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ABSTRACT

Multiple sequence alignment (MSA) is a cornerstone
of modern molecular biology and represents a
unique means of investigating the patterns of
conservation and diversity in complex biological
systems. Many different algorithms have been
developed to construct MSAs, but previous studies
have shown that no single aligner consistently
outperforms the rest. This has led to the develop-
ment of a number of ‘meta-methods’ that systemat-
ically run several aligners and merge the output
into one single solution. Although these methods
generally produce more accurate alignments,
they are inefficient because all the aligners
need to be run first and the choice of the
best solution is made a posteriori. Here, we
describe the development of a new expert system,
AlexSys, for the multiple alignment of protein
sequences. AlexSys incorporates an intelligent in-
ference engine to automatically select an appropri-
ate aligner a priori, depending only on the nature
of the input sequences. The inference engine
was trained on a large set of reference mul-
tiple alignments, using a novel machine learning
approach. Applying AlexSys to a test set of
178 alignments, we show that the expert sys-
tem represents a good compromise between align-
ment quality and running time, making it
suitable for high throughput projects. AlexSys is
freely available from http://alnitak.u-strasbg
.fr/�aniba/alexsys.

INTRODUCTION

Comparative analyses of genetic sequences have become a
cornerstone of modern genomics studies and represent a
unique means of investigating the patterns of conservation
and diversity in complex biological systems. Multiple
sequence comparisons or alignments were originally used
in evolutionary analyses to explore the phylogenetic rela-
tionships between organisms (1). More recently, new
sequence database search methods have exploited
multiple alignments to detect more and more distant
homologues (2). Multiple sequence alignments of protein
or nucleic acid sequences are also used to highlight
conserved functional features and to identify major evo-
lutionary events, such as duplications, recombinations or
mutations. They have led to significant improvements in
predictions of both 3D fold (3) and function (4). Of
course, in the post-genomic era, it is also possible to
perform comparative multiple sequence analysis at the
genome level (5).

Such studies have important implications in numerous
fields in biology. Nucleic acid divergence is used as a
molecular clock to study organism divergence under the
evolutionary forces of natural selection, genetic drift,
mutation and migration, with applications from the scien-
tific classification or taxonomy of species to genetic finger-
printing. Conserved sequence features or markers are used
to characterise groups of individuals in population
genetics (6). Genotype/phenotype correlations can reveal
candidate genes associated with a particular trait (e.g.
plant height) or inherited disease, such as schizophrenia
(7). In drug discovery, a protein family perspective can
identify specific structural or functional features that
facilitate protein–ligand interaction studies for high-
throughput virtual compound screening methods (8).
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Thus, multiple alignments now play a fundamental role in
most of the computational methods used in genomic or
proteomic projects, ranging from gene identification and
the functional characterisation of the gene products to
genetics, human health and therapeutics.

Since the introduction of automatic methods for
sequence alignment in the 1980s, a large number of
studies have been performed and much progress has
been achieved. The first algorithm for multiple sequence
alignment (MSA; 9) was computationally expensive and
consequently, most programs (known as ‘aligners’) in use
today are based on some kind of heuristic approach that
represents a compromise between reduced computation
times and accurate solutions. As an example, the progres-
sive alignment procedure, which exploits the fact that
homologous sequences are evolutionarily related,
consists of three main steps: (i) pairwise sequence align-
ment and distance matrix calculation, (ii) guide tree con-
struction and (iii) multiple alignment following the
branching order in the guide tree. The earliest aligners
using the progressive approach incorporated either a
global alignment method to construct an alignment of
the complete sequences [e.g. ClustalW/X (10)], or a local
algorithm to align only the most conserved segments of
the sequences [e.g. Pima (11)].

More recently, MSA methods have evolved in response
to the challenges posed by the post-genomic era, and
numerous different alignment algorithms have been
proposed. A comparison of many of these methods
based on a widely used alignment benchmark dataset,
BAliBASE (12), showed that no single algorithm was
able to achieve high-quality alignments for a wide range
of alignment problems and this led to the introduction
of new alignment approaches, combining both global
and local information in a single alignment program
[e.g. DbClustal (13), TCoffee (14), MAFFT (15), Muscle
(16)], or including a number of divergent algorithms,
e.g. PipeAlign (17). Other approaches have also been
developed that exploit other types of information to
improve sequence alignments, e.g. 2D/3D structure in
3DCoffee (18) and PRALINE (19) or known domain or-
ganization in Refiner (20).

