initiative for the elimination of T. infestans

was based on two major assumptions with wide consensus and

limited supporting evidence [14,15]: (i) the species was restricted to

D/PD habitats [16–19], with true sylvatic foci only occurring in

rock piles associated with wild guinea pigs in the Cochabamba and

Sucre Andean valleys in Bolivia [20–22], and (ii) T. infestans had

low genetic variability and therefore was very unlikely to develop

resistance to modern pyrethroid insecticides. Rare findings of T.

infestans in sylvatic habitats up to the early 1980 s were judged to

be of little relevance by several investigators (reviewed in [23,24]).

The surprising finding of melanic forms (‘‘dark morphs’’) in

isolated dry forests in the Bolivian [23,25] and Argentine Chaco

[24], and more recently in the Paraguayan Chaco [26], combined

with the discovery of sylvatic foci with normal phenotypes in Chile

and Bolivia [27–29] challenged the highly domesticated status of

T. infestans. In addition, recent evidence showed T. infestans had

richer genetic variability than previously assumed [30–33], with

strong chromosomal and DNA content differences between T.

infestans from different sources [34], whereas pyrethroid resistance

emerged in northwestern Argentina and throughout Bolivia since

the late 1990 s [35,36]. Understanding the ecological dynamics of

reinfestation in insecticide-treated villages and untangling the

mechanisms underlying the observed patterns is crucial for

devising improved vector control tactics and the eventual

elimination of T. infestans and other major triatomine vectors

[18,37]. Genetic [38] and phenetic [39,40] markers combined

with carefully georeferenced bug samples collected before and

after control interventions, a geographic information system (GIS)

and spatial statistics [41] provide the means to better understand

reinfestation dynamics. Here we first integrate the use of all these

tools to investigate house reinfestation dynamics in the context of

control interventions.

As part of a longitudinal project on the eco-epidemiology and

control of Chagas disease in a well-defined rural area in the dry

Argentine Chaco [8], we detected isolated findings of adult T.

infestans and recently established, very low-density D/PD colonies

during two years after a community-wide residual spraying of

pyrethroid insecticides of all houses. To identify the putative

sources for such occurrences and the sylvatic vectors of T. cruzi

[42], we conducted intensive surveys for triatomine bugs in diverse

sylvatic habitats after interventions and surprisingly found various

sylvatic foci of T. infestans. Using fine-resolution satellite imagery,

GIS, spatial statistics, genetic markers and wing geometric

morphometry, we investigated the relatedness between sylvatic

and D/PD populations of T. infestans and the threat that they may

represent to vector control and elimination attempts in the

Argentinean Chaco. Based on previous findings of sylvatic T.

infestans in the Bolivian Chaco [43] and of an isolated adult

specimen of T. infestans infected with T. cruzi in semi-sylvatic

habitats of our study area in the mid-1980 s [44], we speculated

that similar foci might exist in the Argentinean Chaco and that

Triatoma guasayana was a likely candidate sylvatic vector of T. cruzi

given its high abundance, widespread occurrence and occasional

infection with the parasite [43,45,46].

Materials and Methods

Study area
Field studies were carried out in Amamá (27u 129 300S, 63u 029

300W) and neighboring rural villages in a 650 km2 area situated in

the Moreno Department, Province of Santiago del Estero,

Argentina (Figure 1). This area is located in the dry Chaco

ecoregion [42] and its history of infestation since the mid-1980 s

has been described elsewhere [8]. Based on the history of control

interventions, the study area was subdivided into core (5 villages,

143 domiciles and 790 peridomestic sites) and peripheral (7

villages, 132 houses and 709 peridomestic sites) areas with all sites

georeferenced. In April 2004, community-wide residual spraying

with 2.5% deltamethrin (K-Othrin, Bayer) of nearly all houses was

conducted by professional vector-control personnel using a

standard insecticide dose in domiciles (25 mg/m2) and standard

or double dose in peridomestic sites for enhanced impact. Here we

only report results from the core area (villages of Amamá,

Trinidad, Mercedes, Villa Matilde and Pampa Pozo; Figure 1)

because no systematic searches for bugs were performed in sylvatic

habitats around the peripheral communities.

Author Summary

Triatoma infestans, a highly domesticated species and
historically the main vector of Trypanosoma cruzi, is the
target of an insecticide-based elimination program in the
southern cone countries of South America since 1991. Only
limited success has been achieved in the Gran Chaco
region due to repeated reinfestations. We conducted full-
coverage spraying of pyrethroid insecticides of all houses
in a well-defined rural area in northwestern Argentina,
followed by intense monitoring of house reinfestation and
searches for triatomine bugs in sylvatic habitats during the
next two years, to establish the putative sources of new
bug colonies. We found low-density sylvatic foci of T.
infestans in trees located within the species’ flight range
from the nearest infested house detected before control
interventions. Using multiple methods (fine-resolution
satellite imagery, geographic information systems, spatial
statistics, genetic markers and wing geometric morphom-
etry), we corroborated the species identity of the sylvatic
bugs as T. infestans and found they were indistinguishable
from or closely related to local domestic or peridomestic
bug populations. Two sylvatic foci were spatially associat-
ed to the nearest peridomestic bug populations found
before interventions. Sylvatic habitats harbor hidden foci
of T. infestans that may represent a threat to vector
suppression attempts.
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Vector collection
Timed manual searches for triatomine bugs with a dislodging

