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Abstract: Mitochondrial dysfunction has emerged as a central pathomechanism in the setting of
obesity and diabetes mellitus, linking these intertwined pathologies that share insulin resistance as
a common denominator. High-resolution respirometry (HRR) is a state-of-the-art research method
currently used to study mitochondrial respiration and its impairment in health and disease. Tissue
samples, cells or isolated mitochondria are exposed to various substrate-uncoupler-inhibitor-titration
protocols, which allows the measurement and calculation of several parameters of mitochondrial
respiration. In this review, we discuss the alterations of mitochondrial bioenergetics in the main
dysfunctional organs that contribute to the development of the obese and diabetic phenotypes in both
animal models and human subjects. Herein we review data regarding the impairment of oxidative
phosphorylation as integrated mitochondrial function assessed by means of HRR. We acknowledge
the critical role of this method in determining the alterations in oxidative phosphorylation occurring
in the early stages of metabolic pathologies. We conclude that there is a mutual two-way relationship
between mitochondrial dysfunction and insulin insensitivity that characterizes these diseases.

Keywords: obesity; diabetes mellitus; insulin resistance; mitochondrial respiration; high-resolution
respirometry

1. Introduction

Mitochondria are central organelles that provide energy via the process of oxidative
phosphorylation (OXPHOS), which produces adenosine triphosphate (ATP), the main
cellular energy currency [1]. This is a complex, highly-coordinated process that requires the
oxidation of NADH or FADH2 generated via glycolysis, Krebs cycle or β-oxidation of fatty
acids, with the metabolic flux being driven by the ATP demand. Mitochondrial function
or mitochondrial respiratory capacity refers to the capability of mitochondria to generate
ATP in order to match the cellular demand. Conversely, mitochondrial dysfunction in
bioenergetics refers stricto sensu to the inability of mitochondria to appropriately generate
ATP in response to energy demands; however, in a wider understanding, several other
functions such as impaired redox and calcium homeostasis, intermediary metabolism and
cell death regulation are also included under the umbrella of mitochondrial dysfunction [2].
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Research from the past decades has shown that impaired bioenergetics is implicated in
the pathophysiology of a large spectrum of diseases [3–6], and pharmacological targeting of
the energy metabolism is a promising therapeutic approach in these conditions, including
obesity [7–12].

Metabolic diseases are characterized by the impairment of carbohydrate and lipid
metabolism and numerous comorbidities that ultimately lead to premature death. A
plethora of studies support the hypothesis that mitochondrial dysfunction is a key path-
omechanism that links obesity and type 2 diabetes (T2D), both conditions being charac-
terized by insulin resistance [13–16]. The decrease in OXPHOS is most frequently associ-
ated with an increase in mitochondrial reactive oxygen species (ROS) generation, which
has been linked to the onset and progression of biological changes accompanying the
cardiometabolic pathologies.

Obesity has been declared by the World Health Organization (WHO) as an ongoing
epidemic of the 21st century, a disease “with no borders” whose prevalence has nearly
tripled since the 1970s, thus posing a huge social and health system burden worldwide.
Despite tremendous research efforts, ‘globesity’ (a term coined by WHO two decades ago)
continues to spread around the world, and is the major risk factor for the most frequent
non-communicable diseases (NCD), namely T2D and cardiovascular diseases. While there
is a clear causal link between obesity and diabetes, it is still unclear why only some obese
persons develop diabetes.

Mitochondrial respiratory dysfunction is a common denominator in many NCD, and
supports both the decrease in energy utilization and insulin insensitivity, the signature of
T2D [15,17]. Current estimates place around 537 million people as suffering from diabetes
worldwide, mostly T2D, a worrisome fact that is strongly entwined with the global rise in
obesity prevalence [18]. Diabetes mellitus is a chronic condition in which decreased insulin
activity, manifested as either tissue insulin insensitivity or insulin amount, causes reduced
glucose disposal [18,19]. In long term, chronic hyperglycemia, metabolic abnormalities
(gluco- and lipo-toxicity) and oxidative stress eventually lead to progressive β-cell loss and
failure with subsequent decreased insulin secretion, which further impairs the glycemic
control [20,21].

Obesity and diabetes are components of metabolic syndrome, a condition that causes
chronic complications and complex disease associations ranging from increased cardiovas-
cular risk, chronic kidney disease, cancer and mental disorders, all reducing the quality of
life [22–24]. Alterations in energy production are thought to be major contributors to the
pathophysiology of these diseases and their complications [14,16,19].

The purpose of this manuscript is to provide a brief overview of the impact of metabolic
diseases on mitochondrial respiration, as assessed by means of high-resolution respirometry,
in both animal models and humans.

High-Resolution Respirometry

Measuring mitochondrial respiration provides the most valuable insight into the cellu-
lar oxidative metabolism [25]. The gold standard in assessing the mitochondrial respiratory
function was introduced more than half century ago and consists of the polarographic
measurement of the oxygen consumption rates (OCR) in isolated mitochondria and cells
with the aid of the Clark electrode [26]. High-resolution respirometry (HRR) provides
nowadays the most accurate amperometric measurement of OCR by using closed air-tight
reaction chambers and oxygen sensors with high sensitivity and increased precision [25–27].
With the introduction of the HRR method, the classic term “electron transport chain” has
been replaced with more accurate terminology, namely the “electron transport system”
(ETS) [27,28]. The efficiency of OXPHOS depends on the delivery of the reducing equiv-
alents into the ETS as well as on the activities of the enzymatic complexes. The optimal
efficiency and flow ratios are determined by control of complex I (CI) and II (CII). In HRR
assays, the supply of CI and CII substrates (NADH and succinate-pathways) are most
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frequently used to achieve the convergent electron input at the Q-junction and the maximal
OXPHOS and ETS capacities, respectively [29].

Specifically, samples are exposed to respiratory substrates, inhibitors and uncouplers
in a standard order based on the ETS pathways, according to the so-called SUIT (Substrate-
Uncoupler-Inhibitor Titration) protocols, which allows understanding of mitochondrial
respiratory control in health and disease via the measurement of respiratory parame-
ters [25,28]. Further analysis of mitochondrial respiratory dys/function is achieved by
computing the flux control ratios (FCR) as ratios of oxygen flux in different respiratory
control states, normalized for maximum flux corresponding to a reference respiratory
state. FCR obtained from a SUIT protocol provide an internal normalization, expressing
respiratory control independent of the mitochondrial content/markers for mitochondrial
amount (e.g., mtDNA, citrate synthase, tissue protein or mass) and tend to be more compa-
rable between different studies [29,30]. Since normalization is an important issue in the
interpretation of the results in HRR experiments, the biomarker use for normalization is
mentioned in the tables summarizing the literature data and is further examined in the
Discussion section.

Current definitions of the respiratory parameters and several flux control ratios can be
found in the publications of Gnaiger et al. at the bioblast/mitopedia site; those used in the
current review are briefly summarized in Table 1.

Table 1. Respirometry parameters and some control ratios assessed by HRR [28].

