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Abstract

We explored the potential of using real-time fMRI (rt-fMRI) neurofeedback training to bias 

interpretations of naturalistic narrative stimuli. Participants were randomly assigned to one of 

two possible conditions, each corresponding to a different interpretation of an ambiguous spoken 

story. While participants listened to the story in the scanner, neurofeedback was used to reward 

neural activity corresponding to the assigned interpretation. After scanning, final interpretations 

were assessed. While neurofeedback did not change story interpretations on average, participants 

with higher levels of decoding accuracy during the neurofeedback procedure were more likely to 

adopt the assigned interpretation; additional control conditions are needed to establish the role of 

individualized feedback in driving this result. While naturalistic stimuli introduce a unique set of 

challenges in providing effective and individualized neurofeedback, we believe that this technique 

holds promise for individualized cognitive therapy.
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1. Introduction

Compared to healthy participants, depressed participants are more likely to negatively 

interpret ambiguous scenarios, especially those that contain self-referential prompts 

(Everaert et al., 2017). Past research has associated increased depression severity with the 

persistence of these negative interpretations even after learning that the scenarios ended 

positively (Everaert et al., 2018). To reduce this negative bias and encourage positive 

interpretations, researchers have used Cognitive Bias Modification for Interpretation (CBM-

I) training (Mathews and Mackintosh, 2000). During positive CBM-I training, depressed 
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participants are shown scenarios that differ in interpretation depending on the final word, 

e.g., The new people you meet will find you (boring/friendly). During training, the final 

word is revealed to disambiguate the meaning (e.g., friendly) so that participants become 

more likely to expect the positive outcome (Joormann et al., 2015). A meta-analysis 

collapsing across anxious and depressed individuals found that CBM-I training more 

effectively reduced negative biases than Attention Bias Modification (ABM) training, which 

involves training participants to direct their attention away from negatively valenced pictures 

(Hallion and Ruscio, 2011). One explanation for the increased efficacy is that CBM-I 

training uses self-relevant stimuli that are inherently more realistic and relatable than the 

negative faces or isolated words used in ABM training.

As with other training paradigms, however, results are mixed in regards to whether CBM-I 

training actually improves depressive symptoms (Jones and Sharpe, 2017). One explanation 

for the mixed clinical results is that the training uses a one-size-fits-all approach. In other 

words, all participants are trained in the same way, regardless of variability in symptoms, 

momentary lapses in attention, effort, or belief in one of the interpretations. This raises the 

prospect that better results could be obtained using individualized training methods with 

more realistic stimuli. Specifically, given that different interpretations of complex narrative 

and social scenarios yield different neural responses (Yeshurun et al., 2017), it might be 

possible to use real-time neuroimaging to track how well participants are adopting the 

desired interpretation, and to provide feedback to bias them toward the desired interpretation 

(for recent reviews of real-time fMRI neurofeedback, see Stoeckel et al., 2014; Sitaram 

et al., 2017; Thibault et al., 2018; Watanabe et al., 2017; Hampson, 2021; Taschereau-

Dumouchel et al., 2022).

Before trying this in a clinical setting, we need to demonstrate that it is possible to decode 

interpretations in real time, and that feedback based on this decoded interpretation is 

effective in shaping participants’ interpretations. The present study takes some initial steps 

toward this goal, by assessing whether it is possible to nudge participants’ interpretation of 

an ambiguous narrative using real-time fMRI (rt-fMRI) neurofeedback.

Here, we build on prior work demonstrating that high-level cortical areas differentiate 

interpretations of an ambiguous social narrative across individuals (Yeshurun et al., 2017; 

Finn et al., 2018; Nguyen et al., 2019). Specifically, we based our experiment on a 

prior study showing that neural responses to an ambiguous 12-min spoken narrative vary 

depending on how the story is interpreted (Yeshurun et al., 2017). In this study, Yeshurun 

et al. (2017) explicitly instructed participants to adopt one of two different interpretations 

before listening to the story in the fMRI scanner – in one interpretation, the main character’s 

wife is cheating on him, and in the other interpretation, the main character is just being 

paranoid (see Stimulus section below). This manipulation ensured that the two groups of 

participants would interpret the story in different ways, allowing the authors to measure 

neural signatures of the interpretations shared within each group. The authors successfully 

identified neural regions that accurately predicted the assigned interpretation in held-out 

participants. Within these regions, the parts of the story that varied most in meaning based 

on the two interpretations were more likely to yield higher neural classification accuracy.
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In the current study, we pre-trained a classifier using the data from Yeshurun et al. (2017) 

to decode which interpretation participants were adopting; the data from Yeshurun et 

al. (2017) are openly available as part of the Narratives dataset released by Nastase et 

al. (2021). Crucially, instead of explicitly instructing participants to adopt a particular 

interpretation, we randomly assigned participants to an interpretation condition (without 

telling them which condition they were assigned to) and attempted to nudge them towards 

the assigned interpretation using neurofeedback. Specifically, while real-time participants 

listened to the same story in the fMRI scanner, we used the pre-trained classifier to 

decode which interpretation the participant was most likely thinking about in a given 

moment, and then provided intermittent neurofeedback to push the participants toward 

their assigned interpretations – participants were rewarded when the classifier’s estimate of 

their interpretation of the story matched the participant’s randomly assigned interpretation 

condition.

After listening to the story, participants answered questions to assess if neurofeedback 

successfully biased story interpretations. Thus, the critical comparison was between each 

participant’s actual interpretation at the end of neurofeedback and the target interpretation 

determined by random group assignment. If neurofeedback was successful, participants in 

each of the assigned groups would be more likely to adopt the target interpretation of 

that group, causing interpretations between assigned groups to differ. Note that we chose 

this design to obtain initial proof-of-concept evidence that we would be able to “nudge” 

participants’ interpretations, accepting that additional controls would be needed to establish 

the role of individualized neurofeedback in driving these results (see Discussion). Overall, 

we did not reliably bias participants toward the target interpretations. However, taking 

into account the decoding accuracy of the classifier for each participant, we found that 

participants with the highest decoding accuracy were more likely to choose the target 

interpretation.

2. Methods

2.1. Participants

Twenty-two participants from Princeton University and the surrounding local community 

consented to participate in this study, but 2 participants did not return for their second visit. 

Thus, 20 participants were included in the analysis (12 female, 2 left-handed, mean age = 

20.5 years). Participants received monetary compensation for their participation, including 

an additional bonus based on their neurofeedback performance ($20 maximum). The study 

was approved by Princeton University’s Institutional Review Board.

2.2. Stimuli

All participants listened to a 12-min adapted version of “Pretty Mouth and Green My Eyes” 

by J. D. Salinger, read by a professional actor. The same recording was used in Yeshurun et 

al. (2017). The audio stimulus began with 18 s of music and ended in silence; see Yeshurun 

et al. (2017) for further details about the stimulus. The audio stimulus is openly available as 

part of the Narratives dataset (Nastase et al., 2021).
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The story begins when the character Arthur calls his friend, Lee, after returning home late 

at night without his wife, Joanie. Arthur is concerned about Joanie’s whereabouts. Lee 

is at home in bed with a woman, although the narrator purposefully leaves her identity 

ambiguous. Yeshurun et al. (2017) created two interpretation groups by briefing participants 

on this woman’s identity before they heard the story. The two interpretation groups were:

1. Cheating: Joanie is the woman in Lee’s bed. In this case, Joanie is cheating on 

her husband, Arthur, with Lee.

2. Paranoid: Lee’s girlfriend, Rose, is the woman in Lee’s bed. In this case, Arthur 

is paranoid that Joanie is cheating on him and is bothering Lee late at night.

2.3. Procedure

On the first visit (Visit 1), participants consented to the experiment and underwent initial 

structural and functional scans for image registration. Because our pre-trained classifier was 

trained in standard MNI space, registering each participant’s brain to MNI space before 

Visit 2 allowed us to apply the classifier in real-time. For registration details, see Methods, 

Sections 2.4.1 and 2.4.2.

On the second visit (at least one day later, mean delay = 4.6 days), participants returned 

to complete 4 runs of neurofeedback training (one participant only completed 2 runs 

due to technical problems). Before training began, participants were randomly assigned 

in a double-blind fashion into either the cheating or paranoid interpretation group. Group 

assignment was performed via a Python script that saved the assignment as a text file 

to be used later during neurofeedback. This way, both the experimenter and participant 

were blind to group assignment. Of the 20 participants, 10 were randomly assigned to the 

cheating group and 10 were randomly assigned to the paranoid group. Importantly, the 

assigned interpretation group for a particular participant was the same across all 4 runs of 

neurofeedback training (i.e., if a participant was assigned to the cheating group for the first 

run, they were also in the cheating group for runs 2, 3, and 4).