spray (0.2% tetramethrin, Espacial) were conducted in all domestic

(0.5 person-hour) and peridomestic sites (one person-hour per

house compound) from all study villages in October 2004, April

and December 2005, and November 2006 as described before

[10]. In the core area, 143 domiciles and 764 peridomestic sites

were inspected for triatomine bugs at least once between 2004 and

2006. All detected foci were immediately sprayed with deltame-

thrin using the same procedures. As part of an ongoing monitoring

program, discriminant dose assays demonstrated that no pyre-

throid resistance occurred in local populations of T. infestans (Marı́a

Inés Picollo, unpublished results).

We conducted four intensive surveys of triatomine bugs in

sylvatic habitats using mouse-baited (Noireau) traps fitted with

adhesive tape (PlastoH, Brazil) [47] in October and November

2005, April and November-December 2006 as described before

[24]. Mean temperatures varied between 23uC and 26uC in

October-December (spring) surveys, and were below 20uC in April

(fall). Searches for sylvatic triatomine foci were conducted in 15

sampling areas that included representative forest sections with

different degrees of disturbance (i.e., degraded forest under logging

operations, cleared sections, ecotones, and implanted grasslands

preceded by selective deforestation) and in all sorts of refuges

potentially suitable for triatomine bugs. The total capture effort

was 598 trap-nights (range per survey, 129 to 169). Traps were

usually placed far from houses in holes of fallen or standing trees

(live or dead), trunks or tree stumps and in between terrestrial

bromeliads (Bromelia serra and Bromelia hieronymi), cacti (Opuntia

quimilo and Opuntia ficus-indica) or piles of shrubs (Figure S1). Traps

were deployed when the weather was warm and not rainy

approximately between 17.00–18.00 hs and retrieved before

10.00 hs to protect mice from exposure to extreme temperatures.

All trap locations were georeferenced using a GPS (Garmin, Etrex

Legend C). All sylvatic sites surveyed in October and November

2005 were different except one, and 98% of them were re-

inspected with mouse-baited traps on April 2006 to assess bug

occurrence, persistence and invasion. The survey conducted in

November-December 2006 only included sites that had not been

surveyed previously.

Flight-dispersing triatomine bugs were collected using black-

light traps [48] placed in 36 georeferenced sylvatic sites where

concurrent searches with mouse-baited traps were made (i.e., in

the same areas). Light traps were deployed away from houses in

habitats where there was a wide opening in the forest that allowed

at least a 100 m visibility. Light traps were operated from

Figure 1. Map of the study area indicating the position of mouse-baited and light traps. Red triangles indicate the position of T. infestans-
positive mouse-baited traps. Inset shows the location of the study area (black square) within the Gran Chaco region.
doi:10.1371/journal.pntd.0001365.g001
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approximately 19:45 (i.e., 15 min before sunset) to 22:00–23:00 hs

because the flight activity of T. infestans peaks during the first hour

after sunset, and is more likely to occur when air temperature

exceeds 20uC and wind speed is ,5 km/h [48–50]. Suitable

conditions for flight initiation of T. infestans occurred during the

surveys conducted in October-November 2005 but not in April

2006.

All collected bugs were kept alive in plastic vials with folded

filter paper, identified to species following Lent and Wygodzinsky

[19] and counted. Species identification of very small first- or

second-instar nymphs sometimes was considered tentative de-

pending on the integrity of the material; no such doubts remained

for third-instars or later stages. Fourth- or fifth-instar nymphs and

adult bugs collected in 2005 were individually weighed on an

electronic balance (OHAUS, precision, 0.1 mg) and total body

length (L) measured from the end of the clipeus to the end of the

abdomen with a vernier caliber (precision, 0.02 mm) to estimate a

weight-to-length ratio (W:L) –a quantitative index of nutritional

status. The qualitative nutritional status of nymphs was deter-

mined by a cross-sectional view of the abdomen and cuticle

distension and classified into four categories that ranged from

unfed to large blood contents [51]. Feces from live third-instars

and larger stages were examined microscopically for T. cruzi

infection at 4006magnification.

Genetic characterization
DNA from bugs assigned to T. infestans (based on morphological

evidence) was obtained, PCR-amplified, and sequenced for a

661 bp fragment of the mitochondrial genes cytochrome oxidase I

(mtCOI) [32] and a 572 bp fragment of the cytochrome B

(mtcytB) gene [52]. Sequences from sylvatic T. infestans were

compared with Triatoma spp sequences available at Genbank and

from previous surveys on the instraspecific variability of T. infestans

[32,53–56].