Parameter Definition

ROUTINE respiration Mitochondrial respiration at non-saturating levels
of ADP

OXPHOS capacity Respiratory capacity of mitochondria in an
ADP-stimulated state at saturating levels of ADP

ET capacity
Mitochondrial respiration in the non-coupled state,
achieved by titrating an optimum concentration of

uncouplers (protonophores)

LEAK respiration

Non-phosphorylating state when oxygen flux is
minimized by the backpressure of a high

protonmotive force generated by ATP
synthase inhibition

RCR Respiratory control ratio. Calculated as OXPHOS
capacity/LEAK respiration

UCR Uncoupling control ratio. Calculated as ET
capacity/Routine respiration

P/E control ratio Phosphorylation system control ratio. Calculated as
OXPHOS capacity/ET capacity

L/E coupling-control ratio Flux ratio. Calculated as LEAK
respiration/ET capacity

Figure 1 presents a typical HRR trace of permeabilized platelets recorded with the
oxygraph O2-k (courtesy of Vlad Avram). In brief, platelets are added to the respiratory
buffer inside the chambers, and cellular respiration is allowed to stabilize in order to
measure the ROUTINE respiration (respiration in the physiological coupling state using
endogenous substrates). The SUIT protocol starts after permeabilization of the plasma
membrane with digitonin. In the presence of ADP and the conventional substrates for CI
(pyruvate, glutamate, malate) and CII (succinate), the simultaneous, convergent electron
flow into the Q-junction mimicks the action of the Krebs cycle in intact cells and allows
the measurement of OXPHOS capacity (the maximum active respiration). The LEAK state
(the non-phosphorylating respiration) is measured in the presence of oligomycin (the ATP
synthase inhibitor). The ET capacity for CI and CII (the maximal uncoupled respiration as
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indicator of the maximal ETS activity) is further obtained by stepwise titration with the
protonophore, FCCP (carbonylcyanide p-trifluoro-methoxyphenyl-hydrazone). Complex I
activity is then inhibited by rotenone to assess the ET capacity for CII. Finally, complex III is
inhibited with antimycin A, allowing the measure the residual oxygen consumption (ROX)
due to processes other than OXPHOS (which are subtracted from the other respiratory
rates) [31].
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Figure 1. A representative trace of HRR in permeabilized cells (platelets) displaying the oxygen
concentration in the chamber over time (blue trace) and the oxygen flux (red trace) according to
the SUIT protocol. The additions are provided in the upper part of the chart. The respiratory
parameters are provided in the lower part: ROUTINE respiration; OXPHOS capacity (the maximal
active respiration in the presence of CI and CII substrates plus ADP); LEAK (the non-phosphorylating
respiration in the presence of oligomycin); ET capacity (the maximal uncoupled respiration in the
presence of FCCP); and ROX (residual oxygen consumption). See the explanations in the text above.

For a detailed description of the experimental protocols of HRR, readers are invited to
review the excellent paper of Djafarzadeh and Jakob published in the Journal of Visualized
Experiments [25].

2. Effects of Obesity on Mitochondrial Respiration in Animal Studies
2.1. Mitochondrial Respiration in the Striatal Muscle of Obese Animals

Hey-Mogensen et al. have investigated mitochondrial respiration in soleus muscle
of Zucker rats by using HRR to determine the effects of age and obesity. Obesity did not
alter mitochondrial OXPHOS in young animals, whereas it reduced the OXPHOS capacity
in adult rats. Advanced age also had an independent effect on increasing mitochondrial
H2O2 release in both lean and obese animals [32].

In contrast, Rodrigues et al. reported that basal mitochondrial respiration, LEAK
respiration and non-mitochondrial oxygen consumption were unchanged in diaphragms
of rats with overfeeding-induced obesity. Samples from the obese group presented higher
OXPHOS and ET capacities, and the authors suggested the changes are the respiratory
adaptation to an increased metabolic demand [33]. Overall, these data also imply that the
persistent metabolic challenge becomes detrimental and leads to a bioenergetic decline in
skeletal muscles of obese animals.

2.2. Mitochondrial Respiration in the Liver of Obese Animals

Zhao et. al. used two models of obesity, a high-fat diet, and a combination of high-fat,
high-fructose, high-cholesterol diets, in three male mice strains (SPF, B6 or D2). HRR was
performed on liver tissue harvested at 4, 8, 12 and 18 weeks on these diets. The D2 mice
fed with high-fat diet presented with lower ET capacity accompanied by a reduction in
OXPHOS capacity from 8 weeks onward, suggesting that the liver oxidative metabolism in
this strain is sensitive to excessive fat. In contrast, OXPHOS capacity was lower in obese B6
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mice fed with high-fat diet only at the 4-week time point, after which respiratory rates were
similar to those of the control livers. However, a high-fat, high-fructose, high-cholesterol
diet had a strong impact on liver oxidative metabolism in the male B6 mice, which presented
lower ET capacity, LEAK respiration and OXPHOS capacity. All three strains showed lower
RCR values, suggesting that mitochondrial uncoupling was a common feature in liver mito-
chondria of the overfed mice. The RCR reduction occurred at different time points during
the study and was correlated with the development of non-alcoholic steatohepatitis (NASH)
features in liver, suggesting that mitochondrial uncoupling may be a pathomechanism of
this condition [34].

2.3. Mitochondrial Respiration in the Heart of Obese Animals

Boardman et al. used a diet-induced obese mouse model and assessed mitochondrial
respiration in the murine hearts using the HRR technique. These authors reported decreased
NADH-linked ROUTINE respiration, impaired NADH-linked OXPHOS capacity and
unchanged RCR [35]. Similar results were found by Guarini et al. in Zucker rat hearts
demonstrating impaired OXPHOS and ET capacities with no change in LEAK respiration
and RCR [36]. These data indicate that while oxidative metabolism is decreased in the
hearts of obese rodents, the mitochondrial coupling capacity is maintained.

Wang et al. measured mitochondrial respiratory capacities in the hearts of ob/ob
vs. wild-type mice on either a regular chow or high-fat diet across four age groups to
investigate the impact of diet and age on mitochondrial function. No difference was found
in NADH-linked OXPHOS or ROUTINE respiration. When the 2- and 4-month-old groups
were compared, there was a significant effect of high fat diet on increasing mitochondrial
capacity to oxidize fatty acids in younger animals. In addition, the high-fat diet increased
ROUTINE respiration in 2-month-old wild-type mice, but not in ob/ob mice. The same
pattern was also observed in NADH-linked OXPHOS, suggesting a limitation of respiration
at complex I in these rodents. Reduced RCR due to a high-fat diet suggests an increase in
mitochondrial uncoupling [37]. Table 2 presents a summary of the main HRR studies in
obese animals.

Table 2. High-resolution respirometry findings in animal obesity studies.

Animal Model Tissue Type Main Effects Normalization Ref.

Zucker rats Skeletal muscle
(Soleus muscle)

Decreased OXPHOS capacity in adult
No change in OXPHOS capacity in young

Citrate
synthase

[32]

Wistar rats Skeletal muscle
(left diaphragm)

No change in ROUTINE respiration
No change in LEAK respiration
No change in ROX
Increased OXPHOS capacity
Increased ET capacity

Tissue mass [33]

SPF male B6 and D2
mice

Liver tissue Decreased OXPHOS capacity
Decreased ET capacity
Decreased RCR

Tissue mass [34]

C57BL/6J male mice Heart muscle
(Langendorff-perfused hearts)

Decreased ROUTINE respiration
Decreased NADH-linked OXPHOS capacity
No change in RCR

Tissue protein [35]

Zucker rats Heart muscle
(Langendorff-perfused hearts)

Decreased OXPHOS capacity
Decreased ET capacity
No change in LEAK respiration
No change in RCR

Tissue mass [36]

3. Effects of Diabetes on Mitochondrial Respiration in Animal Studies
3.1. Mitochondrial Respiration in the Skeletal Muscle of Diabetic Animals

Holmstrom et al. showed that NADH-linked OXPHOS, OXPHOS capacity, ET capacity
and succinate-linked ET capacity are increased in the extensor digitorum longus muscles
of diabetic (db/db) mice. In contrast, in soleus muscle, the NADH-linked OXPHOS was
significantly decreased, whereas all the other parameters had a similar trend. These
data suggest that mitochondrial metabolism in different types of muscle is differently
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affected by diabetes, an observation that was reported in both rodents and patients with
diabetes [38–40].

Wessels et al. found no difference in the OXPHOS state supported by CI and CII
substrates when comparing lean non-diabetic fa/+ and obese diabetic fa/fa adult male ZDF
rats. The RCR for CII supported respiration was unchanged while that for CI supported
respiration was increased in lean animals, suggesting uncoupling [41]. Fink et al. assessed
mitochondrial function at different ADP concentrations and observed a rightward shift
in the relationship between mitochondrial oxygen consumption and ADP concentration
in diabetic rats. This observation indicates that diabetic mitochondria require more ADP
to produce ATP, and when the optimal ADP concentration is not available, less ATP
will be produced, supporting the concept that ADP concentration is a limiting factor for
OXPHOS [42].

