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Abstract: As the world looks towards the stars, the impacts of endogenous and exogenous
microorganisms on human health during long-duration space flight are subjects of increased interest
within the space community. The presence and continued growth of bacterial biofilms about spacecraft
has been documented for decades; however, the impact on crew health is in its infancy. The impacts
of biofilms are well known in the medical, agricultural, commercial, and industrial spaces. It less
known that biofilms are undermining many facets of space travel and that their effects need to be
understood and addressed for future space missions. Biofilms can damage space crew health and
spoil limited food supply. Yet, at the same time, they can benefit plant systems for food growth,
nutrient development, and other biological systems that are being explored for use in space travel.
Various biofilm removal techniques have been studied to mitigate the hazards posed by biofilm
persistence during space travel. Because the presence of biofilms can advance or hinder humanity’s
space exploration efforts, an understanding of their impacts over the duration of space flights is of
paramount importance.
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1. Introduction

It is well known that space travel subjects crew members to elevated levels of radiation that
are known to increase their risk of mutations and cancer [1–3]. While NASA can try to protect
their astronauts with shielding materials on spacecraft and spacesuits, bacteria have found a way
to successfully adapt to these conditions. It has been demonstrated that bacteria can genetically
and physically modify their tolerances to lower earth orbit (LEO) conditions, and one of the main
mechanisms for this was the formation of biofilms [4–6]. While subjected to microgravity, the bacterial
populations within biofilms have evolved modifications to genes and gene expression that allows them
to survive in hostile environments while also increasing their virulence and pathogenicity factors [7–10].
Since astronauts will be exposed to bacterial biofilms during long-term space travel, it is imperative
that the space exploration community develop an understanding of biofilm formation, persistence,
and the potential mitigation of their hazards.

2. Bacterial Biofilm Adaptation to the Extremes of Outer Space

The physical properties and characteristics of a biofilm are responsible for their protective and
persistent nature. A bacterial biofilm is generally comprised of three components: (1) extracellular
polymetric substances (EPS), (2) vegetative cells, and (3) bacterial remnants [11]. The EPS of a biofilm
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matrix is a complex mixture of organic material that acts as a structural glue and a physical barrier to
disinfectants and antibiotics [12,13]. The EPS substance is a mixture of carbohydrates, proteins, lipids,
and extracellular DNA (eDNA) [12,13]. The EPS matrix and its role in the pathogenicity and infection
mechanisms is understood; however, the risks and impacts associated with biofilms and space travel is
in its infancy.

Over the past decade, there has been an increased awareness of biofilms in space-related
environments [14–16]. The formation of biofilms on surfaces and the bio-corrosion of space hardware
and life-support systems are a significant concern to all space agencies, while also becoming a growing
health concern on Earth [14]. Most materials found in space craft are incapable of resisting biofilm
formation and require continual maintenance to prevent formation. Additionally, critical systems, such
as water pipes, air ducts and life support require service to minimize harmful effects from biofilms [16].
This is especially true for the International Space Station (ISS) or any other craft designed to support
human habitation for prolonged periods of time.

The main limitation to studying space-related biofilm formation is the ability to simulate space
conditions. Even with this major hurdle, researchers have been able to utilize crew time on the
ISS and have developed equipment that simulates microgravity to advance the study of biofilms in
space [17,18]. One such study, presented by Kim et al., demonstrated that Pseudomonas aeruginosa formed
a denser biofilm when grown under microgravity conditions than a biofilm grown on Earth [19,20].
The researchers were also able to demonstrate that the nutrient and gas diffusion rates within a biofilm
grown under microgravity significantly impacted the overall cell density of a biofilm [20].

The microgravity conditions associated with LEO has also been shown to increase virulence
factors in both Salmonella spp. and Escherichia coli [7,21]. Virulence and pathogenicity factors are tied
to a variety of physical, metabolic, and functional gene expression of pathogens [22]. For example,
flagella, a feature used for movement, is a key morphological feature that is known to be affected
during growth under LEO space conditions [19,20]. Along with movement, the flagella has been shown
to stimulate innate immunity, needed for the formation of microcolonies, allow cellular invasion, and
promote bacterial surface adhesion [23,24]. For the transcriptome, microgravity has been shown to
alter the expression of genes associated with biofilm formation, toxin production and resistance, and
sporulation [25]. This also raises the question: what would happen if these enhanced pathogens were
transported back to Earth following a deep space mission?

