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Abstract

MicroRNAs (miRNAs) interact with 39 untranslated region (UTR) elements of target genes to regulate mRNA stability or
translation and thus play a role in regulating many different biological processes, including circadian rhythms. However,
specific miRNAs mediating the regulation of essential clock genes remain largely unknown. Because vesicles containing
membrane-bound miRNAs are present in the circulatory system, we examined miRNAs predicted to target the clock gene,
Bmal1, for evidence of rhythmic fluctuations in circulating levels and modulatory effects on the 39 UTR activity of Bmal1. A
number of miRNAs with Bmal1 as a predicted target were expressed in the serum of mice exposed to LD 12:12 and of these
miRNAs, miR-152 and miR-494 but not miR-142-3p were marked by diurnal oscillations with bimodal peaks in expression
occurring near the middle of the day and 8 or 12 hr later during the night. Co-transfection of pre-miR over-expression
constructs for miR-494 and miR-142-3p in HEK293 cells had significant effects in repressing luciferase-reported Bmal1 39 UTR
activity by as much as 60%, suggesting that these miRNAs may function as post-transcriptional modulators of Bmal1. In
conjunction with previous studies implicating miRNAs as extracellular regulatory signals, our results suggest that circulating
miRNAs may play a role in the regulation of the molecular clockworks in peripheral circadian oscillators.
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Introduction

MicroRNAs are small non-coding RNAs that have been

identified in many different organisms ranging from Drosophila to

humans [1] and implicated in the regulation of a wide array of

biological processes. Mature miRNAs are small RNA molecules,

typically 19–25 nucleotides long, derived from sequential RNase

III-dependent cleavages of longer transcripts [2,3]. In the

cytoplasm, mature miRNAs associate with components of the

RNA-induced Silencing Complex (RISC) and interact with

miRNA-recognition elements (MRE’s) in the 39 UTRs of target

mRNAs. Mismatches or gaps in the base-pairing interactions

between the miRNA-mRNA duplex result in translational

repression and/or mRNA de-stabilization [4,5]. In humans, it

has been estimated that the number of unique miRNAs exceeds

1000 [6] and that 20–30% of the transcriptome is subject to

miRNA-targeted regulation [7,8]. Although miRNAs target and

regulate specific mRNA transcripts via intracellular mechanisms,

recent evidence for their presence in vesicles circulating in the

blood of humans [9] raises the possibility that miRNAs may also

function as extracellular or secreted regulatory signals that mediate

communication between cells [10]. In accord with their role in

modulating the transcriptome and proteome, miRNAs play an

integral role in important biological processes like development,

metabolism and cancer biology.

Recent studies have also implicated miRNAs in the regulation

of the circadian timekeeping mechanism in the mammalian

suprachiasmatic nuclei (SCN). Brain, muscle ARNT-like protein 1

(Bmal1), circadian locomotor output cycles kaput (Clock), as well as

the Period (Per1 and Per2) and Cryptochrome (Cry) genes comprise

the ‘‘gears’’ of the molecular clockworks common to both the SCN

and peripheral tissues [11,12,13]. Interactions between these clock

components form positive- and negative-feedback loops in which

gene transcription is rhythmically regulated by their protein

products, with exception of Clock. For example, rhythmic increases

in Bmal1 transcription and the formation of CLOCK:BMAL1

heterodimers positively regulate the rhythmic transcription of the

Per and Cry genes [14]. In turn, the increases in PER and CRY

proteins lead to the formation of heterodimers that interact with

the CLOCK:BMAL1 complex and negatively feedback on their

own transcription. CLOCK:BMAL1 complexes also mediate the

regulation of clock-controlled outputs that provide for the

rhythmic programming of downstream processes. MiRNA func-

tion in SCN-mediated regulation of circadian rhythms is

supported by observations indicating that miR-219 and miR-132

are rhythmically expressed in the SCN and that antagonism of
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these miRNAs within the SCN region respectively increases the

circadian period of behavioral rhythmicity and attenuates

circadian photoentrainment [15]. Other applications of mouse,

Drosophila and chicken models provide further evidence for the role

of miRNAs in the regulation of circadian rhythms in gene

expression or behavior [16,17,18]. However, evidence for the role

of specific miRNAs as bona fide modulators of core clock genes is

limited.

Because rhythmicity is a prevalent property among core and

regulatory elements of the circadian clockworks in most cells and

tissues throughout the body, we explored the possible timekeeping

function of miRNAs in the periphery by initially determining

whether specific miRNAs with clock genes as predicted targets are

expressed in serum and whether their expression is marked by

daily fluctuations. Our analysis focused on miRNAs that are

predicted to target the 39 UTR of Bmal1 mRNA because this clock

gene is unique among core clock elements as knockout of Bmal1

alone produces complete loss of circadian rhythmicity [19].

Specifically, experiments were conducted to explore miRNA

function in the circadian clockworks by: 1) first identifying

miRNAs predicted to target core and ancillary clock genes; 2)

determining whether expression of specific miRNAs that target

Bmal1 oscillate in mouse serum in vivo; and 3) examining the effects

of candidate miRNA over-expression on Bmal1 39 UTR activity.