In a comprehensive study, Alimujiang et al. have investigated the mitochondrial
function in both muscle and liver of animal models with different types and stages of
diabetes. T1D was induced by streptozotocin (STZ) injection. The db/db mice were used
as a T2D model, and high-fat diet-induced obesity represented a pre-diabetic stage of
T2D. In early stages of T1D and T2D no changes was observed in NADH-linked OXPHOS,
succinate-linked OXPHOS, NADH-linked ET capacity and succinate-linked ET capacity,
suggesting that the decline in mitochondrial metabolism in the muscles depends on the
duration of diabetic metabolic disturbances [43].

3.2. Mitochondrial Respiration in the Liver of Diabetic Animals

In the same elegant study, Alimujiang et al. also investigated mitochondrial function
in livers harvested from mice with different types and stages of diabetes. At the early stage
of T1D, liver mitochondrial respiration was increased as shown by elevated NADH-linked
OXPHOS, succinate-linked OXPHOS, NADH-linked ET capacity and succinate-linked ET
capacity, whereas in the late stages, respiration was only slightly increased or comparable
with the control group. Similar observations were reported for T2D in both early and late
stages, with the latter showing statistically significant increases for succinate-linked ET
capacity [43].

Bouderba et al. conducted a study on Psammomys obesus, a model of nutritional dia-
betes; adult animals develop insulin resistance when fed a standard laboratory chow, which
is considered hypercaloric compared with their natural food. In liver mitochondria isolated
from the diabetic animals, ROUTINE respiration with CI substrates and NADH-linked
OXPHOS were decreased, whereas the succinate pathway remained largely unaffected.
Even though LEAK respiration was not modified by the diabetic state, uncoupling was
shown by the decrease in RCR [44].

Yin et al. harvested liver samples from db/db mice and found that diabetic livers
presented a significant decrease in mitochondrial oxygen consumption mediated by CI, CII
and CIV [45].

Holmstrom et al. reported that LEAK respiration and OXPHOS capacity were un-
changed, whereas ET capacity and succinate-linked ET capacity were lower in diabetic
mice. The L/E coupling control ratio was comparable between the two groups, whereas
the P/E control ratio was increased, indicating that the OXPHOS in liver tissue of diabetic
mice is less limited by the phosphorylating system [28,38].

Franko et al. aimed to delineate the contribution of insulin resistance versus the long-
term adaptation of mitochondrial respiration to the metabolic challenge. Mice were either
fed with a high-fat diet to induce obesity and T2D, had a genetic defect in insulin signaling
causing systemic insulin resistance but not full-blown diabetes (IR/IRS-1+/mice), or were
treated with streptozotocin to induce T1D. The response of liver mitochondria to the three
metabolic challenges was different. For example, the high-fat diet mice showed similar
NADH-linked and succinate-linked respiration to the controls. The insulin resistant mice
had no change in NADH-linked respiration, but decreased succinate-linked respiration.
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In contrast, the T1D model animals exhibited increased NADH-linked respiration and
unmodified succinate-linked respiration [46].

In conclusion, in animal models, liver mitochondrial respiration varies not only with
the type of diabetes but also with the duration of disease [43,46].

3.3. Mitochondrial Respiration in the Heart of Diabetic Animals

The bioenergetic impairment in diabetic hearts (in animal models and humans) has
recently been investigated in light of the diabetic cardiomyopathy pathomechanisms [47].
Marciniak et al. compared drug- and diet-induced models of diabetes in terms of metabolic
features and mitochondrial functions. Mice were fed with regular chow or a fat-enriched
diet for 3 weeks, and then were randomized to receive either streptozotocin or citrate
injections. Mice fed with the regular chow diet and injected with streptozotocin did not
develop mitochondrial respiratory defects. In contrast, both groups of high-fat diet fed
mice (injected or not with streptozotocin) showed a reduction of NADH-linked OXPHOS in
the heart [48]. Furthermore, Gupte et al. conducted a study to determine the effects of diet
and age on cardiac mitochondrial function. Adult insulin resistant mice fed a high-fat diet
presented increased NADH-linked and succinate-linked OXPHOS. The addition of rotenone
(CI inhibitor) led to a slightly higher respiration in high-fat diet fed insulin resistant
mice, suggesting that the succinate oxidation is enhanced by the metabolic challenge [49].
However, since RCR was increased indicating uncoupling, mitochondrial respiration is
inefficient and does not result in higher ATP generation [28,49]. In contrast, Parker et al.
reported a decrease in succinate-linked OXPHOS in diabetic rat hearts [50]. Similarly,
other authors have found that heart mitochondrial respiration is impaired in diabetic
rats, presenting reduced NADH-linked OXPHOS, OXPHOS capacity and decreased ET
capacity [51–54].

Mitochondrial respiration is considered a key factor in the development of complica-
tions in diabetes. Watala et al. used a rat model to decipher this pathogenic link [55–57].
These experiments yielded interesting results, namely that diabetic heart mitochondria
presented a lower RCR and higher L/E control ratio, thus indicating that diabetes induces
cardiac uncoupling. The fact that the diabetic group was associated with a lower ADP/O
ratio further suggests that these mitochondria produce less ATP than healthy controls [57].
The calculated P/E control ratio in diabetic heart mitochondria was close to 1, indicating
that OXPHOS equals the ET capacity and lack of respiratory reserve [28,57]. In contrast,
in NOD mice, a model of T1D, Schleier et al. reported that heart mitochondria showed
higher RCR and lower LEAK respiration with no change in maximal OXPHOS compared
with their controls, which suggests that the diabetic mitochondria are better coupled in this
experimental model [58].

Kiebish et al. found that transgenic cardiac myocyte-specific cardiolipin synthase
(CLS) mice presented lower mitochondrial respiratory rates than those of wild type mice
after developing STZ-induced T1D [52]. Collectively, all these data suggest that the impact
of diabetes on mitochondrial respiratory function varies among species.

Jayakumari et al. investigated the cardiac mitochondrial substrate utilization in
diabetic mice at 2 and 10 weeks of hyperglycemia, respectively. They found that the
2-week (but not the 10-week) diabetic mice presented a reduction in both CI and CII-
dependent OXPHOS and also in OXPHOS supported by CII alone. At 10 weeks of diabetes,
there was no difference in the OXPHOS capacity between the groups. These specific
changes in mitochondrial respiration supported by different energetic substrates may
reflect differences in the expression of OXPHOS complexes since the authors reported a
decreased expression of both CI and CII at 2 weeks (but not at 10 weeks) of diabetes [59].

MacDonald et al. evaluated the effects of diabetes and age upon mitochondrial
respiration of saponin-skinned fibers dissected from the subendocardium and subepi-
cardium of the left ventricles of Wistar rats. Diabetic rats had lower OXPHOS capacity
with an associated decrease in NADH-linked OXPHOS; the results were similar when
normalizing to either weight of muscle tissue or the activity of citrate synthase (CS), a
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mitochondrial marker enzyme. In addition, both ET capacity and CII-dependent ET capac-
ity were impaired by the diabetes status. In addition, mitochondrial function was further
compromised by uncoupling as CI-dependent LEAK respiration was found increased, an
observation that was confirmed by the decreased CI-dependent RCR, but CII-dependent
LEAK respiration was decreased [54]. These authors concluded that age leads to a similar
impairment in CI substrate phosphorylation, an observation which has been confirmed by
other groups [51,52,54]. This similarity between diabetes and aging led to the hypothesis
that mitochondrial dysfunction contributes to the increased prevalence of diabetes and its
complications with age [60–62].

3.4. Mitochondrial Respiration in Other Tissues of Diabetic Animals—Insights into Chronic and
Acute Complications

Long term diabetes is associated with several complications such as diabetic retinopa-
thy (DR) or nephropathy (DN) [23,63].

