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Simple Summary: Hox gene Deformed (Dfd) is important for head appendages, but its function in
incisor lobe development is not clear. The different development pattern of incisor lobes resulted
in different feeding patterns between oriental armyworm and fall armyworm in maize. The first
to sixth instar S. frugiperda have sharp incisor lobes, but older instars of M. separata have no incisor
lobes. Knockdown of MsDfd resulted in malformed mandibles with no incisor lobe in M. separata,
making the larvae unable to perform window-feeding. However, RNAi of SfDfd did not affect the
mandibles and window-feeding pattern of S. frugiperda. Moreover, the mortality of the new first instar
M. separata increased after feeding with dsMsDfd but did not for S. frugiperda fed dsSfDfd. The results
reveal that Dfd mediated the larval mandibular incisor lobe morphology, affecting its feeding pattern
in M. separata.

Abstract: Mandibular incisor lobes are important for insect feeding behavior, living habits and niche.
However, the molecular regulation of insect incisor lobe development remains unknown. In this
study, we found that two maize pests, oriental armyworm Mythimna separata and fall armyworm
Spodoptera frugiperda, have different feeding patterns in maize, which are closely associated with the
different development patterns of their incisor lobes. Different from first to sixth instar S. frugiperda,
which feed on leaf tissues and whorls with sharp incisor lobes, older instars of M. separata feed from
leaf margins with no incisor lobes. Hox gene Deformed (Dfd) is important for head appendages, but
its function in incisor lobe development is not clear. Here, Dfds were identified from two armyworm
species, and both were expressed highly in heads and eggs. Interestingly, the expression levels
of MsDfd were relatively high in larval mandibles and decreased dramatically from fourth-instar
mandibles in M. separata. Knockdown of MsDfd resulted in malformed mandibles with no incisor
lobe in M. separata, making the larvae unable to perform window-feeding. However, RNAi of SfDfd
did not affect the mandibles and window-feeding pattern of S. frugiperda, indicating the different
roles of Dfd in these two species. Moreover, the mortality of new first instar M. separata increased
after feeding dsMsDfd but did not for S. frugiperda feeding dsSfDfd. These findings revealed that Dfd
mediated the larval mandibular incisor lobe morphology, affecting its feeding pattern in M. separata,
broadening the knowledge of Dfd functions in insect mandibles and feeding behavior.
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1. Introduction

Maize (Zea mays) is a crop cultivated worldwide with more than 1.14 billion tons in
2018, and China is one of the biggest maize producers and consumers in the world [1–3].
Maize faces a serious threat from pests, including two armyworm species, oriental army-
worm and fall armyworm, which was first found in January 2019 in China [4]. The oriental
armyworm, Mythimna separata (Walker), is a polyphagous pest damaging important crops
and threatening food security, with the characteristics of a wide range of occurrence, strong
reproductive capacity, and long-distance migration [5,6]. The fall armyworm, Spodoptera
frugiperda (J.E. Smith), damages more than 80 different crops and has spread rapidly in
China since 2019, causing serious losses in corn production [7–9]. Both armyworm species
belong to Noctuoidea, which is the largest and most diverse superfamily of Lepidoptera,
with numerous species being important pests [10].

Feeding patterns differ between M. separata and S. frugiperda larvae in maize seedlings
in the field. S. frugiperda larvae prefer feeding in the maize whorl, with 89%, 77%, and
100% occupancy rates in V3, V6, and V12 maize, respectively [11]. These larvae feed
predominantly, and stay hidden most of their lifetime in maize whorls and stalks in
early maize growth stages [12]. By contrast, early instars of M. separata feed on leaf
tissue and whorls, but older instars feed on leaf margins leaving the leaf midrib behind,
which is similar to the armyworm, Pseudaletia unipuncta [13]. As Lepidopteran pests, both
M. separata and S. frugiperda larvae have chewing mouthparts. Their maxillae, labium, and
hypopharynx degenerate to form a complex, while mandibles are extremely developed and
play an important role in feeding. Mandibles, especially their incisor lobes, are necessary
for larvae to cut and tear food. The mandible morphology is closely related to the larval
feeding behavior and environmental adaptability and is a typical case of the “phenotype-
genotype-environment” interaction [10,14].