Materials and Methods

Experiment 1: Temporal Profiling of miRNA levels in
mouse serum

Animals. Experimental subjects were 20 male Balb/C mice

at 8–10 weeks of age. All animals were born and reared in the

animal facility at BIOO Scientific under a standard 12 h

light:12 h dark photoperiod (LD 12:12; lights-on at 0700 hr).

Prior to experimental analysis, animals were housed 2–3 per cage.

Access to food and water was provided ad libitum and periodic

animal care was performed at random times.

Ethics Statement. All animal procedures used in this study

were conducted in compliance with protocol B002 as approved by

the Institutional Animal Care and Use Committee at BIOO

Scientific Corp.

Blood collection and fractionation. To determine whether

miRNAs are expressed and fluctuate rhythmically in the serum,

blood samples were collected at 4 hour intervals from mice

maintained in a LD 12:12 cycle. At each timepoint, blood was

collected by cardiac puncture from 3–4 mice that were anesthetized

with 2,2,2-tribromoethanol (250 mg/kg, intraperitoneal; Sigma)

and sacrificed by cervical dislocation. Sampling procedures during

the dark phase of the LD 12:12 cycle (Zeitgeber Time [ZT] 12–24)

were conducted under dim red light (Kodak filter GBX-2). Blood

was allowed to clot at room temperature for 10–15 minutes.

Adhesions between the clot and collection tube were gently

detached by ‘‘rimming the clot’’ to minimize hemolysis and then

samples were centrifuged for 10 minutes in a swinging bucket

microcentrifuge (Eppendorf) at 3,0006 g to separate cellular and

non-cellular fractions. Immediately following centrifugation, the

serum layer was carefully aspirated off, mixed with three equivalent

volumes of TRI reagent (Ambion) and stored at 220uC until further

processing.

To fractionate the white blood cells (WBCs), the clot was

disaggregated in phosphate buffered saline (PBS) and the fluid

layer containing suspended WBCs and red blood cells (RBCs) was

collected. Following centrifugation for 30 seconds at 3,0006g, the

cell pellet was resuspended in distilled water for ,10 sec to lyse

RBCs by osmotic shock, and then mixed with 106PBS to restore

physiological ionic strength and prevent WBC lysis. The WBC

pellet was recovered by centrifugation at 3,0006g for 40 sec, lysed

in 1 ml BiooPure RNA Isolation Reagent (BIOO Scientific,

Austin, TX) and stored at 220uC until further processing.

RNA extractions. Total RNA was subsequently extracted

from the serum and WBC lysates according to manufacturer’s

protocols, with the exception that 50 ug of linear acrylamide was

added as a co-precipitant to the aqueous phase before addition of

isopropanol. This modification enhances recovery of small

amounts of nucleic acids [20]. RNA samples were suspended in

50 ul 0.1 mM EDTA and dissolved by heating for 5 min at 65uC.

Total RNA was estimated using Nanodrop ND2000 (Thermo

Scientific).

Real-time PCR. Quantitative real-time PCR analysis was

conducted using Taqman microRNA assays (Applied Biosystems).

RNA from individual samples was first reverse transcribed using

target-specific stem-loop primers and Taqman MicroRNA

Reverse Transcription Kit. All assays were performed according

to manufacturer’s protocols, using 20 ng of total RNA as input

with the exception that 90 ng input RNA was used for reverse

transcription of miR-494. For analysis of miRNA expression, the

cDNA equivalent of 2 ng of total RNA was PCR amplified in an

ABI PRISM 7500 Fast sequence detection system using the

following standard conditions: 1) heating at 95uC for 10 min, and

2) amplification over 40 cycles at 95uC for 15 sec and 60uC for

1 min. This analysis was conducted concurrently on duplicate

aliquots of RT product from each sample. miR-16 was also

amplified from the same samples using identical parameters to

control for differences in sample RNA content and reverse-

transcription efficiencies because: 1) this miRNA has provided a

good standard for normalization and comparisons of relative

abundance in previous studies [21,22]; and 2) ANOVA analysis

indicates that miR-16 levels in the serum exhibit no significant

variation (p = 0.19) over the 24-hour time course for sampling

(data not shown). Using the comparative CT method described in

the ABI Prism 7700 Sequence Detection System User Bulletin #2

(PE-ABI), the relative abundance for a given miRNA was

calculated by normalization first to corresponding miR-16 levels

in each sample and then to a calibrator consisting of pooled cDNA

from multiple samples over the entire time series. All TaqMan

miRNA assays used in this study exhibited PCR efficiencies of 95–

101.6% (Figure S1).

Relative quantification of 18s rRNA abundance was performed

on some serum and WBC samples using SYBR-Green real-time

PCR technology (ABI) as described previously [23,24]. To

generate single-strand cDNAs, total RNA (250 ng) from individual

samples was reverse transcribed using random hexamers and

Superscript III reverse transcriptase (Invitrogen). 18s rRNA was

PCR amplified using the cDNA equivalent of 2.5 ng of total RNA.