Nowadays there is unequivocal evidence that the microvascular disease in DR is
partly due to the impaired bioenergetics in the neural retina, as recently reviewed [64].
Santos et al. [65] reported a decade ago that in the early stages of T1D, increased mtDNA
biogenesis and repair compensates for the ROS-induced damage, but, at 6 months of
diabetes, this mechanism is overwhelmed, and damage of mtDNA and ETS occurs.

Han et al. investigated mitochondrial respiration in retinal homogenates from the
Nile rat and found that upon normalizing to maximal OXPHOS, the capacity flux control
ratio (FCR) for the NADH pathway was impaired by sustained hyperglycemia (18 months),
whereas the succinate pathway presented increased FCR in the same setting. The coupling
control ratio was increased at 6 months of hyperglycemia but reached the values of the
control group at 18 months of hyperglycemia. However, these authors also reported that
compensatory changes in OXPHOS can be detected in retina as early as 2 months, prior to
the development of hyperglycemia, and they were associated with the impairment of the
mitochondrial outer membrane integrity [66].

Regarding DN, there are consistent findings of ETS defects, and a dichotomic behavior
has been reported in tubular (but not in the glomerular) mitochondria with the progression
of the disease. Thus, OXPHOS was increased during the early phases of experimental
diabetes in mitochondria isolated from the renal cortex and proximal tubular cells and
declined with the progression of albuminuria; however, the oxygen consumption rates
were decreased in mitochondria harvested from glomeruli and podocytes, regardless the
diabetic stage. An early increase in OXPHOS has been reported in diabetic cardiomyocytes
(not only in the renal tubules) and has been considered an adaptive change to the excess of
energetic substrates [67].

Serralha et al. investigated DN-elicited changes in mitochondrial respiration in the
kidneys of diabetic rats, and found there was a significant decrease in mitochondrial oxygen
consumption and RCR in the presence of CI substrates (malate and pyruvate), whereas
the respiratory rates were unchanged with succinate, the CII substrate [68]. Similarly,
Christensen et al. found decreases in CI-supported mitochondrial OXPHOS and total
OXPHOS without changes in RCR in the diabetic rat kidney. LEAK respiration was
increased in the kidney homogenates harvested from diabetic animals [69].

Hypoglycemia is the most common acute complication associated with the treatment of
diabetes and has a strong impact on brain metabolism and function [70–72]. Hippocampal
homogenate was used as a source of brain mitochondria by He et al. who reported
that recurrent hypoglycemia in diabetic rats caused a drop in NADH-linked OXPHOS,
OXPHOS capacity, ET capacity and succinate-dependent ET capacity compared with
diabetic controls without recurrent drops in glycemia. Even though the NADH-linked
pathway dependent LEAK respiration also decreased, the ATP concentration was low due
to recurrent hypoglycemias [73]. The main findings of the above-mentioned studies are
summarized in Table 3.
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Table 3. High-resolution respirometry findings in animal diabetes studies.

Animal Model Tissue Type Main Effects Normalization Ref.

C57BL/6J mice Skeletal muscle
(hindlimb muscle)

Peak respiration by the diabetic mitochondria
required a higher level of ADP (right shift in
the curve of O2 flux vs. ADP)

Tissue mass [42]

db/db mice bred on a
C57BL/6J background

Skeletal muscle
(soleus;

extensor digitorum
longus)

In soleus muscle:
Increased NADH-linked OXPHOS
Increased OXPHOS capacity
Increased ET capacity
Increased succinate-linked ET capacity
No change in LEAK respiration
No change in L/E coupling control ratio
No change in P/E control ratio

In extensor digitorum longus muscle:
Decreased NADH-linked OXPHOS
No change in OXPHOS capacity
No change in ET capacity
No change in succinate-linked ET capacity
Increased LEAK respiration
No change in L/E coupling control ratio
No change in P/E control ratio

Tissue mass [38]

C57BL/6J mice
(type 1 diabetes and

control)

C57BL/Ks db/db mice
(type 2 diabetes)

Skeletal muscle
(quadriceps femoris;

biceps femoris; soleus;
gastrocnemius)

In early-disease type 1 or type 2 diabetes:
No change in NADH-linked OXPHOS
No change in succinate-linked OXPHOS
No change in NADH-linked ET capacity
No change in succinate-linked ET capacity

Tissue mass [43]

ZDF rats
non-diabetic fa/+

ZDF rats
obese, diabetic, fa/fa

Skeletal muscle
(tibialis anterior)

No difference in NADH-linked OXPHOS
No difference in CII supported respiration
Increased RCR dependent on CI substrates
No difference in RCR dependent on CII
substrates

Tissue mass
Control

OXPHOS

[41]

db/db mice bred on a
C57BL/6J background

Liver tissue No change NADH-linked OXPHOS
No change in OXPHOS capacity
Decreased in ET capacity
Decreased succinate-linked ET capacity
No change LEAK respiration
No change in L/E coupling control ratio
Increased in P/E control ratio

Tissue mass [38]

C57BL/6J mice
(type 1 diabetes and

control)

C57BL/Ks db/db mice
(type 2 diabetes)

Liver tissue At the early stage of type 1 diabetes:
Increased NADH-linked OXPHOS
Increased succinate-linked OXPHOS
Increased NADH-linked ET capacity
Increased succinate-linked ET capacity

At the late stage of type 1 diabetes:
No change in NADH-linked OXPHOS
No change in succinate-linked OXPHOS
No change in NADH-linked ET capacity
No change in succinate-linked ET capacity

At the early stage of type 2 diabetes:
Increased NADH-linked OXPHOS
Increased succinate-linked OXPHOS
Increased NADH-linked ET capacity
Increased succinate-linked ET capacity

At the late stage of type 2 diabetes:
No change in NADH-linked OXPHOS
No change in succinate-linked OXPHOS
No change in NADH-linked ET capacity
Increased succinate-linked ET capacity

Tissue mass [43]
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Table 3. Cont.

Animal Model Tissue Type Main Effects Normalization Ref.

IR/IRS-1+/−

mice generated by
crossing mice

heterozygous for insulin
receptor

null and IRS-1 null alleles,
respectively, into the

C57BL/6N background

Liver tissue In high fat diet type 2 diabetic mouse model:
No change in NADH-linked ROUTINE
respiration
No change in succinate-linked ROUTINE
respiration

In insulin-resistant mouse model (without diabetes):
No change in NADH-linked ROUTINE
respiration
Decreased succinate-linked ROUTINE
respiration

In type 1 diabetic mouse model:
Increased in NADH-linked ROUTINE
respiration
No change in succinate-linked ROUTINE
respiration

Tissue protein [46]

Psammomys obesus Liver tissue Decreased NADH-linked ROUTINE respiration
Decreased NADH-linked OXPHOS
No change in succinate-linked ROUTINE
respiration
No change in succinate-linked OXPHOS
No change in LEAK respiration
Decreased RCR

Tissue protein [44]

C57BLKS/J db/db and
db/m mice

Liver tissue Decreased NADH-linked OXPHOS
Decreased succinate-linked OXPHOS
Decreased CIV-dependent OXPHOS

Mitochondrial
mass

[45]

FVB/N mice Heart muscle
(left ventricle)

No change in NADH-linked OXPHOS
Decreased succinate-linked OXPHOS
No change in LEAK respiration

Tissue mass [50]

Ldlr−/− and C57BL/6J
mice

Heart muscle Increased NADH-linked OXPHOS
Increased succinate-linked OXPHOS

To controls [49]

C57/BL6J mice Heart muscle Decreased NADH-linked OXPHOS Tissue mass
mtDNA copy

number

[48]

Wistar rats Heart muscle Decreased RCR
Higher LEAK control ratio
Increased P/E control ratio

No information [57]

Wistar rats Heart muscle Decreased NADH-linked OXPHOS
Decreased OXPHOS capacity
Decreased ET capacity
Decreased RCR dependent on CI substrates
No difference in RCR dependent on CII
substrates

Tissue mass
Citrate synthase

[54]

Wistar rats Heart muscle Decreased NADH-linked OXPHOS
Decreased OXPHOS capacity
Decreased ET capacity

Volume [51]

C57BL/6 mice Heart muscle At 2 weeks of diabetes:
Decreased NADH-linked OXPHOS
Decreased succinate-linked OXPHOS
Decreased OXPHOS capacity

At 10 weeks of diabetes:
No changes NADH-linked OXPHOS mediated
by glutamate
Increased NADH-linked OXPHOS mediated by
glutamate and pyruvate
No changes succinate-linked OXPHOS
No changes OXPHOS capacity

Mitochondrial
protein content

[59]

NOD/ShiLtJ mice and
NOR/Lt mice

Heart muscle No changes OXPHOS capacity
Decreased LEAK respiration
Increased RCR

Tissue mass [58]

db/+ and db/db
C57BL/Ks mice

Heart muscle Decreased NADH-linked OXPHOS
Decreased ET capacity
No change in LEAK respiration

Tissue protein [53]
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Table 3. Cont.