As noted above, we did not tell participants which interpretation to take at the onset of the 

experiment. Instead, we informed them of the two possible interpretations and that both 

were equally likely (meaning that there was no ground truth or correct interpretation). Thus, 

they would have to use neurofeedback to determine which was the correct interpretation for 

them.

While participants listened to the story, we used a visual stimulus to present neurofeedback 

(Fig. 1). For most of the story, participants viewed a gray rectangle, indicating that they 

should simply continue listening. Four seconds prior to a specific period in the story when 

we would analyze brain activity (which we refer to as a station), participants indicated which 

interpretive “lens” (cheating or paranoid) they were going to adopt for the upcoming station. 

Participants were free to choose either interpretation at any time, as long as they were trying 

to maximize their scores. Participants pressed their index or middle fingers to indicate their 

choice of either the cheating or paranoid interpretation (left/right position of choices was 

counterbalanced across participants).
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Two seconds after the probe, the station began. During these stations, the rectangle turned 

red to signal that brain activity was being recorded. We did this so that participants were 

aware of when we were analyzing their brain activity. We explicitly marked stations to help 

participants determine which thoughts led to higher rewards, in hopes of decreasing the 

credit-assignment problem inherent in the delayed rt-fMRI signal (Oblak et al., 2017); see 

Appendix A.3 for details on how we chose the stations. To account for hemodynamic lag, 

the BOLD data that we analyzed for each station were shifted by 3 TRs (4.5 s) from the 

actual TRs when the “station recording signal” was on screen.

After each station, the data were preprocessed and the pre-trained model was used to 

decode the participant’s interpretation at that station. The rectangle then displayed the 

neurofeedback score; a horizontal line through the center indicated the threshold to earn 

any extra money and the filled area corresponded to the score. If participants scored above 

threshold, the score was shown in green with the monetary reward underneath. Otherwise, 

the score was shown in gray with $0.00 below the rectangle. Prior work has argued that 

intermittent feedback of this kind is more effective than continuous feedback (Johnson et 

al., 2012; Emmert et al., 2017; Hellrung et al., 2018). Because of the aforementioned 3-TR 

hemodynamic shift, plus one TR of time for data analysis, participants typically had to wait 

4 TRs (6 s) for the feedback display to appear after the end of the station (see Appendix B 

for more details regarding feedback timing).

To assess the final interpretations after all runs, participants answered the same questions 

from Yeshurun et al. (2017). The 39 questions contained 27 comprehension questions 

(e.g., What was the girl doing when the phone rang?) and 12 questions that directly 

probed interpretation (e.g., Did you think Joanie was cheating on Arthur?). Additionally, 

participants provided numerical ratings (spanning 1–5) indicating their opinions on various 

topics, such as how much they empathized with the characters, enjoyed the story, thought 

neurofeedback helped, etc. Lastly, participants completed a survey to assess perception and 

strategies.

Note: We emphasized the following in our instructions before scanning began, to make sure 

that participants were attending to neurofeedback throughout the entire experiment:

• The story was written to be purposefully ambiguous, instead of there being one 

true interpretation.

• You should try to interpret the story based on your neurofeedback, not what you 

think was intended by the author.

• Even if you think that the correct interpretation was revealed in the 

story, characters might be lying. Keep using neurofeedback to guide your 

interpretations.

• The neurofeedback scores reflect how clearly and correctly your brain is 

interpreting the story. Low scores can indicate either (1) noisy signals (e.g., poor 

focus) and/or (2) incorrect interpretations.
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• The neurofeedback score only represents the neural information recorded during 

the station. We keep track of your responses to the probes for analysis purposes, 

but the neurofeedback score you see is only based on your brain activity.

Although strategic instructions of this sort are not necessary for neurofeedback-induced 

learning (e.g. Shibata et al., 2011; Linden et al., 2012), we hoped that providing participants 

with explicit guidance would improve their performance (Scharnowski et al., 2015; 

Pamplona et al., 2020). The full set of instructions used in the experiment is included in 

Appendix D, Fig. 16.

After scanning, participants completed a questionnaire and survey. Fig. 1 illustrates the full 

experimental design and the neurofeedback stimuli.

2.4. Data acquisition

All scanning data were acquired with a 3T MRI scanner (Siemens Skyra) and a 64-

channel head coil. Sequences were matched to Yeshurun et al. (2017) as closely as 

possible. Both scanning sessions began with a Siemens scout scan for automated slice 

alignment to the ACPC axis. On Visit 1 only, we collected a high-resolution, T1-weighted 

magnetization-prepared rapid acquisition gradient-echo (MPRAGE) anatomical scan to 

facilitate normalizing each participant’s functional data to standard space: repetition time 

(TR) = 2300 ms, TE = 3.08 ms, flip angle = 9°, resolution = 0.86 × 0.86 × 0.9 mm3, FOV = 

220 mm2.

We ran functional scans on Visit 1 for registration purposes only (i.e., without presenting 

stimuli); and we ran functional scans for the experiment during Visit 2. All functional scans 

used a T2*-weighted echo-planar imaging sequence: 1.5 s TR, 28 ms echo time, flip angle = 

64°, 3 × 3 × 4 mm3 voxel size, 64 × 64 matrix, 192 × 192 mm2 field of view, 27 slices, no 

gap between slices, interleaved slice acquisition.

No fieldmap scans were collected, as we were trying to best match the real-time data to the 

data used to estimate the pre-trained model. As the data from Yeshurun et al. (2017) did 

not include fieldmap scans, we omitted real-time susceptibility distortion correction in this 

experiment.

2.4.1. Offline image registration—The following sections describe how we registered 

each participant to MNI space after the Visit 1 scans, in preparation for Visit 2. We 

used fMRIPprep 1.2.3 (Esteban et al., 2019; Esteban et al., 2018; RRID: SCR_016216), 

which is based on Nipype 1.1.6-dev (Gorgolewski et al., 2011; Gorgolewski et al., 

2018; RRID:SCR_002502). The following description of preprocessing was generated with 

fMRIPrep.

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) 

using N4BiasFieldCorrection (ANTs 2.2.0; Tustison et al., 2010), and used as T1w-

reference throughout the workflow. The T1w-reference was then skull-stripped using 

antsBrainExtraction.sh (ANTs 2.2.0), using OASIS as target template. Brain surfaces were 

reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale et al., 1999), 

and the brain mask estimated previously was refined with a custom variation of the 
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method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical 

gray-matter of Mind-boggle (RRID:SCR_002438, Klein et al., 2017). Spatial normalization 

to the ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009, 

RRID:SCR_008796) was performed through nonlinear registration with antsRegistration 

(ANTs 2.2.0, RRID:SCR_004757, Avants et al., 2008), using brain-extracted versions of 

both T1w volume and template. Brain tissue segmentation of CSF, WM and GM was 

performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID: SCR_002823, Zhang et 

al., 2001).

For the BOLD run collected during Visit 1, the following registration processing was 

performed. First, a reference volume and its skull-stripped version were generated using 

a custom methodology of fMRIPrep. The BOLD reference was then co-registered to the 

T1w reference using bbregister (FreeSurfer) which implements boundary-based registration 

(Greve and Fischl, 2009). Co-registration was configured with nine degrees of freedom to 

account for distortions remaining in the BOLD reference. Head-motion parameters with 

respect to the BOLD reference (transformation matrices, and six corresponding rotation 

and translation parameters) were estimated before any spatiotemporal filtering using mcflirt 

(FSL 5.0.9, Jenkinson et al., 2002). The BOLD time series was resampled onto the original, 

native space by applying a single, composite transform to correct for head-motion. The 

BOLD time series was then resampled to MNI152NLin2009cAsym standard space. First, a 

reference volume and its skull-stripped version were generated using a custom methodology 

of fMRIPrep. All resamplings were performed with a single interpolation step by composing 

all the pertinent transformations (i.e. head-motion transform matrices and co-registrations 

to anatomical and template spaces). Gridded (volumetric) resamplings were performed 

using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the 

smoothing effects of other kernels (Lanczos, 1964).

Many internal operations of fMRIPrep use Nilearn 0.4.2 (Abraham et al., 2014, 

RRID:SCR_001362), mostly within the functional processing workflow. For more details 

of the pipeline, see the section corresponding to workflows in fMRIPrep’s documentation.

2.4.2. Real-time image registration and processing—As BOLD data arrived from 

the scanner, the data were transferred as bytes to a secure cloud server, where all subsequent 

processing steps were performed. The data were returned to the local Linux machine as 

a .txt file containing the final neurofeedback score to be displayed. Real-time processing was 

handled using the RT-Cloud software package (Kumar et al., 2021; Wallace et al., 2022); see 

Appendix B for full details on the cloud setup.