Today, next-generation sequencing technologies are
further complicating the multiple alignment problem and
it is now a routine task to align very large sets of
sequences, containing hundreds or even thousands of
sequences. The sequences, particularly those from eukary-
otic organisms, often have complex domain organizations
and natively disordered regions, which pose particular
problems for multiple alignment programs. Furthermore,
many of the alignments contain a high proportion of
partial sequences, corresponding either to naturally
occurring variants, or to artifacts, including sequences of
proteins with a solved structure from the PDB (typically
covering a single structural domain) and partially
sequenced transcripts (for example from ESTs). The
volume and complexity of the new data, combined with
the wide variety of the available analysis tools, mean that
it is often difficult for the non-specialist to choose an ap-
propriate tool for his specific alignment problem and auto-
matic processing by ‘intelligent’ computer systems is

clearly required. One solution to this problem has been
the development of meta-method approaches, that
exploit information from multiple aligners, such as
M-COFFEE (21), AQUA (22) or Mumsa (23). Although
meta-methods have been shown to increase alignment
accuracy, the fact that they require the computation of
several alternative alignments for a single set of sequences
limits their practical usage.
Here, we describe the development of a new alignment

expert system, called AlexSys, whose main objective is to
construct a high-quality MSA, as efficiently as possible.
Specifically, the goal of the developments described here
is to identify the most suitable aligners for a given align-
ment task, as early as possible in the alignment process. In
this way, we can reduce the number of alternative align-
ments that need to be computed. AlexSys is designed to
take advantage of the expert knowledge gained through
decades of research in MSA algorithms, as well as more
recent developments in the field of artificial intelligence
and machine learning. The expert system exploits the ad-
vantages of the many different algorithms that have been
developed over the years, by creating a model of their
strengths and weaknesses, and by automatically selecting
the most appropriate program, based on the input set of
sequences and the intended use of the alignment.
An initial prototyping phase (24) allowed us to investi-

gate the feasibility of such a system and we showed that a
combination of different multiple alignment methods
could improve the accuracy of existing MSA approaches.
During this phase, we also established the suitability of
UIMA (Unstructured Information Management
Architecture: incubator.apache.org/uima/) for the devel-
opment of expert systems in bioinformatics. UIMA is an
open source Java platform that provides a general frame-
work for the development of applications that incorporate
many different types of data, including both structured
and unstructured data. UIMA also supplies an execution
environment in which individual computational modules
can be integrated in order to build and run complex ap-
plication pipelines. It has been widely used in the natural
language processing field, for example to integrate and
compare different text mining applications (25).
The prototype system we developed previously used

a posteriori knowledge to determine the quality of the
MSAs produced by a variety of different algorithms and
selected the best, most biologically meaningful alignment.
Although this resulted in more accurate alignments, it was
clearly inefficient as all the algorithms needed to be run in
order to choose the best one. We have now introduced a
novel inference engine that uses a priori information about
the input sequences to guide the alignment procedure
automatically. Thus, given a set of input sequences,
AlexSys first predicts which aligner is likely to provide
the best quality alignment. This single aligner is then
used to construct the MSA, resulting in a more efficient
alignment construction.
The rules used in the inference engine are deduced in a

separate training phase based on a machine learning algo-
rithm and a set of training alignments. Machine learning
approaches have been widely used in bioinformatics (26)
to analyze large data sets, in order to discover hidden
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patterns and similarities. In particular, supervised learning
provides techniques to learn predictive models from ob-
servations of a system and is thus particularly well suited
to deal with large-scale biological data sets. Such
approaches have found successful applications in a wide
range of fields, including genome annotation (27),
function prediction (28) or biomarker discovery (29).
Tan and Gilbert (30) compared the accuracy of a
number of different supervised learning methods, such as
rule-based learning systems (decision trees, one rule,
decision rules), statistical learning systems (naıve Bayes,
SVM and artificial neural networks) and ensemble
methods (stacking, bagging and boosting). They showed
that, in general, statistical methods, such as SVM or
neural networks tend to perform better for problems
involving multi-dimensions and continuous attributes,
while rule-based systems tend to perform better in cases
with discrete or categorical attributes. Rule-based or
decision tree methods have the additional advantage of
combining interpretability, efficiency, and, when used in
ensembles of trees, excellent accuracy (31).
In the work described here, we have chosen to use a

decision tree based learning algorithm. Two complemen-
tary approaches have been developed which construct dif-
ferent rules for selecting an alignment program. The first
approach is designed to rapidly construct multiple align-
ments even for large datasets, while the second approach is
more time-consuming but results in more accurate align-
ments. The accuracy of the alignments produced by
AlexSys is evaluated using the BAliBASE 12) and
OXBench (32) benchmarks, and compared to six of the
most widely used existing aligners.