Animal Model Tissue Type Main Effects Normalization Ref.

wild type C57BL/6J mice
and CLS mice

Heart muscle Decreased NADH-linked OXPHOS
Decreased OXPHOS capacity
No change in LEAK respiration
No change NADH-linked OXPHOS
No change OXPHOS capacity
No change in LEAK respiration

Tissue protein [52]

Nile rats Retina homogenate Decreased FCR for NADH pathway
Increased FCR for succinate pathway
FCR normalized to OXPHOS capacity

Tissue mass [66]

TRPC6 global knockout
mice and wild type mice

Hippocampal neuron
homogenate

Decreased NADH-linked OXPHOS
Decreased OXPHOS capacity
Decreased ET capacity
Decreased succinate-dependent ET capacity
Decreased NADH-dependent LEAK
respiration

Tissue mass [73]

Wistar rats Kidney homogenate Decreased ROUTINE respiration in the
presence of CI substrates
No change in ROUTINE respiration in the
presence of CII substrate
No change in LEAK respiration
Decreased RCR dependent on CI substrates
No difference in RCR dependent on CII
substrates

Tissue mass [68]

Sprague-Dawley rats Kidney homogenate Decreased NADH-linked OXPHOS
Decreased OXPHOS capacity
No change in RCR
Increased LEAK respiration

Mitochondrial
protein content

[69]

4. Effects of Obesity on Mitochondrial Respiration in Human Studies
4.1. Mitochondrial Respiration in Skeletal Muscle of Obese Patients

Conflicting data are available in the literature regarding the bioenergetic impairment
in human skeletal muscles. Thus, Vijgen et al. found that skeletal muscle mitochondrial
respiration is decreased in morbidly obese patients. Specifically, OXPHOS capacity sup-
ported by both CI and CII substrates was significantly lower than in lean controls, while
LEAK respiration was unchanged [74]. In a study carried out by Phielix et al., similar
changes in mitochondrial respiratory function were found in the permeabilized muscle
fibers of non-diabetic obese and diabetic obese patients compared with non-diabetic lean
controls. Non-diabetic obese subjects presented impaired mitochondrial NADH-linked
respiration, decreased total OXPHOS capacity along with diminished maximal noncoupled
respiration, i.e., ET capacity [75]. In contrast, Ara et al. reported unchanged mitochondrial
respiratory function of muscle fibers harvested from deltoid and vastus lateralis muscles of
obese subjects vs. lean controls [76].

Weight loss intervention did not lead to significant differences in mitochondrial OX-
PHOS or LEAK respiration for morbidly obese patients in comparison with lean controls,
although NADH-linked respiration significantly increased after weight loss. In addition,
the contribution of LEAK respiration to OXPHOS was diminished by weight loss [74]. Coen
et al. showed that exercise and weight loss not only improve insulin sensitivity, but also
increase mitochondrial NADH-linked respiration, OXPHOS capacity and ET capacity, and
Fiorenza et al. have shown improvements in OXPHOS coupling efficiency [77,78]. This fur-
ther adds to the great body of evidence that suggests that weight loss and physical exercise
are key factors in the treatment and prevention of T2D via improvements in mitochondrial
energetic metabolism [79,80].

4.2. Mitochondrial Respiration in Liver of Obese Patients

Lund et al. compared the hepatic mitochondrial OXPHOS capacity in obese and non-
obese human subjects by using perioperative liver biopsies. They reported that OXPHOS
mediated by complex I, II and IV and the CS activity did not differ when comparing the
two groups [81].
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Koliaki et al. directly quantified mitochondrial respiration in liver biopsies of obese
insulin-resistant humans without or with histologically proven non-alcoholic fatty liver
(NAFL) or with non-alcoholic steato-hepatitis (NASH) and compared with that of lean
individuals. Despite similar mitochondrial content, obese humans, disregarding the NAFL
status, had 4.3- to 5.0-fold higher maximal respiration rates compared with lean subjects.
However, based on the decreased RCR and increased L/E coupling control ratio, liver mi-
tochondria from obese subjects were uncoupled. The ET capacity had a positive correlation
with serum glucose and triglycerides and a negative correlation with insulin sensitivity [82].

In conclusion, these data suggest that obesity complicated with liver pathology such
as NAFL or NASH is associated with increased liver oxidative metabolism that most likely
does not translate into increased ATP generation due to uncoupling [82].

4.3. Mitochondrial Respiration in Adipose Tissue of Obese Patients

Kraunsoe et al. used HRR to quantify mitochondrial respiration in human abdominal
subcutaneous and intra-abdominal visceral (omentum majus) adipose tissue from biopsies
obtained from obese patients undergoing bariatric surgery. Visceral fat contained more
mitochondria per milligram of tissue than subcutaneous fat, but the cells were smaller.
NADH-linked respiration, OXPHOS capacity and ET capacity were higher in visceral
adipose tissue than in subcutaneous fat when normalizing to tissue weight. However,
when expressed per mtDNA, visceral adipose tissue had significantly lower mitochondrial
respiration [83]. Substrate control ratios were higher and the coupling control ratio lower
in visceral compared with subcutaneous adipose tissue, suggesting mitochondrial uncou-
pling [28,83]. Mitochondrial uncoupling has been causally linked to the onset of diabetes
and visceral abdominal fat and is a predictor of insulin resistance, further supporting the
hypothesis that mitochondrial dysfunction may contribute to the transition between obesity
and diabetes mellitus [84,85].

4.4. Mitochondrial Respiration in Myometrum of Obese Patients

Gam et al. aimed to investigate whether pre-pregnancy obesity alters or can predict
alterations in the mitochondrial phenotype in human myometrium at term. Oxygen
consumption assessed as OXPHOS capacity, NADH-and rotenone-inhibited succinate
supported OXPHOS was unchanged. However, the RCR was on average 20% lower in
the obese group compared with the controls, suggesting the presence of mitochondrial
uncoupling [86]. In Table 4, data regarding the main HRR findings in obese patients
are summarized.

Table 4. High-resolution respirometry findings in human obesity studies.

Cell Type
(Harvest Site) Main Effects Normalization Ref.

Skeletal muscle
(vastus lateralis)

Reduced NADH-linked OXPHOS
Reduced OXPHOS capacity
Reduced ET-capacity

Tissue mass [75]

Skeletal muscle
(deltoideus;

vastus lateralis)

No change in NADH-linked OXPHOS
No change in OXPHOS capacity
No changes in ROX

Tissue mass [76]

Skeletal muscle
(quadriceps femoris)

Decreased OXPHOS capacity
No change in ET capacity

Tissue mass [74]

Liver tissue
(lower part of right liver lobe)

Increased NADH-linked OXPHOS
Increased OXPHOS capacity
Increased ET-capacity
Decreased RCR
Increased L/E coupling control ratio

Tissue protein [82]

Liver tissue
(lower part of right liver lobe)

No change in NADH-linked OXPHOS
No change in succinate linked OXPHOS
No change in ET-capacity

Tissue mass [81]
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Table 4. Cont.