PCR analysis was performed on duplicate aliquots of each sample

using the ABI PRISM 7500 Fast sequence detection system and

the following conditions: 1) serial heating at 50uC for 2 min and

95uC for 10 min, 2) amplification over 40 cycles at 95uC for 15 sec

and 60uC for 1 min, and 3) dissociation at 95uC for 15 sec, 60uC
for 1 min, 95uC for 15 sec and 60uC for 15 sec. Relative

differences in 18s rRNA abundance were established by

comparing serum and WBC determinations to a standard curve

that was generated using pooled cDNA from all samples. The

following primers were used for the real-time PCR analysis: m18s

rRNA forward: 59-ATGGCCGTTCTTAGTTGGTG -39; m18s

rRNA reverse: 59-CGCTGAGCCAGTCAGTGTAG -39.

To estimate the number of copies of representative miRNAs in

serum samples, synthetic single-stranded RNA oligonucleotides

encoding the mature miRNA sequences for miR-16 and miR-152

MiRNA Profiles in Serum and Bmal1 39UTR Regulation

PLoS ONE | www.plosone.org 2 July 2011 | Volume 6 | Issue 7 | e22586



were purchased from Integrated DNA Technologies, Inc. Mature

miRNA sequence information was procured from miRBASE

(release 16.0; Sept. 2010). These synthetic miRNAs were used in a

dilution series ranging from 1 molecule/ml to 1010 molecules/ml to

generate standard curves for quantification of molecules of miR-16

and miR-152. Standard curves derived from concentrations

yielding Ct values within the linear range were used to estimate

the number of copies of miR-16 and miR-152 in the input RNA

from ZT7 serum samples that were simultaneously reverse-

transcribed, PCR-amplified and analyzed on the same plate.

Absolute copy number of miRNAs per microliter of serum was

extrapolated using known information on the amount of input

RNA (10 ng) and total extracted RNA (1500–4500 ng) relative to

the specific volume collected (200–300 ml) for each serum sample.

Experiment 2: MiRNA regulation of Bmal1 39 UTR activity
mBmal1 39 UTR luciferase reporter construct. miTargetTM

miRNA Target Sequence 39 UTR Expression Clone for Bmal1 was

purchased from Genecopoeia . This expression clone contains Bmal1

(Accession: NM_007489.3) 39 UTR sequence inserted in the pEZX-

MT01 vector downstream of a firefly luciferase gene under the

control of an SV40 enhancer generating a chimeric transcript that

consists of the luciferase coding and Bmal1 39 UTR sequences (Figure

S2). The pEZX-MT01 vector also contains the Renilla luciferase gene

under the control of a CMV promoter to provide for dual analysis of

firefly and Renilla luciferase activities in individual samples and to

normalize firefly luciferase signal intensities and account for potential

differences in transfection efficiencies across control and

experimental cultures. To determine the specificity of miRNA

interactions with the Bmal1 39 UTR, similar analyses were

performed using miRNA 39 UTR target control vector

(Genecopoeia; CmiT000001-MT01), which consists of the

pEZX-MT01 vector without a 39 UTR tagged to the firefly

coding sequence. miTargetTM miRNA Target Sequence 39 UTR

Expression Clone encoding the cKit 39 UTR (Accession:

NM_021099.2; generously provided by Dr. Rajesh Miranda,

Texas A&M University Health Science Center) was also used as

an additional control. Based on the results from Targetscan

analysis, the cKit 39 UTR is predicted to contain a target site for

miR-494, but not for miR-142-3p or miR-152. The cKit 39 UTR

also contains a predicted target site for miR-142-5p, the antisense

transcript of miR-142-3p.

Transformed E. coli cells (Genecopoeia) were grown on

kanamycin (final conc. = 50 ug/ml) containing imMedia agar

plates (Invitrogen). A single isolated colony was propagated in

imMedia Kan+ (final conc. = 50 ug/ml) liquid medium and

plasmid was extracted using EndoFree Plasmid Maxi kit (Qiagen).

The extracted pEZX-MT01 Bmal1 39 UTR expression plasmid

was sequenced to verify expression and accuracy of the Bmal1 39

UTR sequence using the following primers: Forward: 59-

GATCCGCGAGATCCTGAT-39; Reverse: 59-TTGGCGTTA-

CTATGGGAACAT-39. Similar procedures were followed for

isolation of the pEZX-MT01 control vector and the pEZX-MT01

cKit 39 UTR expression vector.

Cell culture and transfections. Human embryonic kidney

cells (HEK293) at passage 12–15 were used for experimental

analysis of miRNA regulation of Bmal1 39 UTR activity. Cells

were seeded on 60-mm cell culture dishes (Corning) and

maintained at 37uC and 5% CO2 in Dulbecco’s minimum

essential medium (DMEM; Invitrogen) without antibiotics and

supplemented with 10% Fetal Bovine Serum (FBS; HyClone,

Logan, UT) and 292 ug/mL L-glutamine. Medium was changed

at 48-hour intervals and confluent cultures were split 1:4 or 1:5

every 3–4 days. Prior to experimentation, cells were seeded onto

24-well plates in DMEM supplemented with 5% FBS. 24 hours

later, co-transfection of verified plasmid DNA clones (0.4 ug) with

either individual pre-miRs, or paired combinations of pre-miR

constructs for miR-494, miR-152, or miR-142-3p (final conc.