MATERIALS AND METHODS

Training and test sets

The training and test sets were derived from the reference
alignments in the BAliBASE and OXBench benchmarks.
We used the 218 alignments in ref. (1–5), corresponding to
(i) equidistant sequences with various levels of conserva-
tion, (ii) families aligned with a highly divergent ‘orphan’
sequence, (iii) subgroups with <25% residue identity
between groups, (iv) sequences with N/C-terminal exten-
sions and (v) internal insertions. These 218 alignments
contain a total of 6222 protein sequences, including both
full-length sequences and fragmentary sequences from the
PDB database. In addition to the alignments from
BAliBASE, we used the set of 672 extended alignments
from OXBench, containing a total of 66 742 protein se-
quences. These alignments contain sequences correspond-
ing to isolated structural domains. The combined data set
was then divided into a training set of 712 alignments
(80% of the alignments were selected at random) used to
create the rules in the inference engine and a test set of
178 alignments (the remaining 20%) used for evaluation
purposes.
To assess the performance of the aligners used in this

study, we used the sum-of-pairs score (SP) (22) to compare
the alignments produced by the aligner with the reference

alignments. The SP score corresponds to the proportion of
pairs of residues aligned the same in both alignments.

Running times for all programs were calculated on a
Sun Enterprise server, with 8 Quad-Core AMD Opteron
processors and 32 Gb of memory.

Selection of multiple alignment programs

Six of the most widely used aligners have been integrated
in AlexSys, namely ClustalW, Dialign, Mafft, Muscle,
Kalign and ProbCons. The algorithms implemented in
each of the programs are described briefly below.

‘ClustalW’ (version 2.0) performs a traditional progres-
sive alignment, by first comparing all pairs of sequences,
then building a guide tree using the neighbour joining
approach, and finally aligning all the sequences according
to the branch order in the guide tree. For sequences that
are globally related, ClustalW often provides accurate
alignments, while in more complex cases it can be used
as a good starting point for further refinement.

‘Dialign’ (34) (version 2.2.1) constructs multiple align-
ments by comparing segments of the sequences, rather
than single residues. The main difference between
Dialign and the other alignment approaches is the
underlying scoring scheme or objective function. Instead
of summing up substitution scores for aligned residues and
subtracting gap penalties, the score of an alignment is
based on P-values of local sequence similarities. Only
those parts of the sequences are aligned that share some
statistically significant similarity, unrelated parts of the
sequences remain unaligned. This approach is particularly
successful in situations where sequences share only local
homologies.

‘Mafft’ (version 6.240) (MSA based on Fast Fourier
Transform; option FFT-NS-i) is a fast aligner that
builds an initial progressive alignment using an approxi-
mate measure based on shared 6-tuples to estimate the
distance between pairs of sequences. A guide tree is then
generated using the UPGMA algorithm with modified
linkage and sequences are aligned following the branch
order of the tree. The initial MSA is then improved by
recalculating the distance matrix and repeating the pro-
gressive alignment steps. The final phase involves an itera-
tive refinement to optimise a weighted sum of pairs (WSP)
(35) score, using a group-to-group alignment and a
tree-dependent restricted partitioning technique.

‘Muscle’ (version 3.7) (multiple sequence comparison by
log-expectation) uses a three phase approach similar to the
one implemented in Mafft. In the initial alignment phase,
a k-mer distance is used to estimate the pairwise distances
and the guide tree is built using the UPGMA algorithm.
The initial MSA is then improved by calculating a more
accurate Kimura distance (36) for aligned pairs, again re-
peating the progressive alignment steps. The final iterative
refinement stage employs a variant of the tree dependent
restricted partitioning algorithm.