Mandible development is associated with homeotic genes (Hox), which were first
discovered in Drosophila and are important transcription factors in insect anterior–posterior
body plan, with great significance for analyzing the developmental position and morphol-
ogy of appendages [15,16]. The anterior Hox genes are important regulators of identity for
head appendages, controlling the development of one or more segments and creating a
homeotic transformation to the fate of another segment under the removal of each gene [17].
Deformed (Dfd), a Hox gene, was reported to be highly expressed in the mandibular seg-
ments of embryos in Drosophila [18,19], Bombyx mori [20], Tribolium castaneum [21], and
Apis mellifera [22], and highly expressed in termite soldier mandibles [23]. Moreover, Dfd
mediated the development of the mandible (node) in insects such as D. melanogaster, Hodoter-
mopsis sjostedti, and T. castaneum [21,23,24]. However, the role of Dfd in the development
of the mandibular incisor lobe of M. separata and S. frugiperda larvae and its effect on their
feeding behavior are not clear.

This study aims to clarify the difference in larval mandibular incisor lobes between
M. separata and S. frugiperda and their relationships with the different feeding behaviors.
Moreover, the function of Dfd in the development of incisor lobes and feeding behavior
was compared between M. separata and S. frugiperda larvae.

2. Materials and Methods
2.1. Insect Cultures

M. separata were collected from a field in Yu’an District, Lu’an, Anhui, and S. frugiperda
were collected from a field in Huangshan District, Huangshan, Anhui [25]. The two species
were reared in the laboratory under conditions of 25 ± 1 ◦C, photoperiod 12 L: 12 D,
and 70% relative humidity. First to second instar larvae were fed with fresh corn leaves,
third to sixth instars were cultured with an artificial diet, and adults were kept with water
containing 10% honey.
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2.2. Feeding Behavior of M. separata and S. frugiperda Larvae

The feeding positions of 1st–6th instars of the two species were compared on the corn
plant in the field. To further analyze the differences in behavior, the 1st–6th instars of two
species at the same developmental stage were selected to compare their feeding positions
on corn leaves. A transparent plastic device containing 1 larva and 30 larvae were used
as a group, with three replicates for each group. A fresh corn leaf of the same size was
added into each device, and the initial larval feeding positions on the corn leaves were
recorded to judge whether they start eating from the leaf surface or along the edge of the
leaf. To analyze the feeding behavior of older instars, larvae were reared on corn leaves,
which were sellotaped but not tightly attached to the petri dish.

2.3. Morphology of Larval Mandibles

M. separata and S. frugiperda larvae were selected from 1st–6th instars and dissected in
PBS solution. The intact larval mandibles were obtained with scalpels and tweezers under
a stereoscope. The morphology of mandibles was pictured using a Nikon camera system
(SMZ1500/DS-R12, Nikon, Tokyo, Japan) [26], with ten replicates from each larval stage of
the two species.

2.4. Characterizations of Dfd from M. feparata and S. frugiperda

The MsDfd sequence was isolated from our previous transcriptome dataset [27], and
the SfDfd sequence was searched from the NCBI database. The open reading frames (ORFs)
of Dfds were amplified with the templates from the head of 4th instars of two species, using
primers designed by Primer premier 5 (Table S1). PCR amplification conditions were: pre-
denaturation at 98 ◦C for 3 min, 35 cycles of denaturation at 98 ◦C for 10 s, annealing at 56 ◦C
for 15 s, extension at 72 ◦C for 10 s, and a final extension at 72 ◦C for 5 min. PCR products
were confirmed by agarose gel electrophoresis and sequencing. Sequence alignment was
detected with Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/, accessed
on 1 March 2022). The protein structure and modeling were predicted online by SWISS-
MODEL (https://swissmodel.expasy.org/, accessed on 1 March 2022), and the conserved
regions were labeled by PyMOL (The PyMOL Molecular Graphics System, Version 2.0
Schrödinger, LLC., New York, NY, USA). The phylogenetic tree was built with MEGA
7.0 [28] using the maximum likelihood (ML) method. Orthologs of Dfd were collected from
different insect species from the NCBI database (Table S2). The branch support of the tree
was estimated with ultrafast bootstrapping testing with 1000 replicates.