33 nM/well; ABI) was performed using Lipofectamine 2000

(Invitrogen) according to the manufacturer’s protocols. To

compare basal luciferase reporter activity across different pEZX-

MT01 vectors and evaluate the potential influence of endogenous

miRNAs, parallel analysis was performed on HEK293 cells in

which either the pEZX-MT01 control vector or the Bmal1 39

UTR vector was co-transfected with a non-targeting control

miRNA. Following incubation with transfection reagents for

5 hours, the medium was replaced and 48 hours later, lysates of

HEK293 cultures from all treatment groups (n = 4) were collected

using Passive Lysis Buffer (Promega). Lysate samples were stored

at 220uC and later firefly luciferase activity was analyzed relative

to Renilla luciferase activity in the same sample using dual-

luciferase reporter assay system (Promega). Luminescence was

measured in counts per second using a LumiCount microplate

luminometer (AL10000; Packard Bioscience).

Statistical analyses. The temporal patterns of miRNA

expression in serum were examined for evidence of circadian

variation using statistical analyses that have been used previously

for this purpose [23,25,26]. Time-dependent fluctuations in miR-

494, miR-152 and miR-142-3p expression were first identified by

one-way analysis of variance (ANOVA). Paired comparisons

between peak values and those observed during the preceding or

succeeding minimum were analyzed post hoc for statistical

differences using the Newman-Keuls sequential range test. The

a-value was set at 0.05 for these post hoc analyses.

Independent t-tests were performed on serum and WBC 18s

and miRNA comparisons, and on normalized luminescence data

to determine the significance of pre-miR and control-miR

treatment on luciferase-reported Bmal1 39 UTR activity. The a-

value was set at 0.01 for independent t-tests.

Results

Experiment 1: Temporal Profiling of miRNA levels in
mouse serum

Three target prediction databases (microcosm [27,28], Targets-

can [7] and MiRanda [29]) were used to identify potential

miRNAs targeting mammalian clock genes. Because Bmal1 is the

only clock gene in which null mutation produces arrhythmicity

[19], we focused on a subset of miRNAs that expresses consensus

recognition sequences for the 39 UTR of either Bmal1 or for other

genes that regulate Bmal1 expression in the molecular feedback

loops comprising the circadian clockworks (Table 1). The Bmal1 39

UTR was predicted to contain miR-152, miR-142-3p and miR-

494 target sites that are located at nucleotide positions 88–108,

335–357 and 473–495, respectively (Figure S3). It is interesting

that in addition to their putative targeting of the Bmal1 39 UTR,

miR-152 and miR-494 were also predicted to interact with its

primary partner Clock or with transcriptional activators, retinoic

acid-related orphan receptors alpha and beta (Rora, Rorb). We next

determined whether any of the identified miRNAs predicted to

target Bmal1 or other components of the clock feedback loops were

expressed in serum. All of the candidate miRNAs were detected in

serum during the daytime of LD 12:12 cycle (ZT 7), but their

circulating levels spanned a wide range. miR-142-3p, miR-152,

miR-494, miR-135b, miR-135a and miR-34c were found in

descending order of abundance in the serum (Fig. 1A). Consistent

with previous observations on its circulating levels in humans [9],

miR-16 was highly abundant relative to other miRNAs detected in

MiRNA Profiles in Serum and Bmal1 39UTR Regulation
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mouse serum. Quantitative analysis of miR-16 and miR-152 levels

revealed that the estimated concentrations of these miRNAs were

408,000–749,000 and 3,400–6,800 copies/ml serum (Fig. 1B),

respectively. Using this information as a relative index of

abundance, miR-142-3p, miR-152 and miR-494 appear to

represent species of moderate to low expression in serum. To

gauge the relationship between serum and cellular miRNA levels,

we also analyzed the WBC fractions of individual blood samples

for expression of specific miRNAs predicted to target Bmal1. These

components of blood exhibited variable differences in miRNA

levels such that miR-142-3p and miR-494 expression were lower

(77-fold and 1.5-fold, respectively) and miR-152 was higher (25-

fold) in serum than in WBCs (Fig. 2A). The differential expression

of miR-142-3p in WBCs is not surprising because this miRNA is

highly abundant in hematopoietic cell lineages [30].

Because recent findings indicate that despite their abundant

expression in the cytoplasm, 18s and 28s rRNA are absent in RNA

extracted from circulating exosomes [31], 18s rRNA levels were

analyzed in serum and WBC fractions of blood samples collected

from mice (n = 3–4) at ZT3 and ZT7 to confirm that the detected

small RNAs reflect serum expression, rather than artifact

associated with cellular lysis during sample preparation. Consistent

with the observations of Valadi et al. [31], serum levels of 18s

rRNA were negligible and at the limits of detection with real-time

Table 1. Application of target prediction programs to identify candidate miRNAs expected to target Bmal1 or other genes that
regulate Bmal1 expression.