‘Kalign’ (37; version 2.03) also uses a progressive align-
ment approach, the main difference being that it employs
the Wu–Manber (38) approximate string matching algo-
rithm when calculating the distances among sequences.
This methodology allows for a fast, yet accurate distance

6340 Nucleic Acids Research, 2010, Vol. 38, No. 19



estimation. As in Mafft and Muscle, the UPGMA algo-
rithm is used to build the guide tree. In addition, the
program performs a consistency check in order to define
the largest set of sequence matches that can be inserted in
the alignment, using a modified version of the
Needleman–Wunsch algorithm (39) to find the most con-
sistent path through the dynamic programming matrix.

‘ProbCons’ (40; version 1.12) (Probabilistic
Consistency-based MSA) incorporates a pair-hidden
Markov model-based progressive alignment algorithm.
The alignment procedure is divided into four steps,
starting with a computation of posterior-probability
matrices for every pair of sequences, followed by a
dynamic programming calculation of the expected
accuracy of every pairwise alignment. A probabilistic con-
sistency transformation is then used to re-estimate the
match accuracy scores. A guide tree is calculated with
hierarchical clustering and the sequences are aligned
using a progressive approach. In a post-processing
phase, random bi-partitions of the generated alignment
are realigned in order to check for better alignment
regions.

AlexSys global architecture

The AlexSys expert system (Figure 1) is designed around a
central core, containing the main data processing and
alignment construction components. The information
that drives the decisions made within the system is
stored in a separate metadata layer. In addition, a know-
ledge base contains the necessary background information
for the selection of the most appropriate aligner(s), based
on the input data.

Knowledge base construction

The knowledge base in AlexSys contains ‘alignment
models’ (Figure 2) that are used to predict the strengths
and weaknesses of the individual aligners, given a specific
set of input sequences. To achieve this, a supervised
learning or classification algorithm is used. The alignment
models are trained on a set of instances, corresponding to
the multiple alignment sets in the training data described
above, for which the performance of the aligners is already
known.

Three problems needed to be addressed at this stage: (i)
the characteristics used to describe the input sequences
(the attributes), (ii) the structure of the predicted output
classes, corresponding to the relative performance of the
aligners and (iii) the learning algorithm used to predict the
class for a given instance of input sequences.

The first problem concerns the selection of pertinent
features or ‘attributes’ that adequately describe the input
sequences. Based on our previous knowledge acquired
working on multiple sequence alignments, we identified
the following attributes:

. number of sequences in the dataset,

. average sequence length,

. average pairwise residue percent identity,

. number of sequences with known 3D structure,
according to the PDB database (41)

. average number of residues found in a-helices per
sequence,

. average number of residues found in b-strands per
sequence,

. average number of functional domains per sequence,
according to the Pfam database (42)

. number of sequences with low complexity regions,

. average number of regions with low complexity per
sequence,

. average hydrophobicity of the sequences,

. average number of predicted transmembrane segments
per sequence,

. average amino acid composition based on the six
groups: [PAGST], [DEQN], [KRH], [LIVM], [FWY]
and [C].

These attributes are then used to establish potential rela-
tionships between the input sequences and the perform-
ance of the individual aligners.
The second problem concerns the definition of the

desired output classes. Given a set of input sequences,

Figure 1. AlexSys global architecture. The core is divided into three
main parts: IDH, AIE and MAC. Each part contains one or more
Analysis Engines. A special Analysis Engine, the Aligner Predictor
Analysis Engine, represents the intelligent inference engine for the
whole system.
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the quality of the alignment produced by each aligner
is measured using the SP score. We then define a bin-
ary classification, where an aligner is classified as
Strong (if the SP score is >0.5) or Weak (if the SP score
is <0.5).
The third problem concerns the choice of an appropri-

ate supervised learning or classification algorithm. Here,
we use a decision tree approach, where the leaves of the
tree represent the output classifications, each node corres-
ponds to a specific attribute and the branches correspond
to a range of attribute values. We tested three widely used
decision tree algorithms implemented in the Weka
software (sourceforge.net/projects/weka/):

. The C4.5 (43) (known in Weka as J48) algorithm gen-
erates a classification or decision tree by recursive par-
titioning of the dataset. At each node of the tree, C4.5
chooses one attribute of the data that most effectively
splits the samples into subsets enriched in one class or
the other, based on a normalized information gain
score.

. The Random Tree algorithm (44) is a fast decision tree
learner that constructs a tree from random permuta-
tions. With k random features at each node, a tree is

drawn at random from a set of possible trees and
again, information gain is used as a selection criterion.