BOLD data were acquired in the participant’s native space, but the pre-trained model was 

in standard MNI space. Therefore, we had to transform each incoming BOLD volume to 

MNI space in real-time. To do this, we combined Visit 1’s previously calculated registration 

steps from fMRIPrep with real-time registration of each new BOLD volume. In real-time, 

we used mcflirt (FSL 5.0.9, Jenkinson et al., 2002) to register each incoming BOLD volume 

with the example functional image acquired on Visit 1. We combined this transformation 

matrix with the two transformation matrices calculated previously with fMRIPrep: (1) the 

transformation from functional → T1w space, and (2) the transformation from T1w space 

Mennen et al. Page 7

Neuroimage Rep. Author manuscript; available in PMC 2022 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



→ MNI space. All transformations were concatenated and performed in a single step using 

antsApplyTransforms (Avants et al., 2008). Details of this pipeline performed on the cloud 

server are shown in Table 2 in Appendix B.

2.5. Classification

We used 7 pre-trained logistic regression classifiers (scikit-learn solver = ‘lbfgs’, C = 

1), corresponding to the 7 stations. Classifiers targeted regions of interest comprising the 

theory of mind (ToM) network and default mode network (DMN) based on interpretation-

specific neural responses observed in these regions by Yeshurun et al. (2017), and prior 

work suggesting that these regions are effective targets for neurofeedback (Zhang et al., 

2012; Harmelech et al., 2015; Skouras and Scharnowski, 2019; Pamplona et al., 2020). 

As noted above, the classifiers were trained on previously-collected data from Yeshurun et 

al. (2017); see Appendix A for details on classifier construction. Each classifier estimated 

p(c), the probability that the participant was interpreting the story in line with the cheating 

interpretation (the probability of the paranoid interpretation was 1 − p(c)). We generated this 

probability estimate using scikit-learn’s predict_proba function (Pedregosa et al., 2011). For 

more detailed information on how we optimized the classifier design, see Appendix A.

To convert this prediction to the neurofeedback score delivered to the participant, we 

normalized p(c) based on pilot data. We learned from the pilot experiment (Appendix C) 

that – in our paradigm, where participants are allowed to form their own interpretations, 

as opposed to being explicitly told which interpretation to use as in Yeshurun et al. (2017) 

— the mean p(c) values varied considerably across stations, such that many stations were 

strongly biased toward particular interpretations (regardless of group assignment). To control 

for these biases, we decided to provide neurofeedback based on participants’ deviation 

from the “average neural interpretation trajectory” (where this “average neural interpretation 

trajectory” was computed by collapsing results across the two conditions in the pilot study), 

rather than providing neurofeedback based on whether participants’ decoded interpretation 

matched the assigned interpretation at a particular moment. That is, at a moment when 

the narrative leans toward the paranoid interpretation on average, we rewarded participants 

in the cheating group if their interpretation was closer to cheating than the average, even 

if (in absolute terms) their interpretation was closer to paranoid than to cheating. This 

kind of neurofeedback can be viewed as “nudging” individual trajectories off the default 

stimulus-driven path.

Specifically, for each participant, at a given station st, we applied the following formula to 

transform p(c) to a neurofeedback score:

scorec =
p(c)st − μst

3σst
+ .5

where μst and σst were the mean and standard deviation, respectively, of p(c) for that station, 

from all participants and runs in the pilot experiment. We included a scaling factor of 3 so 

that the z-scored differences would range roughly between [−0.5,0.5]. Thus, by adding 0.5 to 
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this ratio, we could set the range to be [0,1]. In case scores were much larger or much lower 

than station means, we added the thresholds:

scorec =
0, if scorec < 0
1, if scorec > 1

Next, we generated a score based on group assignment with:

scorefinal =
scorec, if assigned group = cℎeating
1 − scorec, if assigned group = paranoid

In this framework, participants received a neurofeedback score of .5 if their p(c) was equal 

to the mean across participants in the pilot experiment. To earn a reward, participants had 

to score above the station’s mean in the assigned direction. To enforce this constraint, 

neurofeedback scores ≤ .5 were converted to 0 values:

scorereward =
scorefinal, if scorefinal > .5
0, if scorefinal ≤ .5

In the results that follow, when reporting neurofeedback scores, we report this final value 

where scores ≤ 0.5 were converted to 0, since this corresponds to the actual rewards received 

by participants.

2.6. Story comprehension and interpretation scores

Participants answered 39 story questions: 27 general comprehension-based questions and 

12 interpretation-specific questions (Yeshurun et al., 2017). We did not analyze one of the 

interpretation-specific questions that asked for Lee’s girlfriend’s name, since we informed 

participants that Lee had a girlfriend named Rose prior to the experiment. All participants 

answered this question correctly, regardless of their interpretation.

To score the interpretation-specific questions, we assigned a +1 score to each answer 

corresponding to the cheating interpretation, and a −1 score to each answer corresponding 

to the paranoid interpretation. To calculate a final score, we totaled all interpretation-specific 

scores and divided by the total number of questions. Thus, a +1 indicates answering 

all questions consistent with a cheating interpretation, and a −1 indicates answering all 

questions consistent with a paranoid interpretation.

To collapse across assigned groups and compare “correctness” of final interpretations (i.e., 

consistency with group assignment), we transformed the interpretation-specific scores by 

multiplying the scores for participants assigned to the paranoid group by −1. After this 

transformation, a +1 score indicates answering all questions consistently with one’s group 

assignment (correct), and a −1 score indicates answering all questions inconsistently with 

one’s group assignment (incorrect). When we use these transformed scores in the analyses 

below, we refer to them as “correct interpretation” scores.
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2.7. Empathy ratings

After answering the story questions, participants rated how much they empathized with 

Arthur, Lee, Joanie, and “the girl” (the mysterious woman in Lee’s bed). We expected 

those who favored the cheating interpretation to empathize with Arthur, and not with Lee 

and Joanie. Likewise, we expected those who believed the paranoid interpretation to feel 

more empathy for Lee and Joanie, instead of Arthur. To compute one score that captured 

the empathy bias, we calculated the difference between each participant’s empathy ratings 

for Arthur and Lee. Analogously to how we computed “correct interpretation” scores, we 

also computed “correct empathy” scores by multiplying the empathy difference for all 

participants assigned to the paranoid group by −1. Thus, positive “correct empathy” scores 

indicate that the participant empathized with Arthur and Lee in a manner that was consistent 

with the assigned interpretation group.

3. Results

3.1. Story comprehension and interpretation scores

Comprehension scores indicated that all participants understood the story (Fig. 2a); there 

was no significant difference between assigned groups (t(18) = 1.41, p = 0.17). Our 

neurofeedback manipulation did not push participants to their assigned interpretation, as 

indicated by the interpretation scores. Fig. 2b shows the interpretation scores by assigned 

group. Neither group showed significant bias toward their assigned interpretation (all p > 

0.20). Further, the groups did not differ in interpretation scores (one-tailed t(18) = −0.062, p 

= 0.48).

3.2. Empathy ratings

The empathy ratings for some of the characters differed by group in the “correct” direction 

of the assigned interpretations. While participants in the cheating group had numerically 

more empathy for Arthur than participants in the paranoid group, this difference was not 

significant (one-tailed t(18) = 1.38, p = 0.093). Additionally, participants in the paranoid 

group had more empathy for Lee than the participants in the cheating group (one-tailed 

t(18) = −1.76, p = 0.048). The difference in empathy for Arthur and Lee was significantly 

different between the assigned groups, with those assigned to the cheating condition having 

more empathy for Arthur than Lee (one-tailed t(18) = 1.84, p = 0.041). Fig. 3 plots the 

empathy ratings by assigned group. Additionally, there was a significant positive correlation 

between the difference in empathy for Arthur and Lee and interpretation scores (Pearson r = 

0.47, p = 0.037), implying that the more participants empathized with Arthur over Lee, the 

more likely they were to endorse the cheating interpretation in response to the interpretation 

questions.

3.3. Neurofeedback scores

If neurofeedback successfully modified neural responses to the story, we would expect 

participants to differ in the neurally-decoded cheating probability based on random group 

assignment. Fig. 4a plots cheating probability p(c) across all stations and runs. Against 

our expectations, participants in the cheating group did not have significantly larger 
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p(c) during any individual runs – in fact, p(c) was numerically smaller for participants 

in the cheating group (compared to the paranoid group) in the fourth run. Similarly, 

participants did not show a significant improvement in neurofeedback scores from run 1 

to run 4 (combining results from both groups, neurofeedback scores numerically decreased 

on average; neurofeedback scores numerically increased for the paranoid group and 

numerically decreased for the cheating group; Fig. 4d). Thus, we were unable to reliably 

push neurofeedback scores, both in terms of p(c) and normalized neurofeedback rewards, in 

the assigned group direction.