mmu-miR-142-3p mmu-miR-152 mmu-miR-135b mmu-miR-135a mmu-miR-34c mmu-miR-494

MicroCosm Bmal1 Bmal1, Rorb - - Reverba Bmal1, Rorb

TargetScan Bmal1 - - - - Bmal1, Clock

MiRanda Bmal1 Bmal1, Rora, Rorb Rora, Rorb Rora, Rorb Per2 Bmal1, Per2, Rorb

doi:10.1371/journal.pone.0022586.t001

Figure 1. Comparison of circulating miRNAs predicted to target Bmal1 or other genes regulating Bmal1 expression with a highly
abundant miRNA in serum, miR-16. (A) Relative expression of miR-16, miR-142-3p, miR-152, miR-494, miR-135b, miR-135a and miR-34c in serum
samples collected from mice at ZT 7 (n = 3). Bars denote real-time PCR determinations of serum miRNA levels (mean 6 SEM) and the values are
plotted using a logarithmic scale in comparison with the average for miR-34c expression. (B) Quantification of miR-16 and miR-152 expression in
serum collected from mice at ZT 7 (n = 3). Symbols denote determinations (in duplicate) of the number of copies/ml serum in each sample that were
extrapolated by comparing the Ct values for experimental samples with standard curves consisting of a dilution series of known quantities of
synthetic miR-16 and miR-152 analyzed on the same plate.
doi:10.1371/journal.pone.0022586.g001

MiRNA Profiles in Serum and Bmal1 39UTR Regulation
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PCR analysis. Relative expression levels of 18s rRNA in the serum

were 26,000–79,000-fold lower than those found in WBC fractions

(Fig. 2B), indicating that the observed miRNA signals in serum are

derived from extracellular or vesicle-encapsulated RNA, and not

from lysed or intact leukocytes or other cells, in the blood samples.

Daily profiles of miRNA expression in serum were assessed to

determine whether circulating levels of mature miRNAs that are

predicted to target mouse Bmal1 or other genes regulating this key

component of the molecular clockworks, miR-494, miR-152 and

miR-142-3p, oscillate rhythmically. In mice exposed to LD 12:12,

diurnal fluctuations were observed in the relative expression of

miR-494 and miR-152 (normalized to miR-16) in the serum

(Fig. 3). The rhythm in circulating levels of miR-494 was marked

by a bimodal pattern in which the first peak in serum expression

occurred around mid-day at ZT 7 and was followed by a

secondary peak during the night around ZT 19. For the diurnal

oscillation in miR-494 expression, the bimodal peaks in serum

levels at ZT 7 and ZT 19 were significantly (p,0.05) and about 2-

to 5-fold greater than those observed during the preceding and

succeeding minima. Similar to the temporal profile for miR-494

Figure 2. Comparison of miRNA and 18s rRNA levels in the serum and corresponding white blood cell (WBC) fractions. (A) Bars
denote real-time PCR determinations of serum and WBC miRNA levels (mean 6 SEM) in blood samples collected from mice (n = 3) at ZT 7. The plotted
values correspond to the ratios of fraction-specific miR-142-3p, miR-494 and miR-152 signal and are represented as a percentage of the maximal value
obtained among the serum and WBC fractions. Asterisks denote comparisons in which the relative expression of miRNA signal in the WBC fraction
was significantly different (p,0.05) from that observed in serum samples. (B) Bars denote real-time PCR determinations of 18s rRNA levels (mean 6
SEM) in serum and WBC fractions of blood samples collected from mice (n = 3–4) at ZT 3 and ZT 7. The plotted values are represented as a percentage
of the average for the WBC fraction at ZT 7. Asterisks denote time-specific comparisons (ZT 3 and ZT 7) of 18s rRNA signal in which relative expression
in the WBC group was significantly greater (p,0.01) than that observed in serum samples.
doi:10.1371/journal.pone.0022586.g002

MiRNA Profiles in Serum and Bmal1 39UTR Regulation
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expression, serum levels of miR-152 were characterized by diurnal

variation with bimodal peaks (Fig. 3). The first zenith in miR-152

expression occurred again at ZT 7 and was followed by a

secondary peak in mature miRNA levels at ZT 15. The amplitude

of rhythmic miR-152 expression in the serum was robust, with 2-

to 8-fold differences between peak and trough values. The bimodal

peaks in circulating levels of miR-152 at ZT7 and ZT15 were

significantly greater (p,0.05) than the preceding and succeeding

minima. In contrast to other tested miRNAs, miR-142-3p levels in

the serum exhibited no evidence of diurnal fluctuations (Fig. 3). In

comparison with miR-494 and miR-152, serum levels of miR-142-

3p were relatively high with no significant variation over time

(p = 0.377).