. The Random Forest algorithm (45) combines an
ensemble classifier and the random selection of
features, in order to construct a collection of
decision trees with controlled variation. Each tree
defines a classification, and is said to ‘vote’ for that
classification. The forest algorithm then chooses the
classification having the most votes (over all the trees
in the forest).

Metadata layer

The metadata layer in AlexSys contains the ‘on-the-fly’
data that will drive the multiple alignment construction
process. It consists of a set of UIMA ‘type systems’,
which are the equivalent of structures or objects in a trad-
itional programming language. There are currently six
type systems (TSs) designed to represent the major data
structures used:

. the Protein Sequence TS contains the basic sequence
information;

Figure 2. Alignment model creation. For each aligner, a decision tree (shown at the bottom) is generated from a set of training data (shown at the
top). Each instance in the training set, corresponding to a set of sequences to be aligned, is associated with a vector of attributes and the desired
classification. In the decision tree, numbers on the branches indicate the threshold value of the attribute that is used to select either the left or right
branch.
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. the Model Attributes TS stores the attribute data
associated with the alignment models;

. the Pfam TS and Prosite Pattern TS contain informa-
tion about function domains mapped on the se-
quences, obtained from the InterPro database (46);

. the Arff Analyzed TS contains information about the
sequence attributes in Arff (Attribute-Relation File
Format);

. the Aligner Predictor TS collects information concern-
ing the aligners, such as the predicted strengths and
weaknesses for each aligner and the final choice of an
aligner.

AlexSys Core

The central core of AlexSys was designed and built using
the UIMA development toolkit. UIMA provides an ideal
framework for the construction of applications that inte-
grate different applications and heterogeneous data types.
UIMA applications can easily be decomposed into
modules or components, that handle different aspects of
complex process, such as data input, quality control, data
analysis, results output and visualization. UIMA then
provides the facilities required to manage these compo-
nents and the data flow between them. Components can
be written in Java or C++and the data that flows between
components is designed for efficient mapping between
these languages.

The primitive processing units in UIMA applications,
called Analysis Engines (AEs), can be combined in order
to analyze data containing structured or unstructured in-
formation. The AE’s core is called an Annotator and
contains the actual analysis software. The AEs can then
be organized using Flow Controllers (FC) inside more
complex structures called Aggregate Analysis Engines
(AAEs). The AEs share data via the TSs in the
metadata layer. Figure 4 shows the overall architecture
of the central core, which is divided into three main
AAE, described in detail below.

Input data handling

When a set of sequences is input to AlexSys, they are
transferred to the metadata layer (Protein Sequence TS),
using the Protein Sequence AE. This AE uses the frame-
work of the Biojava sequence input/output API (47) to
provide access to sequences from a number of common
file formats such as FASTA, GenBank and EMBL. Thus,
regardless of the input format used, sequences can be
simply transformed into UIMA TSs, making them easily
available to the other analysis engines.

Annotation and information extraction

This AAE contains a number of AE that are used to
obtain pertinent information associated with the set of
input sequences. When new data is stored in the Protein
Sequence TS, the Model Attributes AE calculates the
sequence attributes required for the selection of an appro-
priate aligner and stores the information in the Model
Attributes TS. The attributes are also read by the Arff
Writer AE, which transforms them into a special format

called Arff (Attribute-Relation File Format) used by the
Aligner Predictor AE to select one or more appropriate
aligners for the input sequences.
In addition to the attributes that can be calculated

directly from the sequence data, two AEs have been
defined that extract additional information from external
databases. The Pfam AE uses the WSInterProScan (48)
web service (www.ebi.ac.uk/Tools/webservices/services/in
terproscan) to retrieve the associated Pfam domains from
the InterPro database and maps them to the sequences.
The additional information generated is then stored in the
Pfam TS. In a similar way, the Prosite Pattern AE maps
patterns from the Prosite database (49) to the input
sequences.

Multiple alignment construction

The first task in the multiple alignment process is the se-
lection of an appropriate aligner to use. This is performed
by the Aligner Predictor AE, which represents the AlexSys
inference engine. Based on the attributes associated with
the input sequences, the inference engine uses the align-
ment models in the knowledge base to predict the class
(Strong or Weak) of each aligner. Two alternative
methods have been developed to make the final selection
of the most suitable aligner.

. The first method is based on the probability scores
(provided by the Weka software. For each of the five
aligners, the probability associated with a Strong pre-
diction is obtained and the aligner with the highest
probability is then selected.