Cell Type
(Harvest Site) Main Effects Normalization Ref.

Adipose tissue
(abdominal subcutaneous;

intra-abdominal visceral from
omentum majus)

No change in RCR
Decreased UCR
Visceral fat vs. subcutaneous fat

Number of cells
mtDNA content

[83]

Myometrial biopsies No change in NADH-linked OXPHOS
No change in OXPHOS capacity
Decreased RCR

No information [86]

5. Effects of Prediabetes on Mitochondrial Respiration in Humans

Szczerbinski et al. evaluated mitochondrial respiration in skeletal muscle and adipose
tissue of patients with prediabetes, defined as either fasting hyperglycemia or fasting hy-
perglycemia combined with an impaired glucose tolerance test. Mitochondrial respiration
was assessed in muscle before and after exercise intervention. Prior to the intervention,
prediabetic patients presented no difference in NADH-linked OXPHOS, maximum OX-
PHOS or ET capacity when compared with controls with normal blood glucose parameters.
Increase in exercise yielded no differences in mitochondrial respiratory parameters in
skeletal muscle. In contrast, in adipose tissue, physical exercise for 3 months increased
NADH-linked OXPHOS, maximum OXPHOS and ET capacity. The fact that exercise sig-
nificantly improved mitochondrial metabolism only in adipose tissue (and not in skeletal
muscle) strongly suggests that its impact is tissue specific and not related to the prediabetic
state [87]. In conclusion, prediabetes apparently does not impact on cellular respiration
(Table 5).

Table 5. High-resolution respirometry findings in prediabetes.

Cell Type
(Harvest Site) Main Effects Normalization Ref.

Skeletal muscle
(vastus lateralis)

No changes in NADH-linked OXPHOS
No changes in OXPHOS capacity
No changes in ET capacity

Tissue mass
Citrate synthase

[87]

Adipose tissue
(subcutaneous; periumbilical area)

No changes in NADH-linked OXPHOS
No changes in OXPHOS capacity
No changes in ET capacity

Tissue mass
Citrate synthase

[87]

6. Effects of Diabetes on Mitochondrial Respiration in Humans
6.1. Mitochondrial Respiration in Skeletal Muscle of Diabetic Patients

Mitochondrial respiration normalized per milligram of muscle weight was signifi-
cantly lower in patients with T2D compared with controls [40,88–91]. Specifically, NADH-
linked OXPHOS and OXPHOS capacity were significantly decreased, and ET capacity
declined [40,75,88–90,92,93]. However, Lund et al. reported no differences in mitochondrial
respiratory rates in skeletal muscle of diabetic obese versus non-diabetic obese patients
when normalized to both tissue weight and citrate synthase activity [94]. This was con-
firmed by another study in which the OXPHOS and ET capacities were normalized per
citrate synthase activity, as a measure of mitochondrial content [40,88,89]. In contrast,
Phielix et al. reported that OXPHOS capacity was reduced in diabetic patients, even when
normalized to mtDNA copy numbers as an indicator of mitochondrial content [90].

Rabol et al. compared mitochondrial respiration and markers of mitochondrial content
in the skeletal muscle of the arm and leg in patients with diabetes mellitus and obese control
subjects. Mitochondrial respiration was measured by HRR from biopsies of deltoideus
and vastus lateralis and showed variations between the two muscles. The differences in
OXPHOS in the leg muscles were seen with CI-dependent substrates and CI+II-dependent
substrates. The substrate control ratio for succinate was calculated and the ratio between
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state 3 with malate + glutamate + pyruvate + succinate and state 3 with malate + glutamate +
pyruvate was compared to determine whether CI was responsible for the decrease in
mitochondrial respiration. It was found that variations in respiration cannot be solely
explained by modifications in NADH-linked respiration. These authors did not observe
differences in mitochondrial respiration in the arm muscle between the groups; however,
they found that respiration was lower in arm muscle compared with leg muscle [40].
Comparable results were reported by Larsen et al., i.e., state 3 CI-dependent mitochondrial
respiration normalized to muscle tissue weight was decreased significantly in vastus
lateralis of diabetic patients compared with obese non-diabetic controls, whereas that in
deltoideus muscle was not changed [39]. When mitochondrial respiration was normalized
to citrate synthase activity (as a marker of mitochondrial content), no differences were found
between diabetic and control groups. However the calculated mitochondrial respiration
“per individual mitochondria” with electron flux through both NADH and the succinate
pathways was significantly higher in the arm muscles than leg muscles in the control
group [40]. Larsen et al. attributes the reduction in mitochondrial respiration in leg
muscles in diabetic patients mainly to the decreased mitochondrial content as indicated
by a lower CS activity compared with controls [39]. These findings are in line with the
concept that mitochondrial respiration and metabolic needs must match the energy demand,
which is different between upper and lower body musculature, a difference that may be a
consequence of evolution due to walking upright [39,40,95].

Antoun et al. examined oxidative phosphorylation and the ETS supercomplexes as-
sembly in rectus abdominis muscles of obese diabetic vs. obese non-diabetic individuals.
Mitochondrial respiration in permeabilized rectus abdominis muscle fiber was assessed us-
ing HRR. NADH-linked respiration, OXPHOS capacity and ET capacity were decreased in
muscle samples from diabetic patients. No differences were observed in LEAK respiration
(non-phosphorylating mitochondrial respiration) in the absence of ADP or in the presence
of oligomycin (ATP synthase inhibitor). Notably, with the exception of LEAK respiration,
there was an inverse correlation between HbA1c and mitochondrial respiratory rates in
both diabetic and non-diabetic human subjects [96]. A similar inverse correlation between
HbA1c and OXPHOS capacity was shown earlier by Mogensen et al. [91].

Exercise training is a key therapeutic strategy in diabetes that functions by increasing
insulin sensitivity and providing glycemic control. Phielix et al. reported that physical
exercise also improved the NADH-linked OXPHOS, OXPHOS capacity and ET capacity in
skeletal muscle of non-diabetic and diabetic patients with the same BMI. Exercise training
(12 weeks) increased NADH-linked respiration by 34%, OXPHOS capacity by 33% and ET
capacity by 33% in the diabetic patients. However, an increase in LEAK respiration (28%)
was also observed, suggesting that the increased respiration does not necessarily lead to an
efficient translation into more ATP generation. In addition, upon normalization to mtDNA
copy number, the increase in respiration due to training disappeared, indicating that the
improvement of mitochondrial metabolism in muscle fibers is attributed to an increase in
total number of mitochondria due to physical exercise [79,80,93].

6.2. Mitochondrial Respiration in Liver of Diabetic Patients

The data reported by Lund et al. on the OXPHOS capacity of human liver samples
do not support differences in the CI, CII and CIV-linked respiration in either obesity or
diabetes compared with controls; in addition, citrate synthase activity as an assessment of
mitochondrial content also was unchanged [81].

6.3. Mitochondrial Respiration in Adipose Tissue of Diabetic Patients

Hansen et al. aimed to study adipose tissue mitochondrial respiration and lipolysis in
patients with diabetes and obesity compared with non-diabetic controls following extensive
weight loss by diet and a Roux-en-Y gastric bypass. The mitochondrial respiratory rates
were similar. With normalization to the mitochondrial content, no differences in oxidative
capacity after gastric bypass were seen. The P/E control ratio increased 18 months after
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surgery in both groups, indicating that the OXPHOS capacity becomes less limited by the
phosphorylation system with weight loss [28,97]. Bódis et al. harvested adipose tissue (both
superficial and deep) and assessed mitochondrial respiration by HRR. Although respiratory
rates were similar between diabetic patients and healthy controls, a degree of mitochondrial
uncoupling was found in the diabetic group in both adipose tissue types, as indicated by
the decrease in RCR and increase in the LEAK control ratio [98]. These observations are in
line with the fact that uncoupling was reported solely in visceral adipose tissue of obese as
well as diabetic patients, and the percentage of visceral fat mass relative to the total body
fat was higher compared with that of the obese non-diabetic group [83,98]. Uncoupled
respiration is inefficient as it dissipates the protonomotive force; subsequently, the coupling
efficiency of OXPHOS is lower which, in turn, leads to decreased insulin secretion and/or
activity [14,28,99].