3.4. Probe responses

Prior to each station, we probed participants as to which interpretation they were adopting 

for this station. Fig. 5 shows the behavioral probe responses that were chosen, divided by 

assigned interpretation groups. While the average choices numerically diverged between 

groups in the assigned or “correct” direction for each of the runs, none of these run-wise 

differences were significant after correction for multiple comparisons.

3.5. Decoding accuracy

By collecting behavioral probe responses at each station, we were able to measure how 

accurately the classifier was decoding story interpretations in each participant. If 1) a 

participant was truly adopting distinct interpretations when they gave a probe response 

of “cheating” vs. “paranoid”, and 2) the classifier was sensitive to these interpretive 

differences, then we would expect to see higher values of p(c) (i.e., the classifier’s estimate 

of the strength of the cheating interpretation) for stations where participants (behaviorally) 

reported thinking of the cheating interpretation compared to the paranoid interpretation. 

To assess this, for each participant, we separated all classification probabilities by probe 

response. We averaged p(c) over all of the times the participant gave a “cheating” probe 

response and (separately) over all of the times the participant gave a “paranoid” probe 

response. We computed decoding accuracy for each participant by taking the difference 

of the average p(c) value for “cheating” probe responses and the average p(c) value for 

“paranoid” probe responses. Note that low decoding accuracy can have multiple causes 

– the participant might not be adopting distinct interpretations, or the classifier might be 

insensitive (see Discussion) – but high decoding accuracy indicates that, to some degree, the 

participant is adopting distinct interpretations and the classifier is detecting them. Note also 

that the classifier was trained on data from Yeshurun et al. (2017), where participants merely 

listened to the stories and did not give behavioral responses during the scan. As such, there 

is no plausible route for the classifier to be picking up on purely motoric features of the 

behavioral response; rather, the classifier must be picking up on more central (non-motoric) 

differences relating to participants’ interpretations.

On average, decoding accuracy was numerically above zero (i.e., p(c) values were 

numerically larger for stations where participants endorsed the cheating interpretation 

compared to the paranoid interpretation), but this effect was not significant (one-tailed t(19) 

= 1.40, p = 0.088). Results are shown in Fig. 6a. The figure also shows that there was 

considerable variation across participants in the level of decoding accuracy.
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We reasoned that participants with higher decoding accuracy would be receiving higher-

fidelity neurofeedback, and consequently they should show a larger effect of neurofeedback 

on their final interpretation of the story. Consistent with this prediction, there was a 

significant positive relationship between decoding accuracy and correct interpretation scores 

(Pearson r = 0.56, p = 0.010; Fig. 6b).

3.6. Results divided by decoding accuracy

Given that decoding accuracy varied considerably across participants, we assessed if 

the outcomes described above were different in participants with high vs. low decoding 

accuracy. For these analyses, we performed a median split for each assigned interpretation 

group based on decoding accuracy. Thus, 5 participants from the cheating group and 5 

participants from the paranoid group were in the “best decoding” group and 5 from each 

group were in the “worst decoding” group. Next, we recalculated our results within each of 

these new groups. To combine participants who were assigned different interpretations, we 

again adjusted scores so that positive values relate to the assigned interpretation and negative 

values relate to the opposite interpretation.

3.6.1. Story comprehension and interpretation scores—Comprehension scores 

did not vary significantly between decoding accuracy groups (t(18) = −1.41, p = 0.18), 

shown in Fig. 7a. Interpretation scores, however, were significantly higher for the best 

compared to worst decoding accuracy group (one-tailed t(18) = 2.44, p = 0.013), which 

was expected based on the significant positive correlation between decoding accuracy and 

correct interpretation (Fig. 7b). For the 10 participants in the best decoding accuracy group, 

the average score was numerically positive (i.e., correct), but this score was not significantly 

greater than zero (one-tailed t(9) = 1.541, p = 0.079).

3.6.2. Empathy ratings—The difference in empathy for Arthur and Lee did not vary 

significantly depending on decoding accuracy (one-tailed t(18) = 0.77, p = 0.23; Fig. 8). 

Still, participants with the best decoding accuracy had a numerically higher mean (indicating 

empathy scores that fall more in line with the “correct” interpretation) than those with the 

worst decoding accuracy.

3.6.3. Neurofeedback scores—We plotted neurofeedback scores, both in terms of 

prediction probabilities and normalized neurofeedback scores (Fig. 9). Looking at individual 

stations, we only obtained one significant result after Bonferroni correction for multiple 

comparisons across stations: For the final station in the first run, neurofeedback scores were 

higher for participants that had the best decoding accuracy (one-tailed t(18) = 3.40, p = 

0.0016 before correction and p < 0.05 after correction). When averaging over all stations 

within each run, the neurofeedback scores in the fourth run were numerically higher on 

average for participants that had the best decoding accuracy, but this was not significant after 

Bonferroni correction for four tests (one-tailed t(17) = 2.36, p = 0.015 before correction).

3.6.4. Probe responses—As shown in Fig. 10, choosing the correct interpretation 

during probes was closely related to decoding accuracy. For the second-to-last station, 

participants with the best decoding accuracy were significantly more likely than participants 
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with the worst decoding accuracy to choose the correct assigned interpretation in both run 

2 and run 4 (for run 2, one-tailed t(18) = 4.20, p < 0.01 after correction for multiple 

comparisons; for run 4, one-tailed t(15) = 4.97, p < 0.01 after correction for multiple 

comparisons). The participants with the best decoding accuracy were numerically more 

likely on average to choose the correct assigned interpretation for the same station in run 

1, and for the preceding two stations in run 4, but these differences were not significant. 

Note that, across participants, the tendency to choose the assigned interpretation during 

these in-scan probes (averaged across all stations and runs) was positively correlated with 

participants’ tendency to choose the assigned interpretation on the post-scan questionnaire 

(Pearson r = 0.48, p = 0.033).

4. Discussion

In summary, we examined the effect of neurofeedback during a naturalistic spoken story on 

several behavioral and neural measures of narrative interpretation. Behaviorally, we tracked 

participants’ overall story interpretation at the end of neurofeedback, their empathy for the 

different characters at the end of neurofeedback, and also their responses to probes (during 

neurofeedback) about what interpretation they planned to adopt at each station. Neurally, 

we used a classifier (trained on previously-collected data from Yeshurun et al., 2017) to 

track what interpretation participants adopted at each station; we also tracked how much 

reward participants received, which was tied to how strongly their brain activity matched the 

assigned interpretation.

When considering the entire participant group, the effects of neurofeedback were 

fairly weak: Only one of the aforementioned measures (empathy for the characters) 

showed a statistically reliable effect of neurofeedback. The effects of neurofeedback 

were somewhat stronger when we grouped participants based on the station-to-station 

correspondence between their behavioral probe responses and classifier evidence (i.e., 

was the classifier more likely to favor the “cheating” interpretation at a station when 

participants behaviorally responded that they planned to adopt the cheating interpretation 

at that station). This decoding accuracy measure shows how well the classifier performs at 

decoding the interpretation that participants say they are adopting, regardless of whether 

that interpretation is the “correct” (i.e., assigned) interpretation. We found that participants 

who ranked high on this decoding accuracy measure were more likely to show the predicted 

effect of neurofeedback on behavioral interpretation scores. When we did a median split 

based on this measure (dividing participants into “best-decoding” and “worst-decoding” 

groups), the “best-decoding” participants showed a stronger effect of neurofeedback than the 

“worst-decoding” participants on behavioral probe responses for some stations in runs 2 and 

4 (i.e., they were more likely to indicate that they were adopting the assigned interpretation 

for those stations). Also, for the final station in the first run, neurofeedback scores were 

higher for participants that had the best decoding accuracy.

There are two (non-mutually-exclusive) explanations for why neurofeedback effects were 

generally larger in the “best-decoding” participants. One possibility is that our classification 

pipeline did a better job of decoding story interpretations in some participants than others. 