Experiment 2: MiRNA regulation of Bmal1 39 UTR activity
Since the observed circadian fluctuations in serum levels of

miRNAs predicted to target Bmal1 is suggestive of their

involvement in circadian timekeeping mechanisms, we used an

in vitro reporter assay to examine the effects of miR-494, miR-

152 and even miR-142-3p on Bmal1 expression via targeting of

the 39 UTR of this clock gene. Bioluminescence was analyzed in

HEK293 cells co-transfected with the pEZX-MT01 Bmal1 39

UTR expression vector and pre-miR constructs for miR-494,

miR-152, or miR-142-3p (n = 4). To control for non-specific

interactions between pre-miRs and the luciferase reporter in the

pEZX-MT01 vector, parallel analysis was performed on

HEK293 cells co-transfected with these pre-miR constructs

and the pEZX-MT01 control vector which does not contain a

39 UTR tagged to the firefly coding sequence (n = 4). In

HEK293 cells co-transfected with Bmal1 39 UTR expression

vector, over-expression of miR-494 or miR-142-3p, but not

miR-152, produced significant decreases (p,0.01) in luciferase-

mediated bioluminescence relative to that found in cells

transfected with the control vector (Fig. 4A). Treatment with

pre-miR constructs for miR-494 or miR-142-3p repressed Bmal1

39 UTR-mediated bioluminescence by about 35% and 60%,

respectively, in comparison with control transfections. Trans-

fection with a non-targeting miRNA had no significant effect on

luciferase-mediated bioluminescence in Bmal1 39 UTR-express-

ing cells relative to that found in cells transfected with the

control vector, suggesting that basal reporter activity is similar

between the Bmal1 39 UTR and control vectors and that the

observed repression of the Bmal1 39 UTR is specific for miR-494

and miR-142-3p.

Figure 3. Temporal patterns of miR-494, miR-152 and miR-142-3p expression in mouse serum. Symbols denote real-time PCR
determinations of miRNA levels (mean 6 SEM) in serum collected at 4-hour intervals from mice (n = 3–4) during exposure to a LD 12:12 cycle. The
plotted values correspond to the ratios of miR-494 (top left), miR-152 (top right) and miR-142-3p (bottom) signal normalized to miR-16 levels in each
sample and are represented as a percentage of the maximal value obtained for each miRNA. Asterisks indicate time points during which peak values
for serum expression of a given miRNA were significantly greater (p,0.05) than those observed during preceding and succeeding minima.
doi:10.1371/journal.pone.0022586.g003

MiRNA Profiles in Serum and Bmal1 39UTR Regulation
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Pre-miR interactions with the 39 UTR of a non-clock gene

containing predicted target sites for miR-494 but not miR-152 or

miR-142-3p were explored by analyzing bioluminescence from

HEK293 cells co-transfected with the pEZX-MT01 vector

expressing the cKit 39 UTR and pre-miR constructs for these

miRNAs (n = 4). Consistent with target prediction data indicating

that the cKit 39 UTR contains a predicted target site for miR-494,

overexpression of miR-494 in pEZX-MT01 cKit 39 UTR-

transfected cells yielded a significant reduction (p,0.01) in

luciferase-reported bioluminescence relative to that observed in

cells co-transfected with this pre-miR and the control vector

(Fig. 4A). In response to treatment with pre-miR constructs for miR-

494, cKit 39 UTR-mediated bioluminescence was repressed by

about 30% in comparison with luciferase reporter expression in cells

co-transfected with the control vector. Importantly, treatment with

pre-miR constructs for miR-152 had no significant effect in

repressing luciferase-mediated bioluminescence in cKit 39 UTR-

expressing cells. In fact, overexpression of miR-152 in pEZX-MT01

cKit 39 UTR-transfected cells produced a small increase in

bioluminescence relative to that found in control vector-transfected

cells. Interestingly, treatment with pre-miR constructs for miR-142-

3p caused a significant increase in cKit 39 UTR-mediated

bioluminescence relative to the luciferase activity of the control

vector. The basis for this inductive effect of miR-142-3p on cKit 39

UTR activity is unknown, but the cKit 39 UTR is predicted to

contain a target site for miR-142-5p and overexpression of its

antisense transcript, miR-142-3p, may effectively reverse any basal

repression derived from interactions of endogenous miR-142-5p

with the cKit 39 UTR.

Because previous studies indicate that two different miRNAs

can act in concert to simultaneously repress translation of a single

mRNA [32], we next examined the combinatorial effects of miR-

494, miR-152 and miR-142-3p overexpression in repressing Bmal1

39 UTR activity. For all of the tested miRNA combinations (miR-

494+miR-152, miR-494+miR-142-3p, miR-152+miR-142-3p),

luciferase-reported bioluminescence was significantly reduced

Figure 4. Independent and combinatorial effects of miR-494, miR-152 and miR-142-3p over-expression on Bmal1 39 UTR activity.
Bars denote mean (6SEM) determinations of luciferase bioluminescence for each treatment group (n = 4). The plotted values correspond to the ratios
of firefly luciferase signal normalized to Renilla luciferase activity in the same sample and are represented as a percentage of the average signal for
control vector transfectants. (A) Normalized bioluminescence from HEK293 cells expressing the pEZX-MT01 control vector, or pEZX-MT01 vector
containing either cKit 39 UTR or Bmal1 39 UTR in response to treatment with pre-miR constructs (33 nM) for miR-494, miR-152 and miR-142-3p. (B)
Normalized bioluminescence from HEK293 cells expressing the pEZX-MT01 control vector or pEZX-MT01 vector containing the Bmal1 39 UTR in
response to treatment with paired combinations of these pre-miR constructs (33 nM; miR-494+miR-152, miR-494+miR-142-3p, miR-152+miR-142-3p).
doi:10.1371/journal.pone.0022586.g004
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(p,0.01) in Bmal1 39 UTR-expressing cells relative to that control