Sylvatic T. infestans mtCOI plus mtcytB composite haplotypes

were compared with previously recorded haplotypes of D/PD T.

infestans from the study villages (collected in 2001–2002), from

other more distant (40 km) localities within Santiago del Estero

Province (Quilumpa, Km 40, La Loma and Invernada Norte,

collected in 2003–2004), and from other Argentinean Provinces

more than 300 km apart (Salta, La Rioja, Tucumán and Formosa,

collected in 2000–2005). A detailed description of the source

localities was published elsewhere [32]. Genetic variability was

estimated as the mean number of pairwise differences per site (p),

Watterson’s estimator (hW) and the haplotype diversity (Hd) with

DnaSP 5.0 [57] and a statistical parsimony haplotype network was

built with TCS 1.21 [58].

For higher resolution of the relationships between sylvatic and

D/PD populations of T. infestans, the multilocus (ML) genotype for

10 microsatellite loci was obtained for sylvatic T. infestans using

primers and PCR conditions previously described [59]. ML

genotypes were compared with those from T. infestans captured in

D/PD sites from Amamá and neighboring villages in October

2002 and April 2004 before full-coverage insecticide spraying [60].

Inter-individual genetic distance based on the complement of the

proportion of shared alleles [61] was estimated with MICROSAT

1.5d (http://hpgl.stanford.edu/projects/microsat/), and a neigh-

bor-joining (NJ) tree was built with MEGA 3.0 [62].

Using the genotypes of local D/PD T. infestans as reference

populations, we applied the Bayesian based assignment-exclusion

test implemented in GENECLASS 2 [63] to individually assign

sylvatic individuals to the local pre-spraying D/PD populations

(defined as the total gene pool at a given community in each

capture date). No post-spraying reference groups could be formed

because after community-wide insecticide spraying (2004–2006)

most bug collections contained one or a few insects per site that

were sparsely distributed throughout the communities (i.e., no

established populations of T. infestans were detected). Reference

populations were not excluded as the putative origin of the sylvatic

insects when the marginal probability exceeded 0.05. We used

100,000 replications and a simulation algorithm [64].

Sibship of T. infestans bugs collected in traps with more than one

individual (TN-92 and TN-139) was inferred with the maximum

likelihood approach implemented in COLONY 2.0 [65] perform-

ing two independent runs and assuming a probability of null alleles

of 0.05 in loci ms42, ms64 and ms65 due to departures from

Hardy-Weinberg expectations.

Geometric morphometry
The wing geometric morphometry of the only sylvatic T.

infestans male collected was compared with T. infestans males

captured in D/PD sites from Amamá and neighboring study

villages in October 2002 (n = 87) and April 2004 (n = 74) as

described elsewhere [66]. The geometric coordinates of 11 type-I

landmarks (venation intersections) from all right wings were

digitized by the same user (JSB). After performing the generalized

Procrustes superposition (GPA, [67]), the residual coordinates of

the total sample (including the sylvatic specimen) were transformed

into partial warps (PW). These shape variables allow standard

statistical analyses such as principal component (PCA) or

discriminant analyses (DA). To cope with small sample sizes in

some villages, the first nine principal components of the PW were

used as input for a DA performed on the village samples (excluding

the sylvatic specimen). These principal components are also called

relative warps (RW). The sylvatic specimen was then used as

supplementary data and its position in the morphospace examined

in terms of Mahalanobis distances. Digitization, GPA, PCA and

DA were performed using the corresponding modules of the CLIC

package [68].

Spatial analysis
Global positioning system readings from all sampling sites (with

mouse-baited and light traps) were integrated into a Geographic

Information System (ArcGIS 9.1, ESRI, Redlands, CA, U.S.A.) of

the study communities containing a georeferenced satellite image

(Ikonos2, Space Imaging Inc., Atlanta, GA, U.S.A.) and the

position of all houses and peridomestic sites sprayed with

insecticides in 2004. Cartesian coordinates (Universal Transverse

Mercator, UTM, Zone 20S) were calculated for each D/PD site

and trapping location in order to perform spatial analysis. A focal

spatial statistic (Gi(d)) [69] was used to determine the presence and

extent of spatial clustering of T. infestans D/PD abundance

(average of timed manual catches of bugs per site in 2002 and

2004] around each T. infestans-positive sylvatic focus (point i). This

local statistic is additive in the sense that it focuses on the sum of

the j values in the vicinity of point i. Hence, we took each T.

infestans-positive sylvatic focus, one at a time, and searched the

nearby area for occurrences of more or fewer D/PD T. infestans

bugs collected before full-coverage insecticide spraying than

expected by random. This procedure identified specific trap

locations as members or non-members of infestation clusters. We

used a binary weight wij based on a distance threshold (d) scheme.

Clustering of D/PD T. infestans abundance around a positive

sylvatic site occurred when the observed Gi was higher than 2.32

(the expected value at P,0.01). We evaluated the value of Gi up to

3 km from each sylvatic site with T. infestans –a tentative upper

bound of the flight range of T. infestans. Analyses were performed

using the software Point Pattern Analysis [70].
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Ethics Statement
Humane care and use of laboratory animals were performed

according to Institutional Animal Care and Use Committee

(IACUC, CICUAL in Spanish) guidelines at UBA’s Faculty of

Exact and Natural Sciences. Animal care and use is guided by the

International Guiding Principles for Biomedical Research Involv-

ing Animals developed by the Council for International Organi-

zations of Medical Sciences.