These participants may have received more accurate (and thus more useful) feedback, 
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leading to larger neurofeedback effects. If some participants failed to show neurofeedback 

effects because of a poorly functioning classifier, then the most effective way to boost 

neurofeedback effects in future studies would be to improve our classification pipeline to 

make it work more consistently across participants (e.g., by trying to improve registration, 

ROI selection, classifier parameter choices, and the quality of the template data). Another 

possibility is that the classifier itself was working well in the “worst decoding” participants, 

but these participants had trouble shifting their interpretations (e.g., a participant might 

behaviorally signal that they intend to adopt a “cheating” interpretive lens for the upcoming 

station, but then fail to actually do this). That is, the problem may reflect a cognitive 

difference across participants (some participants can cleanly shift their interpretations, some 

cannot) rather than a problem with neural decoding. If this is the case, perhaps screening 

participants beforehand with various behavioral tasks (e.g., measuring cognitive flexibility) 

could help exclude participants who will ultimately not benefit from neurofeedback. Based 

on our current set of results, we can not adjudicate between these two interpretations of why 

the “worst-decoding” participants did not benefit from neurofeedback.

For the neurofeedback effects that we did observe, we must critically assess the role of 

individualized neurofeedback in driving these effects. The premise of our approach is that 

measuring a particular individual’s interpretation neurally and using this signature as the 

basis for feedback is useful for changing their interpretation. Importantly, the presence of a 

difference between the two neurofeedback groups in our study does not necessarily mean 

that individualized neurofeedback was responsible for this difference. For example, say that 

everyone strongly adopts the cheating interpretation at a particular point in the story and 

the classifier registers this. In this scenario, participants in the cheating group will be given 

“correct” feedback, reinforcing the interpretation, and participants in the paranoid group 

will be given “incorrect” feedback, leading them to adopt the paranoid interpretation. The 

key point here is that we could achieve this same effect outside of the scanner (by using 

behavioral data to pick a point in time when the interpretation is unambiguous, and giving 

the two groups different feedback at that point). For our study, this scenario is unlikely, 

because we normalized by the mean interpretation (across all pilot-study participants) when 

giving feedback – as such, participants adopting the mean interpretation at a particular time 

point will receive the same (neutral) feedback, regardless of group assignment.

Having said this, more work is needed to establish that individualized feedback is still 

important. The gold standard for establishing a role for individualized neurofeedback is to 

include a yoked control condition where participants receive feedback based on brain data 

from another participant in the same condition (deBettencourt et al., 2015; see Sorger et 

al., 2019, for an overview of different control types for neurofeedback studies). If providing 

neurofeedback based on another participant “breaks” the neurofeedback effect, this is strong 

evidence that individualized neurofeedback is important. In our study, this kind of yoked 

control could be accomplished by replacing the neurofeedback at each station with the 

neurofeedback that would have been given to another participant from the same overall 

condition (cheating or paranoid) who had also behaviorally chosen the same interpretation 

(cheating or paranoid) at that station. Only upon running this control could we then conclude 

whether or not this rt-fMRI paradigm is able to alter thoughts through individualized 

neurofeedback.
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Returning to the clinical applications discussed at the beginning of the paper: Our interest 

in this paradigm was driven by the idea that, eventually, we could use this approach to train 

depressed individuals to interpret realistic scenarios less negatively. What have we learned 

about the feasibility of this program of research from this study? Overall, we think there 

are reasons both for optimism and concern. On the optimistic side, we were able to see 

effects of neurofeedback on both behavioral and neural measures of story interpretation. 

On the pessimistic side, the effects were weak: The only dependent measure that showed 

a neurofeedback effect when looking at the entire participant pool was the “empathy” 

behavioral measure; all of the other effects only showed up when we filtered the participants 

based on how well the classifier output matched their behavioral probe responses. With 

the benefit of hindsight, we now think that the “mystery interpretation” approach may not 

have been the best way to proceed. In the present study, we told participants to explore 

interpretations and not to lock in on one. We thought that this would help participants 

pay attention to neurofeedback, but instead we may have encouraged participants to focus 

too much on hypothesis-testing strategies (e.g., adopting an interpretation contrary to the 

preferred one, to see if this results in a reduction in reward) – this approach may reduce 

engagement with the story overall, thereby weakening our effects. Going forward, we think 

that it might be more effective to simply reveal the assigned interpretation outright, and 

then use neurofeedback to maximize the degree to which participants adopt and sustain that 

interpretation over time. This approach would fit better with our long-term clinical goal 

of using this method to treat depression – there, you would want to inform participants 

that things will turn out well in the story and then help the depressed participants adopt 

and sustain that interpretation. Note that, if you reveal the desired interpretation, this 

makes it less informative to use behavioral interpretation questions as a dependent measure 

(since participants will know the “right answer”) but neural measures (e.g., the output of a 

classifier tracking the presence of the correct interpretation) could be used instead. We could 

also look at transfer to other measures of depression.

This work constitutes the first attempt to use rt-fMRI to alter ongoing thoughts related to 

naturalistic narrative stimuli. In addition to having greater ecological validity than traditional 

experimental stimuli, naturalistic stimuli have the advantage of producing robust neural 

responses (Sonkusare et al., 2019; Nastase et al., 2020); they have been shown to be useful 

for studying individual differences (Vanderwal et al., 2017; Finn et al., 2020; Feilong et al., 

2018) and for exposing neural correlates of clinical variables (Rikandi et al., 2017; Finn 

et al., 2018; Eickhoff et al., 2020; Salmi et al., 2020). Our use of naturalistic stimuli led 

us to use a design that differed in several ways from other fMRI neurofeedback studies 

(including studies using the popular Decoded Neurofeedback method; Watanabe et al., 

2017; Taschereau-Dumouchel et al., 2022) – in particular, our study did not include a 

separate “induction” period where participants were trained to upregulate or downregulate 

a particular cognitive state. This is a consequence of the fact that naturalistic stimuli give 

rise to trajectories of meaning states (Baldassano et al., 2017) – as such, there was no 

guarantee that there would be a single neural state that we could induce or train to foster 

one interpretation of the narrative over the other. Our practice of providing feedback during 

the story (as opposed to doing this in a separate phase) and using station-specific classifiers 

(vs. a single classifier for all stations) was meant to accommodate the dynamically-shifting 
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nature of how narratives are processed in the brain – instead of fostering a particular pattern, 

our procedure sought to encourage participants to adopt the “right pattern at the right time”. 

Overall, our study highlights both the challenges and future promise of using neurofeedback 

in a naturalistic context to reshape how we interpret ambiguous situations.
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Appendix A.: Classifier training

In order to provide neurofeedback in real-time, we had to construct an accurate classifier 

based on previously collected data. In the sections to follow, we discuss our decision-making 

process for choosing (1) how we preprocessed the training data, and (2) which time points of 

the story would be used as stations. All analyses and results in this section rely entirely on 

a previously collected data set (Yeshurun et al., 2017) – they do not use any of the new data 

that we collected for this paper.

A.1 Data acquisition

We used previously-collected data from Yeshurun et al. (2017), where participants were 

explicitly instructed to adopt one of two different interpretations before listening to the story 

in the fMRI scanner. This manipulation ensured that the two groups of participants would 

interpret the story in different ways, allowing the authors to look for neural signatures of 

interpretation that were shared within each group and differed across groups. The data set 

included 38 participants: 19 participants who were told that Joanie was cheating on Arthur, 

and 19 participants who were told that Arthur was paranoid. Note: The data published in 

Yeshurun et al. (2017) included 20 participants per group, but 2 of the participants (one from 

each group) had start times that did not match the others and were omitted from the analysis 

for this reason. For more details regarding this data set, see Yeshurun et al. (2017) and 

Nastase et al. (2021). We preprocessed the neural data from the remaining 38 participants 

in the same way as detailed above (see Methods, Section 2.4.1), using fMRIPprep 1.2.3 

(Esteban et al., 2019; Esteban et al., 2018; RRID:SCR_016216).

A.2 Finding the optimal classifier

To optimize our classifier, we ran multiple analyses exploring variants of our analysis 

pipeline. The goal of these analyses was to decide on preprocessing parameters for our 

neurofeedback analyses and also to decide what time points to use for neurofeedback.

Fig. 11 shows a high-level overview of the classifier pipeline that we used for these 

parameter-optimization analyses. We discuss each step in detail next.
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Fig. 11. 
Classifier pipeline for parameter optimization analyses. Before splitting the data into training 

and test data, we completed the following preprocessing steps for all participants: We 

masked the story time series given a specific ROI; we high-pass filtered the data based 

on a particular cutoff (or no cutoff) frequency; and we flattened this time series into a 2D 

matrix. Next, we randomly selected 2 participants (1 per group) to be left out for testing. 

For the remaining training data, we randomly selected 18 participants per group (with 

replacement) so the groups were balanced. Then, we trained a Shared Response Model 

(SRM) on all training data using k1 dimensions and removed the signal that was shared 

across all participants (regardless of group). Next, we subtracted the mean response (if this 

step was included). We then trained separate SRMs on each group using k2 dimensions 

and kept only the shared signal within each group. Finally, we trained the classifier on the 

separate-group shared signals (in voxel space). We then used the classifier to predict group 

labels for the 2 held-out participants. Key: C = cheating group; P = paranoid group; SRM = 

shared response model.