. The second method builds a set of IF-THEN rules.
Each of the five aligners incorporated in AlexSys is
classified as either Strong or Weak. In the case
where more than one aligner is classified as Strong,
we select the one that requires the least CPU time.

Once an aligner has been selected, a UIMA Flow
Controller is used to call the appropriate alignment AE.
These AE encapsulate the actual alignment program, ac-
cessible via JNI (Java Native Interface). AlexSys requires
that these programs are already installed on the user’s
platform.

Availability

The source code and help for the complete AlexSys system
are available from http://alnitak.u-strasbg.fr/�aniba/
alexsys.

RESULTS AND DISCUSSION

In this article, we describe the development of an expert
system, AlexSys, for the construction of MSAs. The MSA
field is a highly active one and numerous alignment
methods have been developed, based on a wide variety
of different algorithms. Unfortunately, there is no single
algorithm that works best on all problems (33), due to the
high complexity of today’s sequence alignment tasks.
AlexSys is therefore designed to combine the power of
the existing approaches in a single system which is both
efficient and easy to use for the biologist.
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One of our main objectives in developing AlexSys was
to improve the efficiency of the alignment construction, by
selecting the most suitable aligners as early as possible in
the alignment process. In this way, we avoid running
aligners that are unlikely to provide useful information.
To achieve this, we have introduced an ‘intelligent’ infer-
ence engine that predicts a priori the performance of the
different aligners. Based only on specific attributes of the
set of sequences to be aligned, we then choose the most
suitable aligner that is most likely to produce a high
quality alignment.

Supervised learning

The rules used in the inference engine were trained using a
supervised learning approach. We tested a number of dif-
ferent approaches based on decision tree algorithms, im-
plemented in the Weka machine learning software. Weka
is freely available and is written in Java, which means that
it can be easily integrated in the UIMA environment. It
provides easy access to a wide range of state-of-the-art
machine learning algorithms and is supported by a large
developer community.
Supervised learning, or classification, techniques are

used in a wide range of applications in bioinformatics.
However, as far as we are aware, this is the first direct
application of such algorithms to try to solve the
multiple sequence alignment problem. A wide range of
learning algorithms are available, including neural
networks, support vector machines and decision trees,
and their performance largely depends on the data to be
classified and the model used to represent them. We
decided to base our studies on the decision tree algorithms
since they provide predictions based on simple rules that
are comprehensible to both humans and computers.
Regardless of the learning algorithm used, two factors
are known to play an important role in determining the
accuracy of the resulting classifications: (i) the character-
istics used to describe the input data and (ii) the form of
the classes to be learned.

(i) The sequences input to AlexSys are characterized by
a set of attributes that were initially selected based
on our previous experience of constructing multiple
alignments and a number of previous studies to
evaluate the performance of aligners (50–52). The
attributes were then refined in a number of prelim-
inary experiments (data not shown) to determine an
adequate set for use in this work. As might be

expected, the average pairwise residue percent
identity is a crucial factor that is found in the
decision trees of all the aligners and confirms
previous observations that the similarity of the se-
quences significantly affects alignment quality (33).
The average sequence length is another important
attribute for some of the aligners, including
ClustalW, Dialign and Muscle. A related factor is
the average number of Pfam domains per sequence,
where high values indicate the presence of
multi-domain proteins. This attribute is found in
the decision trees for ClustalW and Dialign, which
might be explained by the fact that these programs
are exclusively based on either a global or local al-
gorithm. The other aligners include both local and
global information. More surprisingly, the residue
composition of the sequences also affects the
accuracy of all the aligners. In the case of
ClustalW, Mafft, Muscle and Probcons the amino
acid group [KRH] is determinant, while for Dialign
and Kalign the most important group is [PAGST].
Nevertheless, it should be noted that this attribute
set is clearly not definitive and work is still on-going
to investigate other attributes and to evaluate their
usefulness.

(ii) The second issue proved to be more problematic.
Our initial design of the learning process involved
a single model, where the class of an instance in the
training data was defined to be the best aligner for
this set of sequences. We then evaluated the per-
formance of various learning algorithms, but the
resulting prediction accuracy was low, due to the
relatively small number of instances in the training
set, the high dimensionality of the data and the
difficulties associated with unambiguously selecting
the best aligner among several high scoring ones. As
a consequence, we redesigned the problem as a
binary classification, with a separate model for
each aligner, where the class of an instance corres-
ponds to the strength of the aligner, defined as
either strong or weak.