2.5. Spatiotemporal Expression Patterns of MsDfd and SfDfd

Expressions of Dfds were compared in different tissues, at different developmental
stages, and among the mandibles of 3rd–6th instars of two species, respectively, with
three biological replicates for each sample. Different tissues were dissected from 4th in-
stars, including integuments, midguts, Malpighian tubules, fat bodies, ventral nerve cords,
brains, and mandibles. Eggs, 1st–6th instar larvae, pupae, and male and female adults at
the first day of each stage were collected with three replicates. The RNAs of mandibles
were extracted using SPARKeasy Tissue/Cell RNA Rapid Extraction Kit (SparkJade, Ji-
nan, China) and the RNAs of other samples were extracted with Trizol reagent (Thermo
Fisher Scientific, San Jose, CA, USA). RNA quality was checked with a Nanodrop ND-1000
spectrophotometer (DeNovix, Wilmington, DE, USA) and confirmed by agarose gel elec-
trophoresis. First-strand cDNA was synthesized with PrimeScript™ RT reagent Kit with
gDNA Eraser (Perfect Real Time, Takara, Dalian, China) according to the manufacturer’s
protocol. Real-time quantitative PCR (RT-qPCR) assay was performed in a Bio-Rad iCycler
iQ Real-time Detection System (Bio-Rad, Hercules, CA, USA) using TB Green Premix Ex
Taq II (Tli RNaseH Plus, Takara) following the manufacturer’s manual. The conditions
for RT-qPCR reactions were: 95 ◦C for 2 min, 40 cycles of 95 ◦C for 15 s and 60 ◦C for 30 s,
with a dissociation curve range from 60 to 95 ◦C at the end. The internal reference genes

https://www.ebi.ac.uk/Tools/msa/clustalo/
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of M. separata and S. frugiperda were ribosomal protein 49 (rp49) and Ribosomal Protein L18
(RPL18), respectively.

2.6. Function of Dfd in M. separata and S. frugiperda

Fragments of MsDfd, SfDfd, and GFP were amplified by PCR using primers designed by
Primer premier 5, containing the T7 RNA polymerase promoter (Table S1). Fragments were
sequenced and used to synthesize dsRNA using a T7 RiboMAX Express Large-Scale RNA
Production System kit (Promega, Beijing, China). dsRNA of GFP, MsDfd, and SfDfd was
diluted to 1000 ng/µL, and was injected into the 3rd instar larvae through the IM-31
microinjection system (Narishige, Tokyo, Japan). Each larva was injected with 2 µL of
dsRNA, with 30 larvae for each gene. Injected larvae were reared on an artificial diet
individually. The knockdown efficiency of MsDfd and SfDfd was determined using RT-
qPCR with three randomly collected larvae from each of the dsGFP- and dsDfd-injected
groups at 24 h post injection, with three biological replicates, respectively. The phenotypes
of mandibles and crochets were observed and photographed, and larval feeding behaviors
on corn leaves were compared. Moreover, dsRNA was diluted to 200 ng/µL and sprayed
onto corn leaves. Thirty newly hatched larvae were fed on pre-treated corn leaves, with
three replicates for each treatment. Larvae fed on dsGFP-treated leaves were used as
the control. Morphology and survival were recorded every 24 h after feeding dsRNA-
treated leaves.

2.7. Data Analysis

The SPSS 22.0 software was used to perform all statistical analyses. The difference in
spatiotemporal expression of Dfd was analyzed by one-way analysis of variance (ANOVA),
followed by Duncan’s test with p < 0.05. RNAi silencing efficiency and mortalities of larvae
fed on dsRNA were tested by independent-samples t test with p < 0.05. GraphPad Prism 8
software was used for graphing.