vector transfectants (Fig. 4B). Combinatorial effects in repressing

luciferase-reported Bmal1 39 UTR activity were lowest in response

to miR-494 and miR-152 overexpression (,21%) and were

highest in cells treated with pre-miR constructs for miR-494 and

miR-142-3p (,75%). In conjunction with the observed differences

in the repressive effects of individual miRNAs, these results suggest

that among the tested transcripts, miR-142-3p is the most potent

repressor of Bmal1 39UTR-mediated activity. Moreover, the

potentiated repression observed in response to combined treat-

ment with pre-miR constructs for miR-142-3p and miR-494 is

compatible with previous evidence for the synergistic regulation of

the 39 UTR for a single gene by two or more miRNA species [32].

Based on the independent and combinatorial effects of miR-494

on Bmal1 39 UTR activity, our results support the possibility that

oscillations in serum levels of this miRNA may contribute to local

rhythms in the post-transcriptional repression of endogenous

Bmal1 in the periphery.

Discussion

Circulating levels of many humoral factors, including insulin,

adrenalin, leptin, ghrelin and corticosterol, are marked by

robust circadian rhythmicity [33,34]. These hormones and

neuroendocrine factors are thought to play a role in the

hierarchical organization of the mammalian circadian system

with regard to the coordination of rhythmicity between

peripheral and CNS oscillators [35,36]. Although there is now

increasing evidence for the presence of circulating miRNAs and

their potential implications as biomarkers of pathological and

physiological states [9,37,38], the current study provides

primary evidence indicating that levels of some circulating

miRNA species are subject to rhythmic regulation as well.

Specifically, our findings indicate that several miRNAs predict-

ed to target core clock genes are also expressed in mouse serum,

and that circulating levels of miR-494 and miR-152 are

distinguished by diurnal oscillations. Similar to other diurnal

and circadian rhythms in various processes, including arterial

pressure, neurotransmitter receptors, and circulating levels of

hormones [39,40,41], serum levels of miR-494 and miR-152

oscillate with bimodal patterns that are thought to reflect the

independent rhythmicity of two uncoupled oscillators. It is

noteworthy that despite the similarity in the phase of their

rhythmic profiles with bimodal peaks occurring near mid-day

and during the night, miR-494 and miR-152 are transcribed at

different loci in the mouse genome; both are transcribed from a

single locus, on chromosome 11 for miR-152 and on

chromosome 12 for miR-494. Another distinction is that miR-

152 is an intronic miRNA, while miR-494 is part of a large

cluster.

The mechanism responsible for the rhythmic variations in

serum levels of miR-494 and miR-152 is unknown. Importantly,

comparative analysis of 18s rRNA levels in serum and corre-

sponding WBC samples suggests that the miRNA expression and

rhythmic profiles detected in serum are not contamination or

artifact derived from lysed or intact cells in the circulation. The

observed rhythms in circulating levels of miR-494 and miR-152

may correspond to temporal variation in the intracellular

production, packaging or endocytic trafficking of these miRNAs

and/or their uptake by specific target cells. Alternatively, it is

possible that the differential stability of some circulating miRNAs

over time may contribute to these serum oscillations.

Recent evidence suggests that miRNAs may act as molecular

switches regulating the timing of various biological events [42].

Thus, the present implications for miRNAs in circadian

timekeeping seem to represent a logical extension of their known

functions. At present, the precise role of miRNAs in either the

molecular clockworks or the hierarchical organization of

mammalian circadian oscillators is unclear. Several reports

indicate that miRNAs may modulate some aspects of circadian

pacemaker function and output rhythms [15,16]. Using in vitro

analysis of luciferase-reported Bmal1 39 UTR activity to examine

the effects of miRNA over-expression, miR-494 and miR-142-3p

were identified as potential post-transcriptional repressors of

Bmal1, for the first time implicating specific miRNAs in the

regulation of this integral molecular component of the mamma-

lian circadian clock.

The phase relationship between the diurnal rhythms in

circulating levels of these miRNAs and Bmal1 oscillations in the

periphery is consistent with the potential function of miR-494 in

the post-transcriptional regulation of Bmal1. In most peripheral

tissues, Bmal1 accumulation follows a circadian profile in which

mRNA levels are high from the middle of the night to early

morning and remain low throughout the rest of the cycle

[43,44]. Hepatic BMAL1 protein content oscillates in a similar

fashion such that the rhythmic peak occurs late in the subjective

night and levels rapidly decline near the middle of the subjective

day [45]. Thus, the observed oscillations in circulating levels of

miR-494 and miR-152 exhibit an interesting relationship with

reported circadian profiles for Bmal1 in the periphery, with

bimodal peaks of miRNA expression encompassing times

around the rising and falling phases of the Bmal1 mRNA as

well as protein rhythms. In conjunction with our evidence for

miR-494-mediated repression of the Bmal1 39 UTR, the

bimodal pattern of these serum oscillations may have some

significance for the function of miR-494 and other miRNAs

regulating core clock components as local and/or systemic cues

that fine-tune the circadian harmonics of intercellular interac-

tions and coordinate rhythmicity between autonomous circadi-

an oscillators in peripheral tissues.