Evaluation of decision tree algorithms

We compared the predictive performance of three different
decision tree algorithms, namely Random Tree, Random
Forest and J48 with default parameters. Table 1 shows the
accuracy of each method, estimated using 10-fold

Table 1. Correctly and incorrectly classified instances for each aligner

ClustalW Dialign Mafft Muscle Kalign ProbCons Average (%)

CCI ICI CCI ICI CCI ICI CCI ICI CCI ICI CCI ICI ACCI AICI

J48 812 74 825 61 838 48 842 44 822 64 845 41 93.8% 6.2%
RandomTree 806 80 810 76 816 78 822 64 805 81 839 47 92.1% 7.9%
RandomForest 825 61 828 58 835 51 839 47 823 63 846 40 94 6

CCI, correctly classified instances; ICI, incorrectly classified instances; ACCI, average CCI; AICI, average ICI. Numbers shown in bold indicate the
best scores for each aligner.
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cross-validation, which reduces the problems of
overfitting. Cross-validation is one of several approaches
that can be used to estimate how well the model will
perform on future as-yet-unseen data. The Random
Forest algorithm is the most accurate predictor for all
aligners, except Mafft and Muscle where the Random
Tree method performs slightly better. With an average
correct classification rate of 94%, this algorithm seems
to be the most appropriate for our purposes.
Nevertheless, Random Tree and J48 also performed
well, with an average correct classification rate of
around 92% and 93.2%, respectively.

A more detailed study of the performance of the
Random Forest algorithm is shown in Figure 3. The
results confirm that the classification is highly accurate
for all five aligners used here. The true positive (TP)
rates range from 0.97 to 0.99 for high scoring multiple
alignments (class=Strong), whereas for low scoring
alignments (class=Weak) the TP rates range from 0.72
to 0.87. The F-measure, defined as:

F�measure ¼
2� recall� precision

recall+precision
¼

2TP

2TP+FN+FP

is a widely used score in the information retrieval and
natural language processing communities and combines
measures of precision (also called positive predictive
value=TP/TP+FP) and recall (also called sensitivity=
TP/TP+FN). The F-measure score ranges from 0.0 to
1.0, with 0.0 indicating the poorest result and 1.0 a

perfect retrieval. In these tests, the F-measures for the
Random Forest algorithm range from 0.96 to 0.98 for
Strong class alignments and from 0.77 to 0.90 for Weak
class alignments.
Based on these results, we concluded that the Random

Forest approach was the most appropriate for our
purposes. This was then used to build the inference
engine used by the AlexSys to select the most appropriate
aligner for a given set of sequences.

Choice of aligners

There are now hundreds of different programs available
for the construction of multiple sequence alignments and
it is clearly impossible to incorporate all of these in
AlexSys. We therefore selected a small number of
aligners, representing different alignment approaches.
ClustalW is a global alignment method, while Dialign
uses a local alignment algorithm. Mafft and Muscle were
developed more recently and use both local and global
information to construct the alignment. Kalign and
Mafft are very fast aligners, while ProbCons is less efficient
but often produces a higher quality final alignment.
Based on the Random Forest machine learning algo-

rithm and the sequence attributes described above, the
inference engine in AlexSys predicts which of these six
aligners should be used to align a given set of sequences.
Using a test set of 178 reference alignments, we compared
AlexSys’ prediction of the best aligner to the ‘ideal’
aligner, which achieves the highest score. In 80 (45%) of

Figure 3. Evaluation of the Random Forest algorithm for the classification of aligner performance as S, strong or W, weak. For each aligner, the TP
(true positive rate, proportion of correctly classified instances); FP (false positive rate, proportion of wrongly classified instances); Precision (=TP/
TP+FP); Recall (=TP/TP+FN); F-measure (combines recall and precision scores into a single measure of performance) and ROC area (or the area
under the receiver operating characteristic curve, the probability that when we randomly pick one positive and one negative example, the classifier
will assign a higher score to the positive example than to the negative) are indicated.
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the alignment tests, AlexSys accurately predicted the
highest scoring program. In another 81 (45.5%) of the
tests, the prediction made by AlexSys corresponded to
the second highest scoring program. In general, when
AlexSys did not choose the best aligner, the difference in
the scores obtained by the different aligners was generally
small. Thus, the total root mean square error (RMSE) of
the SP scores obtained by AlexSys and the ‘ideal’ aligner
is 0.006, where the values of the SP score can range
from 0 to 1.
Thanks to the modular design of AlexSys, it is easy to

incorporate other aligners and we will evaluate the use of
more specialized algorithms, such as POA (53) or
PRANK (54), in the future.