3. Results
3.1. Different Feeding Behavior between M. separata and S. frugiperda Larvae

During the vegetative growth stages of maize in the field, new first instars of M.
separata and S. frugiperda feed on the leaf surface and then move to whorls. Second to
third instars of both pests prefer feeding in whorls. By contrast, fourth to sixth instars
of M. separata move out of the whorl and feed from the leaf edge, but older instars of
S. frugiperda still feed in the whorl (Figure 1A,B). To analyze why M. separata older instar
larvae like feeding from the leaf edge, their abilities of biting and boring leaves were tested.
The results showed that first to second instars of both M. separata and S. frugiperda tended to
feed from the leaf surface, not from the edge, forming a window-like damage (Figure 1C,D).
The feeding behavior of third instars began to differ between the two species. Most of
the third to fourth instar M. separata started feeding from the leaf edge, while most of the
third to fourth instar S. frugiperda fed from the leaf surface. Interestingly, there were still
some fifth to sixth instar S. frugiperda that fed from the leaf surface; however, all fifth to
sixth instar M. separata could only feed from the leaf edge (Figure 1E,F). To identify the
disability of older instar M. separata feeding from the leaf surface, sixth-instar larvae were
reared on corn leaves which were placed inside on the petri dish. The results showed
that sixth-instar S. frugiperda fed from the surface, forming a hole in the leaf; however,
sixth-instar M. separata could not bore the leaf to form a hole (Figure 1G). Therefore, all
instars of S. frugiperda larvae could feed from the leaf surface, while fifth to sixth instar
larvae of M. separata could only feed along the leaf edge.
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feeding for 1st–2nd instar and edge- and window-feeding for 3rd–6th instar larvae (D). Percentages 
of different feeding patterns of 1st–6th instar oriental armyworm (E) and fall armyworm (F) on 
maize leaves. (G) Window-feeding abilities of two armyworm species with larvae reared on maize 
leaves sellotaped on the petri dish. 
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of M. separata, the mandible bears no teeth but a semi-circular blade and becomes more 
robust (Figure 2A). By contrast, first to sixth instar S. frugiperda have “toothed shape” 
mandibles with four distinct sharp incisor lobes on the distal edge (Figure 2B). 

Figure 1. Feeding behaviors of two armyworm species. Feeding patterns of 1st–6th instar oriental
armyworm (A) and fall armyworm (B) in maize in the field. Feeding patterns of 1st–6th instar oriental
armyworm on maize leaves, with two leaves representing window-feeding for 1st–2nd instar, edge-
and window-feeding for 3rd–4th instar, and edge-feeding for 5th–6th instar larvae (C). Feeding pat-
terns of 1st–6th instar fall armyworm on maize leaves, with two leaves representing window-feeding
for 1st–2nd instar and edge- and window-feeding for 3rd–6th instar larvae (D). Percentages of dif-
ferent feeding patterns of 1st–6th instar oriental armyworm (E) and fall armyworm (F) on maize
leaves. (G) Window-feeding abilities of two armyworm species with larvae reared on maize leaves
sellotaped on the petri dish.

3.2. Morphological Differences between M. separata and S. frugiperda Larval Mandibles

Both M. separata and S. frugiperda larvae have chewing mouthparts with well-developed
mandibles. First to third instar M. separata have four sharp teeth on the mandible, but
fourth to fifth instars have only three or fewer teeth on the mandible. In the last instar of
M. separata, the mandible bears no teeth but a semi-circular blade and becomes more robust
(Figure 2A). By contrast, first to sixth instar S. frugiperda have “toothed shape” mandibles
with four distinct sharp incisor lobes on the distal edge (Figure 2B).

3.3. Characterizations and Expressions of MsDfd and SfDfd

Dfd genes were identified and cloned from M. separata and S. frugiperda, both with an
ORF of 1185 bp. The protein sequence alignment showed that MsDfd and SfDfd contained
the homeobox domain and shared 98.7% similarities with each other (Figure 3A), having
similar predicted protein structures (Figure 3B,C). Phylogenetic analysis showed that
MsDfd and SfDfd were clustered into same branch, closely related to other Lepidopteran
Dfds (Figure 3D).