A.2.1 Step one: preprocessing

Preprocessing steps (shown in boxes a-b of Fig. 11) entailed:

1. Removing the first 2 TRs

2. Masking with the given ROI

3. High-pass filtering based on the given cutoff frequency

4. Z-scoring each voxel’s time series

5. Combining all participants to form a final matrix

The parameters that were varied for our classifier optimization analysis included:

1. ROI: We considered three ROIs for this study. The list of ROIs and the steps 

taken to create each ROI are shown in Table 1.
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2. High-pass filtering: Because the story lasted about 12 min, we had no a priori 

knowledge of what filtering cutoff would be optimal in removing noise. Thus, 

we tested 3 different frequency options for high-pass filtering: (1) no filtering, 

(2) high-pass filtering with a cutoff of 337.75 s as was done in Yeshurun et al. 

(2017), and (3) high-pass filtering with a cutoff of 140 s as is commonly done 

in fMRI studies. These options are represented in Fig. 12 as indices 0, 1, and 2, 

respectively.
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A.2.2 Step two: splitting data and cleaning signal with the shared response 
model (SRM)—We based our SRM approach on Chen et al. (2015). The authors applied 

a novel two-step shared response model to the data in Yeshurun et al. (2017) in order to 

improve classification accuracy. Usually, SRM is used to extract the common signal to best 

represent the stimulus-evoked response to naturalistic stimuli (Chen et al., 2015; Vodrahalli 

et al., 2018). In this case, because the dataset in Yeshurun et al. (2017) included two 

groups who listened to the same narrative, we were not interested in the signal that was 

shared across all participants. Rather, we wanted to extract the signal that was common 

within each group, as the shared signals within each of the two groups would likely reflect 

interpretations. See Chen et al. (2015) for additional mathematical details on SRM analysis 

and BrainIAK (https://brainiak.org/; Kumar et al., 2021) for details on implementation. We 

modified their SRM approach slightly for our real-time application, as reported below.

Analysis steps shown in boxes c-d of Fig. 11 entailed:

1. Randomly selecting two participants (one from each group) to hold out of all

2. Subsequent steps and keep as testing data.

3. Randomly resampling 18 participants within each group (with replacement) to 

build the training data matrix.

4. Training an initial SRM model with k1 dimensions using all 38 training 

participants, and removing the component of the signal that was shared amongst 

all training participants. The purpose of this step was to remove signal 

pertaining to processing that was common across all participants, regardless 

of interpretation (e.g., processing relating to low-level sensory features of the 

stimulus).

5. Subtracting the mean response for each voxel over all participants. This step was 

done in Yeshurun et al. (2017) – it serves a similar function to running SRM on 

the full set of participants (i.e., it helps to remove signal that is shared across the 

two interpretation groups).

6. Separating the groups by assigned interpretation and training another pair of 

SRMs, one for each interpretation group (separately), using k2 dimensions per 

SRM. This time, we kept only the shared component for each participant. This is 

intended to highlight shared variance that pertains to the assigned interpretation 

and remove parts of the signal that are idiosyncratic to particular participants 

(e.g., thoughts unrelated to the story).

7. Compiling this data into the final training data matrix before testing the classifier. 

Note that the data were kept in voxel space throughout this analysis pipeline.

The parameters that were varied for our bootstrap analysis included:

1. K1: We modified the number of dimensions for the first SRM. We also omitted 

this first SRM (k1 = “0”) under one parameter setting.

2. Subtracting the mean: We either included this step or not.

Mennen et al. Page 20

Neuroimage Rep. Author manuscript; available in PMC 2022 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://brainiak.org/


3. K2: We modified the number of dimensions for the two within-group SRMs.

A.2.3 Step three: training and testing

After all preprocessing steps were complete, we then tested the model on the 2 participants 

that were held out. To obtain confidence intervals for each preprocessing configuration, we 

ran 1000 bootstraps of each configuration – for each for these 1000 bootstraps, we randomly 

selected one participant per group to be used for testing data, and we resampled from the 

remaining 18 participants per group (with replacement) to obtain our training set.

We used scikit-learn’s (Pedregosa et al., 2011) SVM classifier (kernel = ‘linear’, probability 

= True) to predict the group label of the 2 left-out participants. To identify which time points 

were most informative regarding the group label, we trained a separate classifier for each 

individual TR in the story.

A.2.4 Bootstrapping results

The results of our bootstrap analysis are shown in Fig. 12. We chose the classifier with the 

highest accuracy, averaging across all TRs. This classifier corresponded to the following 

preprocessing steps: ROI = large TOM mask, no high-pass filter, average signal removed, k1 

= 0 (no step 1 SRM), and k2 = 25. The performance of this classifier is shown in the red box 

in Fig. 12.

Fig. 12. 
Results from the classifier search. Shown are the top 20 performing parameters for 

classification ranked by the average accuracy across all TRs. Parameter settings along the 

x-axis are sorted from best performing (left) to worst performing (right). The red box 

marks which parameter set was ultimately chosen: ROI = large TOM mask, average signal 
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removed, no high-pass filter, k1 = 0 (no first stage SRM), k2 = 25. Error bars show 95% CI 

over bootstrap iterations.

A.3 Finding stations

After choosing the classifier with the highest accuracy over all TRs in the story, we wanted 

to improve the efficacy of neurofeedback by providing feedback at the moments when 

group interpretations, and thus neural activity, were maximally different. To this end, we 

used behavioral ratings from Yeshurun et al. (2017) to identify points in the story where 

interpretations were maximally different. Each of the story’s 179 segments were rated in 

terms of how much they differed in beliefs, emotions, and intentions depending on the 

context.

To combine all the ratings into one score, we first z-scored belief, emotion, and intention 

ratings across raters. Then, we calculated segment scores by taking the mean of all ratings 

at each segment. Thus, larger segment scores meant that those time points were rated as 

differing more in the story. In Fig. 13, the segment scores are indicated by the dashed blue 

line and the average individual TR accuracy (from our chosen classifier) is plotted in black. 

The Pearson correlation between the TR accuracy and segment scores was r = 0.21, meaning 

that the more a segment was rated as differing between contexts, the better the TR classifier 

performed. This result aligns with similar results reported by Yeshurun et al. (2017) and 

provides a sanity check, as some parts of the story had nothing to do with the cheating 

versus paranoid interpretations (such as when the narrator described a chair).

To determine the best time points for neurofeedback, we identified time points meeting the 

following criteria: (1) individual TR classifier accuracy ≥ 0.55, (2) segment score ≥ 0, and 

(3) the first 2 conditions satisfied for at least 2 consecutive TRs. We referred to each set 

of contiguous TRs meeting these criteria as a station. After identifying these stations, we 

extracted a spatiotemporal pattern for each station in each participant by concatenating the 

spatial response patterns for all time points in the station, resulting in an n × v vector, where 

n is the number of time points in the station and v is the number of voxels in the ROI. We 

then trained and tested a classifier for each station using the same bootstrapping process 

that was described above: For each of the 1000 iterations, we randomly sampled participants 

with replacement to determine the training data and preprocessed the data with the chosen 

parameters (ROI = large TOM mask, average signal removed, no high-pass filter, k1 = 0 (no 

first stage SRM), k2 = 25). The only difference was in stage 3, when we trained and tested a 

different classifier for each station, instead of each TR.

Out of the stations we tested, we chose final stations that had the highest accuracy and 

were evenly distributed throughout the story. Overall, the average TR classifier accuracy 

was 0.56 ± 0.08. The average accuracy for all stations was 0.64 ± 0.1. Thus, incorporating 

spatiotemporal information allowed us to increase classification accuracy.
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Fig. 13. 
TR and spatiotemporal station accuracy shown over time. The x-axis shows the TR number, 

while the left y-axis shows the classification accuracy. The solid black line represents the 

individual TR classifier accuracy, with the shaded gray 95% CI over all bootstrap iterations. 

The dashed black line indicates the minimum TR accuracy needed to include a given TR 

in a station. The red lines show chosen stations, with their height indicating classification 

accuracy, with 95% CI over all bootstrap iterations. The blue line shows the segment score 

ratings (right y-axis). The positive correlation between the TR classification accuracy and 

segment scores implies that points in the story that were rated to differ in interpretation 

generally yielded more accurate classification. NOTE: We did not use the last 2 stations in 
our main experiment. See Appendix C for details.