The impact of LEO conditions on the phenotypical characteristics of microorganisms has
and continues to be studied to further understand what impact space travel will have on
the microbial population about spacecraft. Aboard the Shenzhou VIII spacecraft, a strain
of Klebsiella pneumonia was found to have conferred enhanced antibiotic resistance during the
mission [26,27]. Interestingly, mutations continued to occur after returning to Earth [26,27]. The authors
demonstrated that the mutations improved at least nine virulence/pathogenicity functions of
the strain—including, but not limited to, oxidation-reduction capability and biofilm formation.
Schiwon and colleagues demonstrated that over 75% of the Staphylococcus and Enterococcus species
studied on the ISS demonstrated antibiotic resistance [28]. The research group postulated that most
of the pathogens were normal human microflora, likely originating from the crew and cargo and
that the LEO microgravity environment and the constant low-dose radiation exposure promoted the
mutations. The increased pathogenicity and virulence factors of the human microbiome illustrates
a serious challenge for long-duration space travel. There is no pre-flight “sterilization” process for
crew members and their cargo that would limit microbial contamination and mutation during space
flight [29]. To further emphasize the point, it should be noted that the standard 3-week quarantine
procedures for crew members were ineffective at removing and/or limiting exposure to microorganisms
that were exposed to LEO conditions [30,31].

The phenomenon known as anhydrobiosis has also been associated with bacterial biofilms in
space. Contrary to the belief that water is needed to sustain bacterial life, many studies have shown
that upon drying, certain bacteria are able to exist in a suspended state with little metabolic activity.
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Upon rehydration, the organisms are reactivated [32,33]. An experiment by Billi et al. demonstrated
that dried biofilms of Chroococcidiopsis, when compared to their multi-layer planktonic counterparts,
were able to recover faster after exposure to Mars-like conditions [34]. It was speculated that the
drying process protected the organisms by minimizing the impact of free radicals and other reactive
species that are present in Martian environments. Similar to bacteria suspended in anhydrobiosis,
bacterial spores, when comprised in a biofilm, have also been shown to survive exposure to outer space
conditions. Horneck et al. demonstrated that over the span of 6 years in outer space, Bacillus subtilis
spores survived on the bottom layer of a biofilm [35]. A protective mechanism similar to anhydrobiosis
is believed to protect bacterial spores from free radicals and cosmic galactic radiation.

3. Contamination Capacity

Biofilms are a pertinent risk to the health of astronauts. Multi-species biofilms can be found on
foods and surfaces along with being incorporated into drinking water systems, air circulation systems,
and the shuttle structural materials themselves [36]. With the high probability of many pathogens
(bacterial and fungal) having increased pathogenicity and virulence factors, the impact on crew health
during long-duration space travel must be addressed. Along with health implications, it is well
known that biofilms discovered on the ISS are known to be corrosive to space-related materials [29].
Biofilm formation has damaged a wide range of space station components, including polyurethane
coatings and structural materials found in the majority of life support systems [14]. Even with the
strict threshold of 1 CFU per 100 mL for the space shuttle water systems, higher bacterial loads have
been found both pre- and post-flight [16].

As space flight durations increase, strategies on how to grow food have become more prominent.
However, there are a multitude of problems that can arise with space-based plant growth systems due
to biofilms, including contamination of the food, water, and the plant growth media. These systems
also have a variety of specific hardware components, electrical circuits, and tubing that are susceptible
to corrosion and contamination [37,38]. While most organisms found on the ISS are non-infectious in
nature, opportunistic pathogens are present [29]. This, combined with the impacts microgravity has on
the virulence, pathogenicity, and antibiotic resistance of an organism is worrisome, since it has been
shown that space flight compromises one’s ability to fight off infections [39]. There is a genuine concern
that the combination of increased virulence of organisms, thickness of biofilms, and compromised hosts
could be detrimental to long-term space flight. Furthermore, it has been shown that space conditions
alter the stability of medications that would be used in-flight to treat infections [40].

4. Potential Benefits

Not all biofilms have negative impacts for space travel. In fact, biofilms may provide us with clues
on how we as humans can tolerate space flight. For example, Rettberg et al. used a biofilm “dosimeter”
to determine if adequate UV radiation was being experienced by astronauts on their space missions
to produce adequate vitamin D [41,42]. The results from the biofilm-based studies indicated that the
amount of vitamin D synthesis was inadequate and oral supplementation or sunlamp UV exposure on
long-duration missions was recommended. These recommendations are now routinely used during
space flight.