Results

Collection and nutritional state of triatomine bugs
A total of 13 (9.1% of 143 domiciles) domestic foci of T. infestans

with 23 bugs and 38 (5.0% of 764 sites) peridomestic foci with 223

bugs were detected between 2004 and 2006 after full-coverage

spraying with deltamethrin. Nearly 25% of all collected T. infestans

were adult bugs.

Only 30 (5%) of 598 mouse-baited traps deployed overnight in

sylvatic habitats were positive for triatomine bugs (Table 1). Six

sylvatic foci of T. infestans with normal chromatic characters

(totaling 23 nymphs and 1 male; range per site, 1–17) were found

in tree holes or trunks (Figures S1 and S2). Another probable

sylvatic foci of this species with two first- or second-instar nymphs

was conservatively excluded because the morphological identifi-

cation of these stages was uncertain and mtDNA markers did not

amplify; this probable focus occurred in the vicinity of the largest

sylvatic colony of T. infestans (trap TN-139, Figure S2). The

apparent density of sylvatic T. infestans was 4 per 100 trap-nights

(24 bugs in 598 trap-nights; mean 6 SD, 3.866.4 bugs per site).

One sylvatic focus located west of Amamá (trap TN-139) was

infested both in October (1 male) and November 2005 (14 first- or

second-instar nymphs and 2 fourth-instars) and was taken as one

colony. No T. infestans bugs were collected with mouse-baited traps

in April or November 2006.

T. guasayana occurred more frequently (3.0% of mouse-baited

traps in all surveyed habitats) than T. infestans (1.2%, Table 1).

Feces and hairs of Didelphis opossums were found in one T.

guasayana focus. All first- or second-instars of Triatoma sp. not

identified to species level most likely were T. guasayana based on

morphology, size and type of habitat. Light-trap collections yielded

110 adult T. guasayana, one specimen of T. garciabesi (female) and

one of T. platensis (male), and no T. infestans in 41 light-trap-nights

(Table 1). Of the 41 light-trap nights, 28 (68.3%) were positive for

triatomine bugs. The adult sex ratio in T. guasayana was 1:2.2 (male

to female).

Sylvatic foci of T. infestans occurred at 5 sampling areas located

2.0–11.5 km apart (Figure 2). Most triatomines (17 or 70.8% of 24

T. infestans and 18 or 64.3% of 28 T. guasayana) caught with mouse-

baited traps occurred in areas that had been deforested selectively

(totalling 40 bugs at 11 sites); the other seven T. infestans were

caught in secondary forest with medium-sized or a few large-sized

trees. The only three T. garciabesi found were caught in mature

forest under active deforestation. The remaining triatomine bugs

were caught in secondary forest with medium- or large-sized trees.

The main identified micro-habitats of T. infestans were in holes of

fallen trees and decaying tree trunks lying on the ground (21 or

87% of 24 bugs collected), a tree stump and a live standing tree.

These ecotopes included 4 ‘quebracho colorado’ (Schinopsis lorentzii)

and 2 ‘mistol’ (Zizyphus mistol) trees (Figure S1).

Nearly all triatomine bugs caught with mouse-baited traps and

examined for qualitative nutritional status (n = 36) were unfed

(61.1%) or had very little remnants of a blood meal (33.3%) and

very low W/L ratios (Table S1). Of 140 sylvatic triatomine bugs

examined microscopically (10 T. infestans, 21 T. guasayana and 3 T.

garciabesi caught with mouse-baited traps and 106 T. guasayana

collected with light traps) none was found microscope-positive for

T. cruzi.

mtDNA analyses of T. infestans
The morphological identification of 20 sylvatic bugs as T.

infestans was confirmed by DNA sequencing of mtCOI and/or

mtcytB fragments; DNA from six other bugs (all first- to third-

instars identified as T. infestans based on morphological characters)

could not be amplified. The two third-instar nymphs not amplified

were taken as T. infestans because a morphological misidentifica-

tion (relative to the locally known species) was considered very

unlikely. None of the sylvatic T. infestans bugs carried the T_C

change at position 556, which is characteristic of T. platensis and is

absent in a large sample of T. infestans from Argentina, Bolivia,

Peru, and Uruguay [32].

Sylvatic T. infestans with mtCOI and mtcytB composite

haplotypes (n = 16, Table S2) exhibited high nucleotide variability

Table 1. Occurrence and relative abundance of T. infestans, T. guasayana and other triatomine in sylvatic habitats.