Appendix B.: Cloud processing

We designed our real-time pipeline to use a cloud server for processing, and thus minimize 

dependency on local computing resources (for a similar approach, see Mennen et al., 

2021). The cloud-based real-time pipeline was implemented using the RT-Cloud software 

package (Kumar et al., 2021; Wallace et al., 2022). Once DICOM files arrived at the local 

Linux machine, they were kept in memory as bytes and immediately sent to the cloud 

computer. All header information (containing potentially sensitive participant information) 

was deleted from the DICOM before the file was sent to the cloud. On the cloud server, each 

BOLD volume was then registered to MNI space, preprocessed, and passed to that station’s 

classification model for a final neurofeedback score. Finally, a text file was returned to the 

local Linux machine to update the display. Control of the rt-fMRI pipeline was accessed via 

a website (requiring security permissions). Fig. 14 illustrates both the delineation between 

local vs. cloud processing, as well as the real-time preprocessing steps. Additionally, Table 2 

lists the individual processing steps and software used for each step.

With regard to timing: As noted earlier, we adjusted for hemodynamic lag by shifting by 3 

TRs: If the “station recording” signal was visible to participants from TRs 7 through 12 for a 
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particular station, we analyzed the data from TRs 10 through 15 for that station. Processing 

steps 1–5 from Table 2 were performed after each TR from the station, and processing steps 

6–10 from Table 2 were also performed after the final TR from the station (after TR 15 

in this example). We began monitoring for each classification.txt file at the start of the TR 

immediately following each station (TR 16 in this example) and looked again at the start 

of the next 9 TRs until the .txt file was received. Considering all participants, runs, and 

stations, the .txt file was always found at the start of the second TR following the end of 

the station (TR 17 in this example), with the exception of 2 times when it was received 

after 6 and 3 TRs due to variations in transmission and processing latency. Once the .txt file 

was received, the feedback was displayed on the same TR. The upshot of this process was 

that participants typically had to wait 4 TRs (6 s = 3 TR hemodynamic shift, plus one TR 

for processing) between the offset of the “station recording” signal and the appearance of 

feedback onscreen.

Fig. 14. 
Cloud processing configuration. Data files were sent to the remote cloud server, where they 

arrived in memory and were converted to a NIfTI file for further processing. A text file 

containing the neurofeedback score was returned to the local computer.
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Appendix C.: Pilot experiment

Before we ran the real-time neurofeedback experiment described in the main text, we piloted 

an initial version of the experiment. Procedurally, the pilot experiment was the same as 

the experiment described in the main text, except as noted in the Methods section below. 

Due to an issue with the SVM classifier, the neurofeedback scores delivered to participants 

were sometimes incorrect, so the pilot was not a meaningful test of the neurofeedback 

manipulation. Nonetheless, as described below, we learned some important lessons that we 

were able to leverage to improve the design of the main experiment.

The most important of these lessons relates to the ambiguity (or lack thereof) of the story. 

As discussed in the main text, Yeshurun et al. (2017) explicitly told participants which 

interpretation to adopt ahead of time, and observed neural differences as a function of the 

assigned interpretation. Our pilot experiment was the first study to explore how participants 

interpret events in the story stimulus when they are not explicitly told which interpretation 

to adopt ahead of time and (consequently) arrive at interpretations on their own. Naively, we 

had expected that, given the seeming “ambiguity” of the story, participants’ interpretations 

would be distributed fairly evenly between the two possibilities (cheating and paranoid) at 

each time point in the story. What we discovered is that – when participants are not told 

ahead of time which interpretation to adopt – their interpretations are strongly biased in 

different directions at different points in the story (i.e., some moments pull participants 

strongly toward the cheating interpretation, and other moments pull participants strongly 

toward the paranoid interpretation). Put another way: the ambiguity of the story is not 

accomplished by making each moment individually ambiguous, but rather by see-sawing 

between moments where different interpretations are more likely, so that when participants 

integrate over time the meaning of the story is ambiguous. Below, we discuss how this 

discovery led us to re-think our neurofeedback approach, resulting in several changes 

between the pilot study and the study reported in the main text.

C.1 Methods

C.1.1 Participants

Nineteen participants consented to participate in this study. Two participants did not 

understand the task and were excluded from analyses. Data from the remaining 17 

participants were retained for further analysis (10 female, 1 left-handed, mean age = 22.4 

years). Participants received monetary compensation for their participation, including an 

additional bonus based on their neurofeedback performance ($20 maximum). The study was 

approved by Princeton University’s Institutional Review Board.

C.1.2 Stimuli

As in our main experiment, participants were randomly assigned to an interpretation 

group (cheating n = 9, paranoid n = 8). We told all participants about the two possible 

interpretations before they listened to the story. The participants’ task was to figure out 

which of the two interpretations was correct through neurofeedback. The auditory narrative 

itself was identical to the one presented in the main study.
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Participants responded to the same comprehension and interpretation questions that were 

used in the main experiment, with the exception of an additional survey that further probed 

individual strategies.

C.1.3 Procedure

We used the same procedure as described in the main text, except for differences noted 

below. This time, the mean delay between Visits 1 and 2 was 3.1 days.

The instructions used in the pilot were slightly different from the instructions used in 

the main experiment. The main-experiment instructions emphasized that the story is 

purposefully ambiguous with no “correct” interpretation, and that participants should pay 

attention to the neurofeedback to determine which interpretation we (the experimenters) 

favored. By contrast, the pilot-experiment instructions presented the task as a mystery, with 

one interpretation being true. The following points were emphasized in the pilot-experiment 

instructions:

• Your mission is to figure out the truth behind a phone conversation and solve the 

mystery

• The neurofeedback scores will reflect how well you’re interpreting the story; a 

higher score means you are closer to the correct interpretation

The neurofeedback display for the stations (indicating when brain activity was being 

“recorded”, and then indicating the amount of reward that was accrued from that station) 

was the same as in the main experiment. However, participants in the pilot experiment were 

not asked to behaviorally indicate their chosen interpretation before each station (i.e., there 

were no behavioral responses during the story-listening task).

As in the main experiment, participants listened to the story four times with neurofeedback. 

Note that feedback was provided at the full set of nine stations shown in Fig. 13 (the main 

experiment only used the first seven stations). Once scanning was completed, participants 

answered the story comprehension and interpretation questions.

C.1.4 Data acquisition

All scanning and preprocessing parameters were identical to those described in the main 

text.

C.1.5 Real-time classification

In the main experiment, participants were provided with feedback that was normalized 

relative to the mean classifier trajectory shown by participants in this pilot study. For 

example, if the mean classifier score (from the pilot experiment) at a particular time point 

indicated a .2 probability of the cheating interpretation, and – in the main experiment – a 

participant in the cheating group showed a showed a classifier probability of .3 for cheating, 

they received positive feedback, even though (on an absolute scale) the brain state did not 

favor the cheating interpretation at that time point.
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Feedback in the pilot experiment was much simpler: Participants only received positive 

feedback if the classifier evidence favored the assigned interpretation – that is, participants 

in the cheating group had to show a classifier probability of cheating >.5 to get positive 

feedback. Specifically, we used scikit-learn’s (Pedregosa et al., 2011) SVM classifier (kernel 

= ‘linear’, probability = True) and the predict_proba function to convert the output of the 

SVM classifier to a scalar value pc indicating the probability of the cheating interpretation.

The neurofeedback score seen by the participant was given by:

scorefinal =
pc, if assigned group = cℎeating
1 − pc, if assigned group = paranoid

Thus, the higher the neurofeedback score, the more the real-time participant’s neural 

response matched those of previous participants in the same assigned interpretation group.

Unfortunately, due to a technical problem with the implementation of the predict_proba 
function, as applied to the SVM classifier in scikit-learn, the neurofeedback scores did not 

reliably indicate the correct probability. Because of this issue, we do not directly report 

neurofeedback scores in the results below, nor do we report effects of neurofeedback 

on participants’ behavioral interpretation scores. Instead, we show results from an offline 

logistic regression classifier (which did not suffer from this issue with predict_proba) that 

was applied to the data that we collected during the neurofeedback period. This offline 

analysis accurately represents the logistic regression classifier’s estimate of participants’ 

interpretations at each time point in the story.

C.2 Results: classifier scores

Fig. 15 shows the average classifier-assigned cheating probabilities in the pilot experiment 

(computed using an offline logistic regression classifier, as described above), split by 

assigned neurofeedback group. This figure illustrates two important features of the data: 

First, the two neurofeedback groups showed very similar neural interpretation trajectories. 