Although both miR-494 and miR-142-3p target the same

gene, Bmal1, overt rhythmicity in extracellular levels may not be

the sole criterion determining their role in the mammalian

circadian system. Given the abundance of RNases in serum and

evidence for the rapid degradation of naked synthetic miRNAs

in plasma [9,46], it seems likely that the endogenous serum

miRNAs observed in our experiments are packaged within

various types of protective, membrane-bound particles, such as

microvesicles and exosomes. Vesicles released into the circula-

tion in vivo presumably arise from a wide variety of cells derived

from different lineages and subtypes at different stages of

maturation, and are distinguished by diverse functions. Recent

studies indicate that these secreted vesicles mediate the

intercellular communication of specific RNA signals

[31,47,48,49] and that vesicle-transmitted miRNAs are func-

tional in recipient cells [47,48]. Furthermore, different miRNAs

are packaged in vesicles and exosomes expressing integral cell

membrane proteins derived from their parental cells of origin,

and these cell surface markers appear to specify the capture of

these particles by certain tissues or cell types. For example,

mature dendritic cell derived exosomes that express intercellular

adhesion molecule-1 (ICAM1) are captured largely by lympho-

cyte function-associated antigen-1 (LFA-1) expressing activated

T-cells and CD8+ dendritic cells, but not by CD82 dendritic

cells [50,51]. Hence, the distinctive functions of different

circulating miRNAs in regulating the molecular clockworks or

overt circadian rhythms within or between specific tissues may

be determined not only by temporal variation in extracel-
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lular levels but also by the parental cells from which the

miRNA-containing vesicles originate, and by cell-surface

receptors on specific target cells that capture these circulating

vesicles.

Because a number of processes are subject to circadian

regulation in the cardiovascular system, circulating miRNAs

may play an important role in the local and/or systemic

coordination of circadian rhythms associated with cardiovascular

physiology and pathology. The cardiovascular system is distinctly

characterized by circadian regulation of various parameters such

as arterial pressure, heart rate, and vascular tone [52,53].

Furthermore, circadian variation is an important factor in the

manifestation of cardiovascular pathology, including myocardial

infarction, sudden cardiac death and stroke [52]. The role of

identified miRNAs with Bmal1 as a putative target and rhythmic

variations in their circulating levels in cardiovascular physiology

and disease is currently unknown. However, miR-494 has been

recently implicated in cardiac pathophysiological processes

because cardiac-specific over-expression of this miRNA reduces

myocardial infarction size in response to ischemia/reperfusion-

induced cardiac injury [54]. In addition, the recent finding that

deletion of several secretory vesicle proteins disrupts circadian

rhythms of blood pressure and heart rate in the mouse [55] may

have further implications for the role of extracellular miRNAs in

regulating cardiovascular physiology. Nevertheless, our results

suggest that extracellular miRNAs may play a role in the

regulation of peripheral circadian clocks and that circadian

profiling and comparison of different serum miRNAs in various

disease models may provide a valuable tool in identifying

biomarkers for human cardiovascular pathologies associated with

circadian rhythm disturbances.

Supporting Information

Figure S1 Estimation of qPCR efficiencies for Taqman
miRNA assays. qPCR efficiencies were calculated using the

formula; E = 10(21/slope of standard curve). Percentage efficiencies

were calculated using the formula; %E = (E21)6100. For miR-16

and miR-152 assays (A), ‘E’ was calculated based on the slopes of

standard curves generated using synthetic single-stranded RNA

oligonucleotides. For miR-142-3p and miR-494 assays (B), the

slopes of standard curves generated using dilutions of a calibrator

created from pooled cDNA samples from various timepoints were

used to calculate ‘E’.

(TIF)

Figure S2 Design of pEZX-MT01 Bmal1 and cKit 39 UTR
luciferase reporter vectors. pEZX-MT01 dual luciferase

reporter plasmid construct encodes a chimeric transcript

containing the mouse Bmal1 or cKit 39 UTR tagged to firefly

luciferase coding sequence under control of an SV40 enhancer.

In comparison, the miRNA 39 UTR target control vector lacks a

39 UTR target downstream of the pEZX-MT01 firefly luciferase

coding sequence. All vectors contain a kanamycin resistance

cassette for selection of bacterial transformants stably expressing

the pEZX-MT01 plasmid and the Renilla luciferase coding

sequence transcribed under control of CMV promoter to

normalize firefly luciferase signal intensities across samples.

(TIF)

Figure S3 Predicted interactions between miR-494,
miR-152 and miR-142-3p and the Bmal1 39 UTR.
Diagrammatic representation of predicted interactions between mature

(A) miR-494, (B) miR-152 and (C) miR-142-3p with complementary

regions of the wild-type Bmal1 39 UTR. Dotted lines indicate potential

stabilizing interactions between guanine and thymine bases.

(TIF)
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