RT-qPCR results showed that the expression level of MsDfd was significantly higher in
the head, ventral nerve cord, brain, and mandible than in the other tissues of fourth-instar
M. separata (p < 0.05) (Figure 4A). MsDfd was highly expressed in eggs/embryos (Figure 4B).
Among third to sixth instar larval mandibles, the expression level of MsDfd was significantly
higher in the third instar than fourth to sixth instars (p < 0.05, Figure 4C). By contrast, SfDfd
was highly expressed in the head, but low in the mandible in fourth-instar S. frugiperda
(Figure 4D). SfDfd was highly expressed in eggs/embryos (Figure 4E), and had similar
expression levels among third-, fifth-, and sixth-instar larvae (Figure 4F).
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Figure 3. Characterizations of MsDfd and SfDfd. (A) YPWM motif and homeobox domain of MsDfd
and SfDfd. Predicted protein structures of MsDfd (B) and SfDfd (C). (D) Phylogenetic tree of Dfds.
Dfds marked with a red dot are MsDfd and SfDfd. The phylogenetic tree was built using MEGA 7
with the maximum-likelihood method. Red line represents Dfds from Coleopteran insects and blue
line represents Dfds of insects from other orders.
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Figure 4. Spatiotemporal expression patterns of MsDfd and SfDfd. (A) MsDfd in different tissues
of 4th-instar M. separata. (B) Levels of MsDfd during different developmental stages of M. separata.
(C) Expression of MsDfd among mandibles of 3rd–6th instar M. separata. (D) SfDfd in different tissues
of 4th-instar S. frugiperda. (E) Levels of SfDfd during different developmental stages of S. frugiperda.
(F) Expression of SfDfd among mandibles of 3rd–6th instar S. frugiperda. The 2−∆Ct method was used
to calculate the relative gene expression. Three biological replicates were performed for each group.
The bars with different colors and different numbers on the columns represent significantly different
levels of gene expression (p < 0.05, Duncan’s multiple range test).

3.4. Functions of Dfds in Mandible Development and Larval Feeding

RNAi of Dfds was performed with dsRNA-microinjection for third-instar larvae. As a
result, both MsDfd and SfDfd were knocked down in third-instar larvae after injecting
dsRNA, with a 43% and 75% decrease at 24 h, respectively (Figure 5A,B). The results
showed that fourth-instar larvae molted from dsMsDfd-injected third-instar M. separata
had shorter, thinner and flatter mandibles than controls injected with dsGFP (Figure 5C),
while dsSfDfd-injected S. frugiperda larvae showed no abnormal mandibles (Figure 5D).
For dsMsDfd-injected larvae, it was difficult to feed on the leaf surface to form window
damage (Figure 5E), but dsSfDfd-injected larvae could feed from the leaf surface to form a
hole as controls (Figure 5F). Moreover, the effects of dsRNA feeding on newly first instar
larvae were compared between these two species. Interestingly, M. separata larvae had
higher mortalities after feeding with dsMsDfd than controls fed dsGFP for 24, 48, and 72 h,
respectively (Figure 5G), while the mortality of S. frugiperda larvae was similar to that of
control groups (Figure 5H).
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4. Discussions

M. separata and S. frugiperda, which show different feeding behaviors in the field, are
two major pests in maize worldwide. Their feeding patterns were compared in maize
seedlings in this study. Our results ascertained that older instar M. separata fed from leaf
edges while older instar S. frugiperda larvae preferred feeding on whorls and could chew
holes as early instars of both species. M. separata is similar to the armyworm, P. unipuncta,
whose early instars perform window-feeding and older instars perform edge-feeding [13].