The neurofeedback stations were chosen because they evoked strong neural differences 

between groups in Yeshurun et al. (2017) when participants were explicitly told which 

interpretation to take (Fig. 13), but the neurofeedback groups did not differ in our study 

(where participants were not explicitly told which interpretation to take – instead, they had 

to rely on neurofeedback to guide them). We do not want to overinterpret this, because 

of the aforementioned bug in the neurofeedback scores, but it is nonetheless striking how 

similar participants’ trajectories were across groups. Second, and most importantly, the 

mean classifier probabilities varied sharply across stations, such that many stations were 

very sharply biased toward particular interpretations. Put another way, when participants 

were allowed to form their own interpretations (as opposed to being explicitly told which 

interpretation to use), they were naturally pulled to different interpretations at different 

points in the story. This was particularly true for the last two stations, where the cheating 

probability was low for all participants (the second-to-last station corresponds to the part 

of the story where Arthur tells Lee that Joanie has returned home). For participants in the 

Yeshurun et al. (2017) study, receiving this information led to stark differences in neural 
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interpretations across the two groups (see Fig. 13) – participants in the paranoid group may 

have felt like this proved their case, whereas participants in the cheating group were forced 

to conclude that Arthur was an unreliable narrator and he was lying to Lee about Joanie 

returning home. However, for participants in our pilot study, this new information simply led 

them to conclude that Arthur was being paranoid.

Fig. 15. 
Classifier scores indicating the probability that participants were adopting the cheating 

interpretation. These were not the results used in real-time; these results were computed 
afterward with the same data and a logistic regression classifier. Error bars represent ±1 

s.e.m.

C.3 Discussion

Before this pilot, we had assumed from the results in Yeshurun et al. (2017) that the story 

was uniformly ambiguous. However, the pilot results clearly show that, although the overall 

story is ambiguous, individual moments in the story were not equally ambiguous. The 

story’s narrative structure pulls the listener to contradictory interpretations at different points 

in time.

This lack of “within-timepoint” ambiguity is problematic for our aims, for several reasons. 

First, if there is too strong of a narrative pull toward one interpretation at a particular time 

point, this will make it difficult to nudge participants to adopt a contradictory interpretation 

at that station. Second, lack of within-timepoint ambiguity undermines the purpose of 

neurofeedback, which is to give participants individualized scores based on their own, 

varying neural responses to the story. If all participants adopt the same stimulus-driven 

interpretation at a particular time point, then neural data from a particular participant does 

not tell you anything new, beyond what you already knew from the neural responses of 

other participants. For example, based on Fig. 15, we can be reasonably sure that a new 

participant will adopt the paranoid interpretation at station 8, without even measuring their 

brain activity, so there is no added value to collecting fMRI data at this point.
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Based on these results, we opted to make several changes to the paradigm for our own 

experiment. First, we removed the last two neurofeedback stations, where interpretations 

were strongly biased towards the paranoid interpretation (note that, while we no longer 

provided neurofeedback at these points in the story, participants still listened to and were 

scanned during the entire story). However, even after eliminating the most biased stations, 

there were still some (lesser) biases in interpretation at the other stations. To control for 

these biases, we decided to provide neurofeedback based on participants’ deviation from 

the “average neural interpretation trajectory” (where this “average neural interpretation 

trajectory” was computed by collapsing results across the two conditions in this pilot study) 

– see the Classification section in the main text for details.

We also opted to make changes to the instructions that participants were given. The 

instructions in the pilot study told participants that there was only one true interpretation, 

and that they had to discover this one true interpretation. A problem with these instructions 

was that – once participants decided that they knew the answer – they had no reason to 

continue attending to the task. To address this problem, we changed the instructions to 

present the two interpretations as equally probable without one being correct; participants’ 

task was to discover the interpretation that we wanted them to adopt, not the “true” 

interpretation. We hoped that this would encourage participants to continue paying attention 

to the story and to the neurofeedback they received throughout the experiment.

Lastly, for the main experiment, we added behavioral responses during neurofeedback 

(asking participants, before each station, to tell us which “interpretive lens” they would use 

for the upcoming station). We thought this would have three benefits: 1) it would promote 

continued engagement; 2) it would give us a behavioral indicator of what interpretations 

participants were adopting during the task, which could be used as an additional dependent 

measure; and 3) it would give us a way of assessing classification accuracy (by comparing 

the classifier estimate of the participant’s interpretation at a station to the behavioral 

response at that station).

Appendix D.: Complete Instructions

We include the instructions that were used in the main experiment in Fig. 16.
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Fig. 16. 
Instructions that span pages 1–4 shown in a, b, c, d, respectively.
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Fig. 1. 
Experimental design. (a) Before scanning, we pre-trained a classification model on data 

from Yeshurun et al. (2017) to create template brain responses at each station. (b) On Visit 1, 

a high-resolution anatomical scan and a short functional scan were acquired for registration 

to MNI space. At least one day later, participants returned for 4 runs of story listening with 

neurofeedback training (Visit 2). Each run was about 12 min long, and featured the same 

audio stimulus used by Yeshurun et al. (2017). Each run included 7 stations where brain 

activity was analyzed. Stations varied in length from 3 to 16.5 s. (c) After each station, the 

neurofeedback score was displayed and participants received a reward based on the model 

prediction for that station, normalized by pilot experimental data. (d) Afterward, participants 

answered questions outside of the scanner to assess their final interpretations of the story.
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Fig. 2. 
Average scores for (a) comprehension and (b) interpretation questions. (a): All participants 

understood the story. (b): Interpretations were not modified by neurofeedback – neither 

group was significantly pushed toward their assigned interpretation. Error bars = ±1 s.e.m.
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Fig. 3. 
Empathy ratings for (a) all characters and (b) the difference for Arthur and Lee, separated by 

assigned group. (a): Empathy ratings differed significantly in the predicted direction for Lee 

based on group assignment. (b): The difference in empathy for Arthur and Lee also differed 

significantly by assigned group. Error bars = ±1 s.e.m. * = p < 0.05.
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Fig. 4. 
Neurofeedback results, in terms of p(c) (a, c) and normalized neurofeedback score (b, d). 
(a) Average cheating probability (not normalized), separated by assigned group. The dashed 

line represents mean p(c) from the pilot experiment. (b) Neurofeedback scores that were 

delivered to participants during real-time neurofeedback, divided by assigned group. Figures 

(c–d) show the run-wise averages for the same values shown in (a–b), respectively. Error 

bars = ±1 s.e.m.
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Fig. 5. 
(a) Average probe responses during neurofeedback for individual stations, separated by 

assigned group. (b) Average probe responses during neurofeedback, collapsed across 

stations within each run and separated by assigned group. None of the run-wise differences 

were significant after correcting for multiple comparisons. Error bars = ±1 s.e.m.
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Fig. 6. 
Decoding accuracy results overall (a) and related to correct interpretation scores (b). 
(a) Cheating probability was numerically higher when participants endorsed the cheating 

interpretation compared to the paranoid interpretation, but this difference did not reach 

statistical significance. Note: the x-axis represents the probe responses at each station, 

not the assigned interpretation group. Lines connect each participant’s average probability 

for each response. (b) Correct interpretation plotted as a function of decoding accuracy. 

Decoding accuracy and correct interpretation scores were positively correlated, suggesting 

that participants with accurate neurofeedback were able to learn to adopt the assigned 

interpretation. The black line indicates the line of best fit. Error bars = ±1 s.e.m.
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Fig. 7. 
Average scores for (a) comprehension and (b) interpretation questions, divided by decoding 

accuracy. (a) Comprehension scores did not vary significantly between groups. (b) Correct 

interpretation was significantly larger for the participants with more accurate decoding. Key: 

B = best; W = worst. Error bars = ±1 s.e. m. * = p < 0.05.
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Fig. 8. 
The difference in empathy for Arthur and Lee, divided by decoding accuracy. Here, the 

empathy difference is adjusted for assigned group such that positive empathy differences 

indicate the correct direction. There was no significant difference between the best and worst 

classifier groups in terms of modifying empathy.
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Fig. 9. 
Neurofeedback results, in terms of classification output (a, c) and normalized neurofeedback 

score (b, d). (a) Average classifier probability for the assigned interpretation, for the 

participants with the best and worst decoding accuracy. (b) Neurofeedback reward, divided 

by the participants with the best and worst decoding accuracy. Figures (c–d) show the 

run-wise averages for the same values shown in (a–b), respectively. Error bars = ±1 s.e.m. 

Significance was corrected for multiple comparisons using Bonferroni correction. * = p < 

0.05.
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Fig. 10. 
Probe choices split by decoding accuracy. Participants with the most accurate decoding were 

more likely to choose probes consistent with their assigned interpretation by the end of 

training. Error bars = ±1 s.e.m. Significance was corrected for multiple comparisons using 

Bonferroni correction. ** = p < 0.01.
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