It has been proposed that biofilms formed via bacterization could be used to promote competitive
ecologies within space systems [37]. Intentional bacterial seeding has also been proposed for
environmental remediation and human health on Earth [43–47]. This idea has been proposed
and studied, though it is in its infancy, for space-based applications. For example, Ichikawa et al.
describes a biofilm reactor experiment used on spaceflight missions, which uses bacteria to clean up
the nitrogenous byproducts produced by aquatic organisms [48]. Other applications may involve the
seeding of beneficial bacteria in waste reactors, on various food production systems, and even seeding
the astronaut’s intestinal tract prior, during, and after space flight. While these ideas are noteworthy,
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the interplay between space and bacterial colonization needs further exploration. This is especially
true since the long-term effect of radiation on beneficial bacteria has not been studied.

5. Combating Biofilm: Potential Methods

5.1. Molecular Techniques

The widespread prevalence and proliferation of biofilm across medical devices and artificial
organs has made alleviating various human diseases progressively hard. In fact, most bacterial
infections are correlated with a biofilm, making biofilm infection treatment a top priority for clinical
researchers [49–51]. During the stages of early biofilm formation, the microbial community within
the biofilm is generally treatable with aggressive antibiotic treatments, but current detection methods
make it difficult to diagnose biofilm infections during this stage [49]. As a result, the biofilms are only
detected/diagnosed once they have established a significant foothold within the patient or on/within a
medical device. A mature biofilm community is much harder to eradicate and often requires the use of
multiple antibiotic treatments and/or physical removal of the infected area or device [4].

The formation of biofilms in environments such as hospitals, out-patient clinics, and on specialized
medical devise has become a subject of increased priority over the past decade [52]. A strategy that has
proven successful in combating biofilm formation on surfaces is the use of bactericidal/bacteriostatic
materials, such as pure and oxidized copper materials. Numerous studies have demonstrated the
correlation between the increased release of copper ions and decreased cell survival rates [53–55].
Similar technology and applications have been studied for space application. One research group
looked at the use of copper-based antimicrobial surfaces as a way to limit the risk associated with
biofilms to the crew and spacecraft [56]. As previously described, the observed antimicrobial activity
was directly related to contact with the material that resulted in significant log CFU reductions of
pathogenic bacteria [56]. However, the increased virulence and adaptive nature of bacteria from
exposure to the extremes of outer space has been shown to increase their tolerance to such antimicrobial
materials [57]. A study by Perrin et al. examined the pretreatment of materials with biosurfactants,
hydrogen peroxide, silica and silver coating, but found little difference between samples coated with
the materials and the negative controls [58]. However, a study by Sobisch et al. showed that a
bio-deterrent surface made of silver and ruthenium had minimal bacterial growth on the surface
after 6 months of in-space flight [59]. The group also demonstrated that non-coated surfaces had a
significantly higher bacterial load than the metal-coated surfaces. They did mention that the bacterial
isolates obtained from the metal-coated surfaces were generally Gram positive and heavily resistant to
at least three antibiotics [59].