Capture method Survey No. trap-nights % positive traps (No. bugs collected)

T. infestans T. guasayana Other Triatoma sp. Total

Mouse-baited traps October 2005 145 2.8 (6) 1.4 (2) 0 (0) 4.1 (8)

November 2005 129 2.3 (18) 2.3 (6) 2.3 (7)a 7.0 (31)

April 2006 155 0 (0) 8.4 (20) 0 (0) 8.4 (20)

Nov–Dec 2006 169 0 (0) 0 (0) 1.2 (3)a 1.2 (3)

Total 598 1.2 (24) 3.0 (28) 0.8 (10) 5.0 (62)

Light traps October 2005 18 0 (0) 72.2 (70) 7.7 (1)# 72.2 (71)

November 2005 19 0 (0) 68.4 (35) 7.7 (1)& 68.4 (36)

Nov–Dec 2006 4 0 (0) 50.0 (5) 0 (0) 50.0 (5)

Total 41 0 (0) 68.3 (110) 4.9 (2) 68.3 (112)

aFirst- or second-instar nymphs, probably T. guasayana.
#T. garciabesi.
&T. platensis.
Amamá and neighboring villages, 2005–2006.
doi:10.1371/journal.pntd.0001365.t001
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(hW = 0.006, p= 0.007) and haplotype diversity (Hd = 0.901). No

shared haplotypes were found among bugs from different traps,

whereas traps with more than one bug had one (TN-92, n = 3) and

five (TN-139, n = 11) different haplotypes (Table S2). Of eight

sylvatic haplotypes identified, six were exclusive of sylvatic bugs

whereas two haplotypes were recorded in local peridomestic

populations of T. infestans and elsewhere in Argentina (Figure 3).

Sylvatic haplotypes were spread along the entire statistical

parsimony network; they did not form a unique cluster separated

from the rest and were more closely related to D/PD than to other

sylvatic haplotypes (Figure 3). One sylvatic haplotype was highly

divergent (am-XIV) but also was closely connected to an Amamá

peridomestic haplotype (haplotype b-XIV).

Microsatellite and wing morphometry analyses
The multilocus (ML) genotype for 10 microsatellite loci was

obtained for 21 sylvatic T. infestans. We identified a total of 86

different alleles for the 10 loci, of which only 15 (17.5%) and 17

Figure 2. Spatial association between sylvatic and peridomestic T. infestans colonies. Plot of (Gi(d)) values estimated for the peridomestic
abundance of T. infestans (2002–2004) as a function of distance to each sylvatic focus within 3 km of Amamá (A) and Mercedes (B). Dotted lines
represent 99% confidence intervals.
doi:10.1371/journal.pntd.0001365.g002

Figure 3. Statistical parsimony network of the composite mitochondrial haplotypes (mtCOI – mtcytB). Each line represents a mutational
step and the small empty circles are unobserved haplotypes.
doi:10.1371/journal.pntd.0001365.g003
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(19.8%) were private alleles not detected in the local D/PD

populations in 2002 and 2004, respectively. Sylvatic T. infestans

clustered among D/PD bugs with no sharp discontinuity

(Figure 4). T. infestans bugs captured concurrently at trap TN-

139 clustered together whereas bugs collected there at different

times were more closely related to different clusters of Amamá

peridomestic bugs (i.e., the closest village). In addition, insects

from trap TN-139 had five different mtCOI-mtcytB haplotypes

(Table S2). Sibship microsatellite analyses showed that bugs that

shared a mitochondrial haplotype (or that had consistent

haplotypes because of missing data for mtCOI or mtcytB) were

most likely full- or half-sibs whereas bugs with different

haplotypes were not (Tables S3 and S4). Bugs from trap TN-92

clustered together and closely to bugs from Mercedes village

(where the trap was located) and from another village at ,5 km

(Pampa Pozo). These three bugs were full- or half-sibs and shared

the same mitochondrial haplotype (Tables S3 and S4). The bug

from site trap TN-182 was grouped with bugs from the nearest

village (Mercedes) located at ,8 km. The bug collected at trap

TN-101 (close to Villa Matilde, Fig. 1) clustered with bugs from

Amamá and Pampa Pozo.

The Bayesian-based assignment-exclusion test indicated that 18

of 21 sylvatic ML genotypes were not excluded from one or more

of the D/PD reference populations (Table 2). D/PD populations

were excluded as putative sources for three sylvatic insects

captured in two different sites (traps TN-182 and -139). The

mtCOI-mtcytB haplotype from the bug in trap TN-182 (al VII,

Figure 4) was also genetically distant from the local D/PD

populations and was closely related to D/PD populations from La

Rioja, more than 400 km far from the study area (Figure 4).

Figure 4. NJ unrooted tree among individuals based on the proportion of shared alleles. Comparison of sylvatic with domestic or
peridomestic T. infestans populations captured before full-coverage insecticide spraying in 2002.
doi:10.1371/journal.pntd.0001365.g004
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Wing geometric morphometry was used to compare the only

sylvatic T. infestans male collected (trap TN-139) with T. infestans

males captured in local PD sites in 2002 and 2004. The factorial

map showed that the sylvatic bug clearly overlapped with 2002 PD

bugs from Amamá –the closest village to its capture site (Figure 5)

and it was also assigned to 2004 PD bugs from Amamá (not

shown).

Spatial analyses
All sylvatic foci of T. infestans were located 110–2,300 m from

the nearest D/PD sites ever found to be infested by this species

after full-coverage insecticide spraying (i.e., detected during the

preceding 18 months) (Figure 2). Trap location TN-182 included

two T. infestans-positive sites (TN-180 and TN-182) that were

analyzed together because their separation (13 m) was smaller

than the distance resolution of the Gi(d) test (50 m). The distance

between traps positive for T. infestans to the nearest house varied

from 125 to 1,900 m. Spatial analysis showed a statistically

significant association (Gi(d).2.32, P,0.01) between two sylvatic

foci of T. infestans found within three km of a D/PD site and the

average timed-manual catch of bugs before insecticide spraying

(Figure 2). Significant clustering occurred up to 1.2 km in Amamá

(trap TN-139, with 17 insects) and up to 150 m in Mercedes (trap

TN-101, with one third-instar nymph) (Figure 2). The remaining

three sylvatic foci of T. infestans (TN-182, TN-180 and TN-92)

were located at 430–1,846 m from the nearest infested house, but

did not appear to be significantly associated with any of them

(Gi(d).1.96; P.0.05).