6.4. Mitochondrial Respiration in Hearts of Diabetic Patients

Montaigne et al. studied the effects of obesity, insulin resistance and diabetes on
contractility and mitochondrial function of the human myocardium before the onset of
cardiomyopathy. NADH-linked OXPHOS in atrial myocardium was decreased in diabetic
patients without signs of cardiomyopathy, whereas succinate-linked OXPHOS was de-
creased only in diabetic patients with normal weight (no change for overweight or obese
diabetic patients) [100]. Diabetes was associated with a poorly coupled respiration, as
demonstrated by the low RCR. These changes in mitochondrial respiration are similar to
thosse reported in skeletal muscle [90,93,96]. In contrast, the obese status was not associated
with altered cardiac mitochondrial respiratory rates, unlike in skeletal muscle [74,75,100].

Duicu et al. assessed mitochondrial oxygen consumption of atrial fibers harvested from
patients with coronary heart disease and diabetes. The group showed that mitochondrial
respiration was inhibited both through the NADH-linked and succinate-linked pathway,
leading to an all-round decrease in mitochondrial respiratory rates compared with controls
without coronary heart disease. NADH-linked respiration was more severely affected
in the diabetic group [101], which potentially may expose these patients to increased
oxidative stress [66,102]. Oxidative stress in the diabetic human hearts may be raised by
the increased expression of monoamine oxidase (in particular, the MAO-B isoform) that has
been associated with mitochondrial dysfunction [103] and a significant source of oxidative
stress in diabetes [104].

6.5. Mitochondrial Respiration in Platelets of Diabetic Patients

Circulating platelets offer a promising primary tissue alternative to biopsies for the
study of mitochondrial bioenergetics in both acute and chronic diseases [105]. Mitochon-
drial respiration in permeabilized human platelets was studied by Gvozdjakova et al. in
patients with chronic kidney disease and various comorbitidies, including a subgroup with
diabetes, and no significant differences were found compared with healthy volunteers [106].
In a pilot study, we also reported no differences in respiratory rates of both intact and
permeabilized platelets between diabetic patients and healthy controls; specifically, there
were no differences in LEAK respiration, E-L coupling efficiency, R-L control efficiency
(performed only in intact platelets) or P-L control efficiency (performed only in permeabi-
lized platelets), suggesting that there is no difference in the degree of uncoupling between
the two groups [107]. Whether diabetes has a lower impact on platelet mitochondrial
respiration compared with that in muscle or adipose tissue remains to be confirmed by
large, multicentric studies. Table 6 summarizes the main HRR changes in diabetic patients.
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Table 6. High-resolution respirometry findings in human diabetes studies.

Cell Type
(Harvest Site) Main Effects Normalization Ref.

Skeletal muscle
(vastus lateralis)

Decreased OXPHOS capacity Citrate synthase [91]

Skeletal muscle
(vastus lateralis)

Decreased NADH-linked OXPHOS
Decreased OXPHOS capacity
Decreased ET capacity

Tissue mass
Citrate synthase

[88]

Skeletal muscle
(vastus lateralis)

When normalizing to tissue weight:
Decreased NADH-linked OXPHOS
Decreased OXPHOS capacity
Decreased ET capacity

When normalizing to mtDNA content:
No changes in NADH-linked OXPHOS
No changes in OXPHOS capacity
No changes in ET capacity

Tissue mass
mtDNA content

[89]

Skeletal muscle
(vastus lateralis)

Decreased OXPHOS capacity
Decreased ET capacity

Citrate synthase
mtDNA content

[90]

Skeletal muscle
(deltoideus;

vastus lateralis)

In vastus lateralis:
Decreased NADH-linked OXPHOS
Decreased OXPHOS capacity

In deltoideus:
No change in NADH-linked OXPHOS
No change in OXPHOS capacity

Citrate synthase [40]

Skeletal muscle
(rectus abdominis)

Decreased NADH-linked OXPHOS
Decreased OXPHOS capacity
Decreased ET capacity

Tissue mass [96]

Skeletal muscle
(vastus lateralis)

Decreased NADH-linked OXPHOS
Decreased OXPHOS capacity
Decreased ET capacity

Tissue mass [75]

Skeletal muscle
(deltoideus;

vastus lateralis)

In deltoideus muscle:
No changes NADH-linked OXPHOS
No changes in OXPHOS capacity

In vastus lateralis muscle:
Decreased NADH-linked OXPHOS
Decreased in OXPHOS capacity

Citrate synthase [39]

Skeletal muscle
(vastus lateralis)

Decreased NADH-linked OXPHOS
Decreased OXPHOS capacity

Tissue mass
Citrate synthase

[92]

Skeletal muscle
(vastus lateralis)

Decreased NADH-linked OXPHOS
Decreased OXPHOS capacity
Decreased ET capacity

mtDNA content [93]

Skeletal muscle
(vastus lateralis)

No change in OXPHOS capacity
No change in ET capacity

Citrate synthase [94]

Adipose tissue
(subcutaneous paraumbilical

region:
superficial—above the fascia

Scarpa;
deep—beneath the fascia Scarpa)

No change in NADH-linked OXPHOS
No change in OXPHOS capacity
No change in ET capacity
Decreased RCR
Decreased LEAK control ratio

Citrate synthase [98]

Adipose tissue
(subcutaneous abdominal region)

No change in RCR Tissue mass
mtDNA content

[97]

Heart muscle
(right atrium)

Decreased NADH-linked OXPHOS
Decreased succinate-linked OXPHOS
Decreased RCR

Citrate synthase [100]

Heart muscle
(right atrium)

Decreased NADH-linked OXPHOS
Decreased NADH-linked ET capacity
Decreased NADH-linked LEAK respiration
Decreased succinate-linked OXPHOS
Decreased succinate-linked ET capacity
Decreased succinate-linked LEAK respiration

Volume
Citrate synthase

[101]



Int. J. Mol. Sci. 2022, 23, 8852 17 of 25

Table 6. Cont.

Cell Type
(Harvest Site) Main Effects Normalization Ref.

Platelets
(venous blood)

No change in NADH- and succinate linked OXPHOS
No change in ET capacity
No change in succinate-dependent ET capacity

Number of cells [106]

Platelets
(venous blood)

No change in NADH-linked OXPHOS
No change in OXPHOS capacity
No change in succinate-linked ET capacity
No change in ET capacity
No change in LEAK respiration
No change in R-L control efficiency (intact)
No change in P-L control efficiency (permeabilized)
No change in E-L coupling efficiency

Number of cells [107]

7. Discussion
7.1. General Discussion

The results of studies on mitochondrial bioenergetics in overfeeding-induced obesity
and diabetes are often contradictory in different tissues and in animal models. It has
been hypothesized that the type of diet and diet components introduce confounding
variables. Gonzalez-Armenta et al. aimed to determine the effects of dietary patterns
on oxidative metabolism in cynomolgus macaques. NADH-linked OXPHOS, OXPHOS
capacity, ET capacity and succinate-linked ET capacity were higher upon overfeeding.
In addition, mitochondrial respiration in response to fatty acids was significantly and
positively correlated with both insulin resistance and hyperinsulinemia, an observation
that has been previously confirmed by other authors [18,108,109]. Similar modifications
in mitochondrial respiration have been reported using high-fat diet models [37,46,49].
Baldini et al. used 3T3-L1 mouse fibroblasts matured into adipocytes and challenged
with long-chain fatty acids as a model to mimic obesity in in vitro settings. HRR studies
revealed that hypertrophic adipocytes had a comparable ROUTINE respiration to the
normal mature adipocytes, while presenting decreased NADH-linked OXPHOS, OXPHOS-
capacity and ET capacity, as reported in an earlier study of Zhao et al. [34,110]. A possible
explanation may be that a diet rich in fatty acids causes an increased mitochondrial-
dependent oxidative stress, leading to mitochondrial damage that, in turn, activates the
mitochondrial quality control mechanisms, mitophagy, with subsequent reduction in the
mitochondrial content [14,40,89,111–113].