Compared to S. frugiperda, larval mandibles of M. separata exhibited marked onto-
genetic changes. The mandibular incisor lobes of M. separata larvae began to disappear
at the fourth instar, with incisor lobes becoming short and smooth, and even absent and
“blade-bearing type” in the last instar, which is similar to M. sequax, Rabtala cristata and
some notodontid larvae [29–31]. Different to the armyworm, P. unipuncta, with dentate
mandibles for first to third instars and chisel-like mandibles for fourth to sixth instars,
fourth to fifth instars of M. separata still have dentate mandibles [13]. In noctuid larvae,
the mandibular incisor lobes are generally considered to be for biting and severing, and
the change in lobes will produce a functional alteration in how the larvae cut the plant
tissues. A sharp-toothed mandible is effective for newly hatched first instars to feed on
the relatively soft mesophyll tissue between the veins, forming “windowpane” feeding
damage. The feeding pattern of the fifth to sixth instars of M. separata is “snipping type”,
cutting from the edge of leaves. The blade-bearing type of mandible could provide a
biomechanically considerable bite force strength to deal with even tough leaves [29].

Ontogenetic changes in mandibles were correlated with feeding patterns. Caterpillar mandibles
are renewed during molting to provide potentially different feeding strategies during
their growth and development. First instars and early second instars are too small and
weak to bite through the leaf margin, but the dentate mandibles make them suited to
window-feeding despite being unable to sever leaf veins. The dentate mandibles of third to
sixthinstars of S. frugiperda are suited to window- and edge-feeding, and their larvae prefer
whorls and bore maize seedlings. By contrast, with no incisor lobes, older instar M. separata
with chisel-like edges on mandibles are suited to snipping leaf edges, contributing to their
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edge-feeding in the field. Morphological variation in functional structures, such as the
mandible, can affect the herbivory interaction with crops and indicate an adaptability of
the pest to expand and colonize new regions with the consequent economic losses [10].
The relationship between morphology and ecology could provide helpful insights into the
expression of the environment–phenotype–genotype interaction.

Dfd is critical for the formation and maintenance of the feeding unit required for feeding
behavior [32,33]. In strong Dfd¯ phenotypes of Drosophila larvae, which have a cephalopha-
ryngeal skeleton, the mouth hooks and H-piece were missing [34,35]. Dfd contributed to
the development of insect mandibles. Dfd genes were identified from M. separata and
S. frugiperda in this study, and two Dfds were extremely similar in their sequences, con-
taining the YPKM motif and homeodomain [36]. MsDfd and SfDfd were expressed highly
in the larval head, which is similar to Dfd in silkworm (SilkDB 3.0) and fruit fly (Fly-
Base). MsDfd had high expression levels in mandibles, such as NtDfd in mouthparts in
Nasutitermes takasagonesis, indicating its function in the development of mandibles [37,38].
From the phenotypes produced by RNAi, MsDfd was inferred as the sole gene responsible
for mandibular identity in M. separata, with the depletion of Dfd producing malformed
mandibles without sharp incisor lobes, which was consistent with its high expression in
larval mandibles. Dfd could inhibit mandibular regression, probably resulting from the
decrease in dead cells [37]. The expression levels of MsDfd dramatically decreased from
the fourth instar, accompanied by ontogenetic changes in mandibles from the fourth instar.
Thus, Dfd is necessary for proper mandibular incisor lobe development in M. separata.
It is reported that Dfd regulated downstream genes and was regulated by upstream genes
to perform specific functions in insects [39]. However, Dfd-regulated downstream genes,
which control the development of mandibles, especially their incisor lobes, need to be
identified in further studies. Moreover, the different expression patterns and functions of
Dfd in S. frugiperda probably result from the diversity in the transcriptional regulation of
Dfd and its regulated downstream genes.

In conclusion, this study showed that the oriental armyworm and fall armyworm dam-
age maize differentially, having different feeding patterns in maize in the field. The anatomy
of larval mouthparts showed that ontogenetic changes in mandibles are associated with
an alteration in feeding behavior. Moreover, Dfd mediated the larval mandibular incisor
lobe morphology, affecting its feeding patterns in M. separata. These results will broaden
our knowledge of Dfd function in incisor lobe development in insects and provide novel
insights into insect feeding behavior, guiding the scientific usage of pesticides in the field.
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