Discussion

We report here the first finding of multiple sylvatic foci of T.

infestans: i) with normal chromatic characters (not ‘‘dark morphs’’)

in the Gran Chaco region outside Bolivia; ii) with morphological

identification confirmed by DNA sequence information –ruling

out taxonomic misdiagnosis of nymphs, and iii) with a genetic

makeup indistinguishable from their local D/PD conspecifics in

Table 2. Individual assignment/exclusion results based on Bayesian algorithms tests.

Reference populations: gene pool at communities in a given capture date

Insect ID Capture site A2002 A2004 M2002 M2004 PP2002 PP2004 T2002 T2004

SIL-1 TN-92 A 0.433 0.159 0.669 0.595 0.074 0.070

SIL-2 0.886 0.821 0.902 0.906 0.982 0.109 0.863

SIL-5 0.260 0.336 0.189 0.203 0.063

SIL-3 TN-101 0.094 0.073 0.316

SIL-12 TN-182 not assigned

SIL-6 TN-139 0.123

SIL-14 0.114 0.100 0.079

SIL-15 not assigned

SIL-30 0.178 0.108

SIL-31 0.187 0.154 0.261 0.178

SIL-32 0.154 0.494

SIL-33 0.136 0.184 0.116 0.487 0.102 0.089

SIL-34 0.060

SIL-35 0.121 0.465

SIL-36 0.101

SIL-37 0.269 0.126 0.079 0.068

SIL-38 0.226 0.167 0.244 0.131

SIL-39 0.118 0.371

SIL-40 0.139

SIL-42 0.106 0.050

SIL-43 not assigned

The numbers in the table are the probabilities of assigning each ML genotype to the reference populations of T. infestans. Only inclusion values with P.0.05 are
reported. A2002, Amamá in 2002: M2002, Mercedes in 2002; PP2002, Pampa Pozo in 2002; T2002, Trinidad in 2002, and similar symbols for populations in 2004.
doi:10.1371/journal.pntd.0001365.t002

Figure 5. Factorial map of peridomestic and sylvatic T. infestans
males using wing geometric morphometry.
doi:10.1371/journal.pntd.0001365.g005
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nearly all cases. The discovery of sylvatic foci of T. infestans was

made possible by the extensive deployment of mouse-baited sticky

traps in a wide diversity of habitats potentially suitable for the

species as suggested by surveys in the Bolivian Chaco [43].

Although mouse-baited sticky traps may not achieve perfect

detection of sylvatic foci [26,71], the alternatives of using timed

manual collections with a dislodging spray or habitat destruction

are even less satisfactory or feasible [24]. Easy-to-use, more

sensitive sampling methods for triatomine bugs in sylvatic habitats

are crucially needed. Therefore, the actual prevalence of sylvatic

foci of T. infestans as determined with mouse-baited traps was most

likely underestimated.

Mitochondrial and microsatellite DNA markers coupled with

wing geometric morphometry consistently indicated the occur-

rence of unrestricted gene flow between local D/PD and sylvatic

T. infestans populations. In spite of the occurrence of private

mitochondrial haplotypes and microsatellite alleles in sylvatic bugs,

analyses suggest a strong genetic relationship with D/PD bugs. In

the phylogenetic network, mtDNA sylvatic haplotypes were more

frequently connected to peridomestic haplotypes rather than to

other sylvatic variants _which indicates that they did not form a

population that evolved in isolation for a long period of time. A

limitation here is that mtDNA only allows the estimation of

historical female-based gene flow. However, microsatellite-based

analyses _a more suitable tool for detecting current gene flow_

failed to reject that neighboring villages were the putative sources

of sylvatic bugs in most cases. In addition, the small level of

differentiation between sylvatic and D/PD specimens fell within

the observed levels of within-population diversity [31,60].

Therefore, there is no sufficient evidence to support restriction

of gene flow between sylvatic and D/PD populations of T. infestans

from the surrounding villages except in one case (trap TN-182).