Hyperglycemia also has a different impact on mitochondrial respiration in skeletal
muscle versus liver, with the latter being less and/or later affected. This may be explained
by differences in metabolic substrates used by these two organs in various pathophysiolog-
ical conditions and the specific glucose transporters, insulin-insensitive GLUT2 for liver
and insulin-sensitive GLUT4 for muscle [43].

It is also important to note that CI− and CI+CII-supported respiratory rates as well as
ET capacity are inversely correlated with HbA1c, suggesting that poor glycemic control
impairs mitochondrial function [91,96]. In addition, insulin secretion is also dependent
on proper pancreatic mitochondrial function, while poor glycemic control due to de-
creased insulin amount and/or activity impairs systemic and local bioenergetics of other
tissues, indicating a mutual relationship and two-way feedback mechanism between in-
sulin and oxidative metabolism [14,91,96,99]. This hypothesis is supported by the fact
that chronic hyperglycemia causes a phenomenon known as glucotoxicity, which causes
defects in pancreatic β-cells due to mitochondrial stress and formation of reactive oxygen
species [114,115] and advanced glycation end products, which reduce the mitochondrial
coupling efficiency [114,116].

Phielix et al. reported a positive correlation between the suppression of lipid oxidation
upon insulin stimulation and the respiratory quotient (RQ). Specifically, the RQ corelated
with NADH-linked respiration, while the suppression of insulin-linked lipid oxidation core-
lated with NADH-linked OXPHOS, maximal OXPHOS and ET capacity. The same study
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shows positive correlations between maximal succinate stimulated H2O2 production and
HbA1c levels. These results suggest that it is the mitochondrial oxidative metabolism rather
than hyperglycemia that predicts the insulin-dependent change in the RQ. The association
of metabolic flexibility with mitochondrial function and its lack of association with insulin
sensitivity indicate that mitochondria are responsible for the diminished insulin-stimulated
increase in the oxidation of substrates in subjects with insulin-resistance [75].

As suggested by Collins et. al., ROS are considered a double-edged sword for β-cell
function [117]. In this regard, it is hypothesized that hyperglycemia will increase ROS
production, leading to mitochondrial uncoupling via activation of uncoupling proteins
in the pancreas, lower ATP production and decreased insulin synthesis, all resulting in
a vicious circle that perpetuates hyperglycemia [14,117]. Oxidative stress contributes to
the impaired insulin production via complex signal transduction that includes AMPK
activation with subsequent harmful effects mediated by ERK activation and mTOR inhi-
bition, both resulting in decreased β-cell proliferation [21]. Excessive ROS generation is
responsible for both β-cell dysfunction and the development of insulin resistance [118], and
a plethora of preclinical studies unequivocally demonstrated their role in the pathogenesis
of diabetes and its complications, as recently reviewed in refs. [119,120]. However, most
clinical trials (with few exceptions) failed to demonstrate long-term benefits of the antiox-
idant therapies [120], albeit in the short-term, several phytochemicals showed beneficial
effects [121]. Importantly, it was reported one decade ago that mitochondrial ROS are
critical for insulin secretion [122,123]; therefore, targeting their reduction had to be carefully
managed. Moreover, certain drugs commonly used to treat diabetes, such as metformin
and those used to treat associated conditions such as dyslipidemia (statins) or hypertension
(valsartan, amlodipine) have been known to mitigate ROS production [124].

The effects of antidiabetic drugs on mitochondrial bioenergetics was not the topic
of the present review. However, we would like to mention several drug-induced effects
on mitochondrial respiration. Incubation of skeletal muscle with metformin, the corner-
stone of T2D therapy, decreased the NADH-linked OXPHOS capacity, LEAK respiration
and ET capacity in a dose-dependent manner [41]. Similarly, NADH-linked respiratory
dysfunction induced by metformin in human platelet mitochondria has been shown by
Piel et al. [125–127]. These observations indicate that at least some of the mitochondrial
respiratory changes found in diabetic patients are not caused by the disease itself but
also by the treatment. Other studies demonstrated that inhibition of mitochondrial CI
with metformin and other compounds such as rotenone or berberine, led to lower glucose
levels, suggesting that inhibition of CI may be somehow beneficial in the setting of dia-
betes [43,127–131]. However, a severely depressed NADH-linked respiration may lead
to depressed OXPHOS and ATP generation, energy starvation and collapse of the ATP-
dependent pancreatic insulin secretion [14,132]. It must be noted that pancreatic β-cells lack
the levels of lactate dehydrogenase found in other cells such as muscle cells or pancreatic
α-cells and as such do not operate glycolytically to generate ATP, which means that CI
inhibition may lead to decreases in ATP-linked insulin secretion, potentially explaining the
decrease in insulin secretion found in patients with long-term diabetes [132].

A potential solution would be to increase mitochondrial respiration via the succinate
pathway to compensate CI inhibition, which could be achieved by the use of a novel
class of prodrugs, the cell permeable succinates [125,133–135]. Last but not least, a novel
mitochondriotropic drug in the treatment of diabetes that provides both CI inhibition and
increases in succinate-linked respiration is imeglimin. It has the added benefit of reduced
mitochondrial ROS production and increased mitochondrial content, both outcomes that
may also delay the onset of chronic diabetic complications [136,137].

7.2. Normalization in HRR Studies

While variations in respiratory parameters are obviously dependent upon among
species and tissues (Tables 2–6), and in some cases even within the same type of tissue
in a pathological setting (as reported by Rabol et al. and Larsen et al. [39,40]), it has to



Int. J. Mol. Sci. 2022, 23, 8852 19 of 25

emphasized that normalization when reporting (and comparing) the results should be
taken into acount when performing HRR experiments. This can be achieved by various
means, such as reporting respiratory rates relative to tissue protein or mass, number of
cells or markers such as citrate synthase or mtDNA [28].

One relevant example in this respect when reporting data regarding mitochondrial
respiration can be seen in the work of Boushel et al. where both OXPHOS and ET capacity
in vastus lateralis samples harvested from diabetic patients were decreased when nor-
malized to tissue weight, whereas upon normalizing to mtDNA content, the differences
dissapeared [89].

Lack of uniformity in normalization is an important limitation when comparing
studies using HRR; however, this can be overcome to a certain extent by calculating the
flux control ratios [28].

7.3. Strengths and Limitations of HRR Technique

HRR offers higher sensitivity, has lower oxygen leak and requires smaller biological
sample sizes while providing the opportunity for simultaneous comparative measurements
in two chambers [25].

However, there are certain limitations such as [25,28]:

- The concentrations of substrates are different in living cells than in the experimental
cocktails used in the experimental setting;

- Permeabilized cells or tissues and isolated mitochondria lack cytoplasm and the
machinery to undergo glycolysis and other central metabolic pathways;

- Cell cultures differ from living cells as environmental factors alter mitochondial
density (e.g., physical activity in skeletal muscles), making normalization a critical
approach;

- Longer experiments may lead to oxygen depletion in the chamber, altering results
(which can be somewhat solved by reoxygenating the chamber mid-experiment);

- Since the chambers are reused and experiments may vary, there is a risk of contam-
ination with inhibitors. For this reason washing and cleaning procedures between
experiments are essential, even if time consuming.

8. Concluding Remarks

Accurate assessment of the mitochondrial respiration and ETS function by means
of high-resolution respirometry has emerged as powerful tool for studying the patho-
physiology of a myriad of diseases which impair cellular bioenergetics. The mechanistic
understanding of the pathogenesis of mitochondrial-driven pathologies is a prerequi-
site for the discovery and use of novel biomarkers, such as bioenergetics of circulating
blood cells, to inform clinical diagnosis and monitor treatment response in the era of
personalized medicine.
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