When biofilms are colonized with antibiotic-resistant organisms, the ongoing threat usually
requires novel treatment approaches since single antibiotic treatments are minimally effective [60,61].
The selection, administration, pharmacokinetics (PK), and pharmacodynamics (PD) of antibiotics
are considered variables when treating biofilm-related infections. Antibiotics are chosen based on
their sensitivity, diffusion properties, and their efficacy in less than ideal environments [50]. The PK
and PD for antimicrobial agents are used to optimize dosing regimens to provide maximum impact
at the location of infection; however, these values do properly predict the diffusion rates of the
antibiotics into the biofilm. Commonly, antibiotics typically used against biofilms include macrolides,
lincosamides, tetracyclines, rifamycins, quinolones, fusidic acid, nitroimidazole, sulfonamides and
oxazolidinones [50,51]. Due to the structural EPS component of biofilms, higher concentrations of
antibiotics are often required, with a combination antibiotic therapy being ideal [62]. Depending on
the location of the biofilm infection, a combination of systemic and topical antibiotics is an effective
treatment. For example, the treatment for biofilm infections of the lung includes inhalation and
systemic delivery of antibiotics [63,64]. This two-pronged approach greatly enhances the diffusion and
overall efficacy of the antibiotics administered to the patient [63,64].
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Combination therapy of antibiotics can be further enhanced by targeting the essential functions
of bacteria. Disrupting functions such as quorum sensing (QS), nucleotide signaling, and amyloid
formation have been shown to improve the outcomes of patients with biofilm infections. In biofilm
communities, quorum sensing is often used to coordinate gene expression, growth, and biofilm
formation within the said population [65,66]. Normally, this is for survivability; however, it
has been demonstrated in numerous pathogens that the up-regulation of pertinent virulence and
pathogenicity factors also occurs as a result of quorum sensing [50,67–69]. The upregulation of
these genes can be influenced by the presence of QS-inhibitors and/or anti-QS peptides [70,71].
The QS-inhibitor meta-bromo-thiolactone has been shown to greatly reduce the biofilm-forming
properties of Pseudomonas aeruginosa in lung cells and in microfluidic devices [70]. The researchers
are now looking at imbedding QS-inhibitor compounds into/onto various surfaces to inhibit the
formation of biofilms [70]. A study presented by LoVetri and Madhyastha looked at the ability of
competence-stimulating peptides to inhibit biofilm formation on teeth [72]. The group found that
a natural QS peptide produced by Streptococcus mutans, was lethal to pathogenic cells and limited
the formation of biofilms [72]. Naturally occurring compounds like essential oils, ginseng and garlic
extracts, and trans-stillbene are all quenchers of quorum sensing compounds. Compounds like these
have also been shown to improve immune clearance and antibiotic efficacy, both in vitro and in vivo,
for pathogens such as P. aeruginosa, S. aureus, L. monocytogenes, and S. enteritidis [71,73–78].

Along with traditional molecular techniques, researchers continue to develop novel techniques to
prevent and/or remove biofilm-related infections. This is especially important for delicate environments,
such as those found aboard spacecraft where commonly used treatments are not ideal. One such
approach is this the use of nucleotide signaling disruptor molecules. Nucleotide signaling can
be disrupted by interfering with the production of a common yet important nucleotide second
messenger, cyclic diguanosine monophosphate (c-di-GMP). This messenger is vital for coordinating
the phenotypical changes of bacteria that are often associated with virulence and pathogenicity
factors [79,80]. Various research groups have shown that modulation the c-di-GMP pathway can
be achieved by inhibiting the enzyme diguanylate cyclase (DGC) [81–85]. It is widely known that
c-di-GMP levels within a biofilm are responsible for EPS production and biofilm stability [86,87].
Bacterial cell conversion from planktonic cells to biofilms is also directly controlled by c-di-GMP levels
within the environment [88,89].

As a result, many research groups are looking at nucleotide signaling compounds, such as c-di-GMP
as alternatives to antibiotics for the treatment of biofilms. Recently, Sambanthamoorty et al. found four
small molecules that limited the DGC function of P. aeruginosa and Acinetobacter baumannii [90].
When grown in the presence of these molecules, neither culture was able to form biofilms
successfully [90]. Two of the four molecules were found to have no toxic effects on eukaryotic
cells. The authors strongly suggested that the further study of these molecules may lead to a safe and
effective supplement to antibiotic usage. Another biochemical approach to combating biofilm formation
is to inhibit the expression of bacterial amyloids that assist in the development of biofilm [91–94].
Amyloid-derived structures are the ideal building component for resilient biofilm structures. In general,
amyloid protein structures are resistant to denaturation conditions and have minimal susceptibility to
proteases [93,95]. A recent study found that the biofilms of Bacillus subtilis were repressed when the
formation of their amyloid-like fibers was controlled with various combinations of small molecules [91].