Sibship analyses coupled with mitochondrial haplotype infor-

mation at trap TN-139 over two trapping sessions separated by

one month suggest that descendents from five different females

were found at this rather remote site. Microsatellite data

corroborated the heterogeneous genetic composition of TN-139

bugs as the insects were assigned to different reference popula-

tions. In the context of rare, light D/PD infestations after the

insecticide spraying campaign, the finding of multiple haplotypes

at a defined site was surprising. This sylvatic colony of T. infestans

(the largest) was located 1.1 km away from the nearest infested

house in an isolated habitat with no signs of current or past human

use over the previous two decades (Figure S2). Moreover, another

probable sylvatic foci of T. infestans with early-stage nymphs was

detected in the vicinity of the largest sylvatic colony. Passive

transport of T. infestans in the belongings of rural workers at a

transitory camp may have provided an additional means of

disseminating bugs within and between communities or the

surrounding landscape. This alternative is worth considering

because long-distance passive bug transport beyond its distribution

range is well known and still occurs [72]. Thus, genetic and

morphological evidence combined with the past history of denser

D/PD infestations [8] suggests that the sylvatic specimens of T.

infestans may have been feral derivatives (‘‘spill-over’’) of D/PD

populations. Lack of sampling in sylvatic habitats before full-

coverage insecticide spraying unfortunately does not allow

establishing whether the sylvatic foci of T. infestans existed before

or were formed as a consequence of flight dispersal of D/PD adult

bugs or human-assisted passive transport of bugs.

These findings question the widely held notion of an unlikely

continuous exchange of T. infestans bugs between wild and

domestic habitats in the Chaco. Earlier studies using allozymes or

morphometrics [20,21] and mitochondrial DNA [32,54] did not

detect differences between sylvatic and domestic populations of T.

infestans in the Andean Bolivian valleys, neither could mitochon-

drial markers in Chile [73]. In the allozyme-based study, the

findings were interpreted as suggesting that sylvatic foci could be

recent derivatives from nearby D/PD bug populations or vice

versa –a pattern that was also consistent with unrestricted gene

flow between domestic and sylvatic T. cruzi [20]. Intense gene

flow between both types of bug populations (abundant at that

time) could have generated the same patterns. Using head

morphometry in the same study area in the Andean Bolivian

valleys, reinfestant specimens of T. infestans found six months after

house spraying with pyrethroids were considered survivors of the

original domestic bug population unrelated to local sylvatic

specimens [21]. Microsatellite data comparing the genetic

makeup of sylvatic and D/PD populations of T. infestans showed

restricted gene flow between sylvatic and peridomestic popula-

tions separated by only 300–650 m at 2,700 m altitude in the

Andean Bolivian valleys [74], whereas they were highly

structured and with evidence of low, asymmetric gene flow in a

remote, well-preserved dry forest in the Argentinean Chaco [33].

Our data collected in highly-disturbed dry forest with more

scattered houses show a different pattern and suggest that the

occurrence of sylvatic foci of T. infestans may explain at least some

of the new D/PD foci detected after full-coverage residual

spraying of insecticides.

All sylvatic foci of T. infestans were 110–2,300 m from the

nearest house or infested D/PD site detected after full-coverage

insecticide spraying. These distances are within the estimated flight

range of this species (1.5 km) derived from direct and indirect

observations [12,49,50,75,76]. Because T. infestans may sustain

tethered flights for .20 min at speeds of 2 m/s [77], the upper

bound of its flight range may reach 3 km and remains uncertain.

Therefore, the significant spatial associations detected combined

with the range of distances between sylvatic and D/PD foci of T.

infestans suggest that these habitats were probably connected

through flight dispersal of adult bugs.

The identified habitats of sylvatic T. infestans in our study area

were nearly all associated with trees at ground level, in fallen trees

or tree stumps. No rocky outcrops were available. Potential bug

refuges at higher altitude in the canopy _difficult to spot and

sample_ were much less represented in our surveys. Compared

with other sylvatic foci investigated with mouse-baited traps, the

local apparent density of T. infestans (4 bugs per 100 trap-nights)

was slightly higher than that recorded in remote dry forest in the

Argentine Chaco (1.2 bugs per 100 trap-nights) [24], and

substantially lower than in the Bolivian Chaco (17 bugs per 100

trap-nights) [43] or the Andean valleys (8–123 bugs per 100 trap-

nights) [56]. The finding of small, malnourished sylvatic colonies

with immature stages of T. infestans indicates that despite extensive

deforestation and land-use change, the degraded forest still

maintained suitable conditions and resources for bug development

but at reduced levels: the apparent abundance and availability of

blood-meal sources (not identified yet) in local sylvatic habitats was

poorer and more unstable than in D/PD habitats. Some of the

sylvatic bug foci in our study could be considered ‘‘semi-sylvatic’’,

in the sense that these habitats were intermediate between

peridomestic ecotopes (such as pig or goat corrals made with

piled thorny shrubs) and sylvatic habitats in terms of resident host

species and abundance [46]. Semi-sylvatic habitats also tend to be

less used and modified by regular human activities than

peridomestic ecotopes. These findings suggest the possibility of

sylvatic foci of T. infestans in almost any rural area within its

geographic range. The domestication process T. infestans under-

went in the past does not prevent the species from surviving at low
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density in a wide diversity of sylvatic or semi-sylvatic habitats, even

after community-wide insecticide spraying.