AlexSys multiple alignment performance

The efficiency and accuracy of the multiple alignment con-
struction process in AlexSys were evaluated using a test set
of 178 multiple alignments (see ‘Materials and Methods’
section). Alignment accuracy was estimated by comparing
the results obtained with AlexSys to the reference align-
ments in both BAliBASE and OXBench benchmarks. Two
alternative approaches, using probability- and rule-based
methods, for selecting the most suitable aligner in the
AlexSys inference engine were tested here. The
probability-based inference engine results in higher
accuracy, with an average score of 0.891, compared to a
score of 0.888 obtained by the rule-based system. The dif-
ference in alignment accuracy can be explained by the
background knowledge built into the rules, which

favours a shorter running time when more than one
aligner is predicted to give a strong performance. In
contrast, the probability-based implementation systemat-
ically selects the aligner with the highest probability of a
strong performance. The performance of these alternative
methods was also compared to the five existing aligners
run independently (Figure 4). In terms of alignment
accuracy, both methods implemented in AlexSys (prob-
ability- and rule-based) achieved higher scores than five
of the independent aligners. The differences between
AlexSys (probability) and ClustalW, Dialign, Kalign,
Muscle are statistically significant with P-values
of 3.783� 10�7, 4� 10�2, 3.13� 10�5, 7.1� 10�3, respect-
ively, based on the non parametric Wilcoxon signed rank
test. The only non significant comparison concerns Mafft
with a P-value of 0.552. The only aligner that scores
higher than the probability-based AlexSys is ProbCons,
with an average SP score of 0.903 and the difference is
statistically significant (P=3.15� 10�6). However,
AlexSys only requires 180minutes to align all 178 test
alignments, while ProbCons takes almost 480min.
AlexSys thus represents a good compromise between
alignment quality and the computational time needed to
produce the alignments.

A more detailed comparison of the quality of the align-
ments produced by AlexSys and the other aligners was
also performed (Figure 5). The distributions of the align-
ment scores obtained for the 178 test alignments shows
that AlexSys (probability-based) generally results in less
low scoring alignments than the other aligners, with the

Figure 4. Evaluation of alignment accuracy and efficiency for AlexSys and the six existing aligners. (A) Average alignment accuracy for a test set of
178 multiple alignments, measured using the SP score. (B) The total CPU time required to construct the 178 multiple alignments.
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exception of Mafft and ProbCons. Furthermore, the
median score for AlexSys is higher than for all other
aligners except ProbCons. Taken together, these results
demonstrate that our intelligent platform is able to
produce more reliable alignments within a reasonable
time scale, which makes it suitable for high-throughput
applications.

Nevertheless, as shown in Figure 6, some test cases were
not well aligned by any of the aligners currently
incorporated in AlexSys. For example, for the test align-
ments 8, 91, 139 or 159, none of the programs tested
achieved an SP score higher than 0.3. In the future,
these difficult cases will be identified automatically by
the expert system and a warning can be produced to
indicate that the resulting alignment may not be of very
high quality. In these cases, where the sequences are highly
divergent, additional information will be needed in order
to build biologically meaningful alignments.

CONCLUSIONS

We have shown that the ‘intelligent’ inference engine in
AlexSys can be used to select a priori an appropriate
aligner for a given alignment problem. Reliable align-
ments can then be produced in a time scale suitable for
high-throughput projects. The architecture used to build
the expert system is highly modular and flexible, allowing
AlexSys to evolve as new alignment algorithms are made

available. In the future, we plan to extend the inference
engine to identify multiple algorithms that could poten-
tially provide complementary information about the input
sequences. For example, well aligned regions from differ-
ent aligners will be identified and combined into a single
consensus alignment. Additional information such as
structural and functional data will also be exploited to
improve the final alignment accuracy. Finally, a crucial
aspect of any bioinformatics tool is its accessibility and
usability. Therefore, we are currently developing a web
server, and a web services based distributed system. We
will also design a novel visualization module that will
provide an intuitive, user-friendly interface to all the in-
formation retrieved and constructed by AlexSys.
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