Combating biofilm adhesion directly may be another mechanism of mitigation. Amyloid
structures and other proteinaceous structures also play a major role in biofilm adhesion. It has
been shown that a majority of bacteria that form biofilms have homology to a specific group of
Staphylococcus aureus surface active proteins, known as biofilm-associated proteins (Bap), that are
responsible for surface adhesion [96–98]. The amino acid sequence and structure models have
shown that a distinctive structure of β-pleated sheets is involved in maintaining the proper structural
confirmation on the cell surface for adhesion properties [99,100]. The presence of Bap-like proteins have
been found and identified in Pseudomonas spp., Burkolderia spp., Escherichia coli, and Vibrio spp. [101–104].
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The link between Bap and Bap-like protein expression, biofilm formation, and pathogenicity has been
demonstrated for a variety of clinically relevant pathogens. In S. aureus, for example, researchers
demonstrated that Bapdeficient mutants had minimal impact on biofilm formation and persistent
infections properties [99,105]. It was also noted that the expression of Bap decreased the rate of
key host-intracellular adhesion properties that would ultimately hinder biofilm formation and the
establishment of chronic infections [105]. Within the opportunistic pathogen, Enterococcus faecalis, a
Bap-like protein group known as Enterococcal surface proteins (Esp), share similar functionality to the
S. aureus Bap proteins. The Esp are a group of high molecular weight surface proteins that promote
the formation of biofilms and contribute to the pathogenicity factors of Enterococcus faecalis [106,107].
With a better understanding of protein interactions within biofilms, researchers have looked to various
proteases to aid in the removal and prevention of bacterial biofilms. Proteases have been studied for
implementation in a variety of industries plagued by biofilms. Proteases were shown to be effective at
removing Pseudomonas fluorescence, Bacillus spp., Streptococcus spp. and, Staphylococcal spp. [108–110].

5.2. Enzymatic Techniques

At a macro perspective, biofilm structures are comprised of various organic materials that,
in theory, can be susceptible to some form of enzymatic degradation. Enzymes isolated from
ubiquitous organisms to novel extremophiles possess properties that may make them effective
against biofilms [111,112]. Many researchers have looked to enzymes for the removal of clinically
relevant biofilms. One such approach was to use nucleases. It was found that extracellular DNA
(eDNA) is an important component of the EPS matrix and aids in the adhesion and development
of biofilms [113–115]. The eDNA is released upon cell lysis and binds with other biopolymers
increasing the structural integrity of the biofilm [114]. This is especially true with amyloid structures.
A study published in 2015 demonstrated how the amyloid fimbria of Staphylococcus aureus tightly
bind to eDNA, limiting its susceptibility to nucleases [116]. The presence of eDNA not only improves
fimbria adhesion properties but is also required for amyloid-fimbria expression, production, and
assembly [117]. Outside of the eDNA influence on gene expression and enzymatic protection
factors, eDNA also increases the interaction between bacteria and the surface via Van der Waals and
acid-base interactions [12,118]. Multiple studies have shown that biofilms requiring eDNA, including
Listeria monocytogenes, Candida albicans, Streptococcus pneumoniae, and Pseudomonas aeruginosa, can be
greatly reduced or completely dissolved when treated with nucleases [113,119–126].

Proteases are another class of enzymes that have shown great promise at degrading a variety of
bacterial EPS matrices. Commercially available proteases, such as Savinase and Everlase, were able
to significantly degrade Pseudomonas fluorescens EPS attached to glass wool fibers [108]. The same
group also notice that another commercial protease was not effective against the same EPS matrix
and concluded that the specificity of the non-effective protease was not compatible with the protein
structures within the biofilm. Krillase, a commercially available mixture of digestive proteases
extracted from the Antarctic krill shrimp, has been shown to be effective at preventing and removing
Streptococcus mutans, Streptococcus sanguis, Actinomyces naeslundii, and, Candida albicans biofilms [127].
The group found that 50% of bacterial density was removed with 5 min of exposure to Krillase. This was
further validated via scanning electron microscopy (SEM). It is known that bacteria within biofilms
produce enzymes to promote, prevent, and/or disperse biofilm colonies. The recombinant production
of preventative or inhibitory proteins may alleviate substrate compatibility issues, ultimately being
more effective against EPS than generic proteases. This concept was reinforced by the article published
by Chen et al., which showed how an extracellular protease produced by Staphylococcus epidermidis
inhibited Staphylococcus aureus biofilm formation [128].

Overall, the use of enzymes for the removal and prevention of biofilm formation is extremely
promising. The combinatory use of multiple enzymatic classes (i.e., proteases, amylases, lipases,
nucleases, etc.) would allow for a multifactorial hydrolytic profile with a high probability of success.
However, the temperature-activity profiles, pH sensitivity, need for co-factors, presence of enzymatic
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inhibitors, and enzyme–enzyme compatibility need to be assessed for each application. The use of
enzymes in lower earth orbit (LOE) as an anti-biofilm treatment technique has not been extensively
studied. The effects of LOE conditions on enzyme kinetics, stability, and efficacy need to be addressed.
The physiochemical changes within biofilm matrices may also change in LOE or long-duration space
flight. This would impact active site accessibility and enzyme diffusion properties.