Unlike previous reports in Argentina where the presence of

sylvatic T. infestans may be a result of spill over from heavy D/PD

infestations [reviewed in 24], the sylvatic T. infestans of this study

occurred in sampling areas around villages under vector

surveillance and selective control activities that only allowed the

establishment of very few low density D/DP foci for limited time

periods between surveys. A relevant question is whether the small-

sized sylvatic bug populations we found are viable in the absence

of immigration from D/PD sources (i.e., ‘rescue effects’) or they

simply are temporary sinks. Our second-year follow-up data raise

doubts about their viability over a longer time horizon in the

absence of immigration, although removal of bugs may have

contributed to apparent local extinctions. However, it is

noteworthy that ‘‘dark morph’’ populations of T. infestans in the

Bolivian and Argentine Chaco were viable despite having very low

density and remote locations excluding them from D/PD ‘rescue

effects’ [24,25,33].

T. guasayana was far more abundant than T. infestans in sylvatic

habitats, and light-trap collections demonstrated the large number

of flight-dispersing adult T. guasayana, as was found in the Bolivian

and Paraguayan Chaco [78,79]. Previous studies showed that T.

guasayana also colonized peridomestic structures and semi-sylvatic

ecotopes where it was associated positively with the local

abundance of goats and the density of cacti and bromeliads

[46]. Householders frequently collected adult bugs of this species

when invading human habitations at sunset but this species was

not able to colonize domestic premises before or after apparent

suppression of T. infestans [8,10,46]. In the present study, the

concurrent finding of T. guasayana in a fallen tree with fresh signs of

Didelphis opossums suggests a close association with the main local

sylvatic reservoir of T. cruzi typically infected with discrete typing

unit I [42,80]. The widespread occurrence and large abundance of

T. guasayana combined with its ocassional infection, opportunistic

blood-feeding behavior and dispersal ability implicate it as a

secondary vector of T. cruzi in the peridomestic environment [45]

and sylvatic habitats in the Argentine Chaco.

Implications for vector control and elimination
A long-standing, key scientific question with vast implications

for vector control is what is the source of the triatomine bugs

appearing after community-wide insecticide spraying [18,37,81].

Are they (i) survivors or the offspring of previously existing bugs;

(ii) immigrants from untreated D/PD or sylvatic foci; or (iii)

migrants brought by passive transport from other villages or

elsewhere? This issue is applicable to all major triatomine vector

control programs throughout Latin America and the responses

may differ between settings and even within the same species, as

with T. dimidiata in Central America and Mexico or T. brasiliensis

and P. megistus in Brazil –all of which display substantial within-

species differences in habitat distribution, invasive capacity and

other relevant traits. As with other species of triatomine bugs, T.

infestans adults and nymphs are attracted to lights [48,82]. Sylvatic

populations of T. infestans are much more widespread than

assumed in the past [23–29] and have recently been discovered

in the Paraguayan Chaco [26]. Because sylvatic habitats are not

targeted for vector control operations, they may provide hidden

refuges for T. infestans from which they may reinvade houses in

search of more suitable conditions and resources. Our results

suggest that in areas with recurrent reinfestation, vector control

programs should consider the potential occurrence of external

sources (semi-sylvatic or sylvatic) around the target community.

The role that sylvatic populations of T. infestans (either with

melanic or normal phenotype) play in the process of recolonization

of insecticide-treated villages and their invasive capacity needs to

be more widely investigated to evaluate the risk they pose to

effective vector control and eventual elimination in the Gran

Chaco and elsewhere.
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Figure S1 Ecotopes where sylvatic foci of T. infestans
were searched for and eventually detected. A) holes of
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C) terrestrial bromeliads (Bromelia serra and Bromelia hieronymi), D)

piles of shrubs, E) tree trunks or stumps, F) holes of fallen trees.
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Figure S2 Two of the sylvatic foci where T. infestans
was detected. A) TN-139. B) TN-182.
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Trinidad and Mercedes (October 2000–August 2001) were taken

from Ceballos et al. 2005 and L. A. Ceballos, unpublished data).
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genotypes of sylvatic T. infestans. NA: no PCR amplifica-
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9. Gürtler RE (2009) Sustainability of vector control strategies in the Gran Chaco
region: current challenges and possible approaches. Mem Inst Oswaldo Cruz

104(Suppl 1): 52–59.
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41. Kitron U, Clennon JA, Cecere MC, Gürtler RE, King CH, et al. (2006) Upscale

or downscale: applications of fine scale remotely sensed data to Chagas disease in
Argentina and schistosomiasis in Kenya. Geospatial Health Applic 1: 49–58.

42. Ceballos LA, Cardinal MV, Vazquez-Prokopec GM, Lauricella MA,

Orozco MM, et al. (2006) Long-term reduction of Trypanosoma cruzi infection
in sylvatic mammals following deforestation and sustained vector surveillance in

northwestern Argentina. Acta Trop 98: 286–296.

43. Noireau F, Flores R, Gutierrez T, Abad-Franch F, Flores E, et al. (2000) Natural

ecotopes of Triatoma infestans dark morph and other wild triatomines in the

Bolivian Chaco. Trans R Soc Trop Med Hyg 94: 23–27.

44. Wisnivesky-Colli C, Schweigmann NJ, Alberti A, Pietrokovsky SM, Conti O,

et al. (1992) Sylvatic American trypanosomiasis in Argentina. Trypanosoma cruzi

infection in mammals from the Chaco forest in Santiago del Estero. Trans R Soc
Trop Med Hyg 86: 38–41.
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