5.3. Physical and Chemical Techniques

The traditional approach to removing and preventing biofilm buildup is through chemical and/or
physical removal, which encompasses the use of caustic compounds, the disassembly of equipment,
and the physical scrubbing of surfaces. This is not ideal for LOE or long-duration space flight.
Complex equipment, limited supplies, and an increased risk in malfunction limit the feasibility and
effectiveness of this approach. Therefore, implementing recent advances in surface coatings and
clean-in-place (CIP) applications for space equipment is ideal. Surfaces that limit biofouling, such as
Teflon, lubricant-infused surfaces, branched-polymer surface structures, and silicone nanowire-infused
surfaces, have promising properties to limit bacterial adhesion and biofilm formation [129–133].

In combination with surface coatings, advances in novel chemical techniques help alleviate the
issues associated with the large-scale use of caustic agents in space. Once such technique is the use of
nanotechnology. Nano-scale technology, ranging from nanoemulsions to nanotubes, have been shown
to inhibit bacterial growth and biofilm formation relevant to a variety of industries [134–137]. Silver and
nitric-oxide (NO) nanoparticles are currently being explored as a way to mitigate biofilm formation
in chronic wounds and on contact lenses [138,139]. The application of NO-releasing nanoparticles
decreased viable biofilm cell numbers by >5 log CFU of Pseudomonas aeruginosa and Escherichia coli
and >3 log CFU of Staphylococcus epidermidis, Staphylococcus aureus, and Candida albicans at ≥6 mg/mL
concentration [139]. Similarly, treatment with silver nanoparticles decreased the biofilm formation of
Staphylococcus epidermidis and Pseudomonas aeruginosa by 95% and 98%, respectively, when treated with
100 nM of silver nanoparticles. The group was able to visualize the decrease in biofilm formulation
on brain–heart infusion agar supplemented with Congo red dye with the addition of 50 nM silver
nanoparticles. Silver nanoparticles enhanced with Allophylus cobbe extract significantly enhanced
the antibiofilm properties of the nanoparticles along with increasing the antibiotic sensitivity of the
test strains [140].

The use of naturally derived plant-based extracts for antimicrobial and antibiofilm activity is
steadily gaining traction in a variety of industries, not just due to their efficacious properties but also
due to their less aggressive nature on sensitive surfaces and equipment when compared to sodium
hydroxide, sodium hypochlorite, hydrogen peroxide, and other typical CIP treatments. A recent
research article tested extracts from three species of sea grass (Enhalus acoroides, Halophila ovalis, and
Halodule pinifolia) for their ability to prevent and remove clinically relevant biofilms [141]. All three leaf
extracts showed a significant biofilm reduction capability against Escherichia coli and Candida albicans.
Biosurfactants, catechol(s), and essentials oils extracted from bacterial cultures, seaworms, and plant
matter have all shown promising activity against biofilms [142–145].

In regard to long-duration space travel, replenishing disinfecting and cleaning supplies will be
incredibly challenging. The ability to extract antimicrobial and antibiofilm compounds from plants or
animals that can be grown and harvested during space travel is a more logical approach. These crops
could also be used as a food source as well.

6. Conclusions

As humans travel further and longer into outer space, we will be adapting at the same time
as bacteria and fungi. Are we adapting to withstand these changes or are we becoming more
susceptible? The panspermia hypothesis suggests that life not only exists across the universe but
bacterial contamination occurs via propagation from planets and planetary matter. Vessels of transport
include meteors, space dust, comets, planets, and spaceships themselves. While still a hypothesis, it is
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difficult to predict how outer space’s own bacterial contamination may interact with our protective
material and food/water supplies and what the biofilm we bring from earth could mean for these
extraterrestrial lifeforms and celestial bodies. Other unknowns include how our human microbiome
changes in space and what that can do to our immune system and state of health. Overall, the
handling and utilization of bacterial biofilm is an unavoidable challenge to promoting sustainable
long-term space flight, but the potential advantages that will likely come from such research are also
similarly endless.

It is essential to treat biofilms by combining a variety of methods. A constant multivariate attack
strategy can lead to better and more efficient outcomes. While the clinical methods mentioned work
very well on Earth, it will be interesting to observe how they unfold when biofilms are treated in the
presence of microgravity. Whether the microgravity works in the favor of biofilm infection treatment is
another future avenue of research to help astronauts remain healthy during longer spaceflight missions.
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