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Abstract

Background: Postpartum dysgalactia syndrome (PDS) in sows is difficult to diagnose and the pathogenesis is
obscure. Hormonal changes related to the disease are often difficult to distinguish from those found in the normal
transition period from gestation to lactation. The study aimed to investigate metabolic and hormonal changes
related to PDS with the goal of identifying potential biomarkers in sows suffering from PDS (PDS+). Selected
biomarkers were examined by comparing 38 PDS+ sows with 38 PDS negative (PDS-) sows. The sows were
sampled every 24 h from 60 h ante partum (a.p.) to 36 h post partum (p.p.).

Results: Compared to the baseline (60 to 36 h a.p.), cortisol in serum and saliva and fasting blood glucose
concentrations increased in PDS+ as well as PDS- sows. C-peptide decreased relative to the baseline in PDS+ sows,
and prolactin and 8-epi prostaglandin F2 alpha (8-epi-PGF2α) decreased in PDS- sows. Concentrations of cortisol in
serum and saliva, salivary chromogranin A (CgA), fasting blood glucose, C-peptide, and 8-epi-PGF2α differed
significantly between PDS+ and PDS- sows, with levels of cortisol in serum and saliva, salivary CgA, and 8-epi-PGF2α
in serum being different in the two groups already before parturition. Concentrations of salivary CgA were
significantly lower in PDS- sows than in PDS+ sows during the entire study period.

Conclusions: The results suggest that salivary CgA, cortisol and serum 8-epi-PGF2α may potentially serve as early
diagnostic indicators for PDS. The consistently higher salivary CgA concentration in PDS+ sows compared to
PDS- sows may indicate that homeostatic disturbances are present between 36 to 60 h before parturition in sows
developing PDS. The higher serum and saliva cortisol concentration in PDS+ sows compared to PDS- sows could
reflect an early sign of inflammation or stress. The significantly lower C-peptide in PDS+ sows compared to
PDS- sows may reflect a lower food intake. Our results contribute to the understanding of the pathogenesis
of PDS, and the homeostatic disturbances detected before parturition warrants further investigation. The diagnostic
potential of the markers identified in this study should be investigated further in a larger population of sows.
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Background
The pathogenesis of postpartum dysgalactia syndrome
(PDS) in sows is not fully understood, and the clinical
diagnosis is often difficult. Commonly used indicators
for PDS include fever, reduced appetite, mastitis, and
signs of piglet starvation. These signs, however, may vary

considerably [1–4]. Improved knowledge about the
pathogenesis of PDS, including disturbances in hormo-
nal and metabolic processes at parturition, may thus be
relevant for future diagnosis, treatment and prophylaxis.
In the transition from gestation to lactation, mammals

undergo extensive hormonal changes [5, 6], including
a rapid shift from an anabolic to a catabolic state [6].
Serum concentrations of progesterone and estradiol de-
crease, and cortisol concentrations increase temporarily
[7]. Prolactin concentrations starts to increase close to
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parturition and increase further at the onset of lactation
[8, 9]. Glucose is the most important nutrient for milk
production [10, 11], as it is a precursor for lactose [12].
Cortisol serves to mobilize glucose from glycogen stores
[13, 14], and the peripartal cortisol release [15, 16] thus
leads to increased blood glucose levels [17] in healthy
sows. A number of other biological events are also asso-
ciated with increased levels of cortisol, for example
stress [18] and inflammation [19, 20].
Factors like inadequate body condition of the sow [21,

22], improper feeding strategy in late gestation [23], or im-
proper feed composition [22, 24] may negatively affect the
production of colostrum and milk, thus limiting piglet
growth and survival [25]. Reduced appetite and feed in-
take are normal peri-parturient features in healthy sows
[26], but excessive anorexia may be a sign of illness. De-
creased feed intake decreases glucose uptake from the
gastrointestinal tract, but under normal circumstances ad-
equate blood glucose levels are also maintained in sows
ingesting less feed than intended [27]. C-peptide concen-
trations reflect the insulin response to glucose [28], and
the excretion is correlated to insulin [29]. Measuring
C-peptide concentrations instead of insulin is advanta-
geous, since C-peptide is more stable [30, 31]. C-peptide
has not been investigated in sows before.
Cromogranin A (CgA) reflects activation of the

sympatho-adrenal medullary system (SAM) [32, 33] and
is secreted into saliva. It is necessary for the regulation
of vascular homeostasis in humans [34] and concentra-
tions are increased in individuals with neuroendocrine
tumors [35] and endocrine cells of the human gastro-
intestinal tract [36, 37]. In humans, CgA levels can be el-
evated by hypertension, inflammatory bowel disease,
sepsis, and other inflammatory diseases [34]. It has been
linked to oxidative stress in humans [38] and shown to
be a trigger of free radical production in rats [39]. CgA
has only been studied to a limited extent in pigs, but it
was recently shown by Escribano and coworkers [40] to
be a marker of stress in a pig model.
Eight-epi prostaglandin F2 alpha (8-epi-PGF2α) is consid-

ered to be a biomarker of oxidative stress in humans [41],
and it is released when free oxygen radicals are produced in
excess or when antioxidants are lacking [42]. Vitamin E
and selenium deficiencies have been shown to inhibit the
immune function in sows [43], and antioxidants seem to re-
duce the risk of sow agalactia [44]. To our knowledge,
8-epi-PGF2α has not been studied in sows before.
The aims of this study were to describe the changes of

cortisol, CgA, glucose, C-peptide, prolactin, 8-epi-PGF2α,
sodium, and potassium levels in healthy sows (PDS-) and
sows suffering from PDS (PDS+) during the periparturient
period. Furthermore, we aimed to evaluate the potential of
these biomarkers to identify affected animals in the early
stage of disease.

Results
Body condition score
A body condition score of 2 was noted in 12 PDS+ sows
and 17 PDS- sows, and score 3 was assigned to 26 PDS+
sows and 21 PDS- sows (p = 0.09).

Obstetric aid, parturition duration and feeding time
Obstetric aid was provided more often in PDS+ sows (18
PDS+ sows and 11 PDS- sows; p < 0.05) and partur-
ition lasted longer for PDS+ sows (mean length
654.2 min; SD 444.0) compared to PDS- sows (mean
length 432.3 min; SD 267.5) (p < 0.01). Feeding time
relative to parturition (less than or more than 4 h before
parturition) had no influence on whether sows were cat-
egorized as PDS+ sows or PDS- sows (p = 0.16).

Piglet weight gain
The effect of PDS status on litter weight gain was
dependent on litter weight at first weighing (a significant
interaction was noted between PDS status and weight at
first weighing; p < 0.01). For the PDS+ sows, the litter
weight gain decreased with increasing litter weight at first
weighing, but for the PDS- sows, the litter weight gain
was not dependent on weight at first weighing (Fig. 1).

Changes in hormonal and metabolic indicators in relation
to parturition
Changes over time for PDS+ and PDS- sows are illustrated
by raw data in Fig. 2 for CgA (Fig. 2A), saliva cortisol
(Fig. 2B), serum cortisol (Fig. 2C), fasting blood glucose
(Fig. 2D), C-peptide (Fig. 2E) and 8-epi-PGF2α (Fig. 2F).
When compared to baseline A (60 to 36 h a.p.), hor-

monal and metabolic changes occurred over time in
both PDS+ and PDS- sows. Differences between time
interval A and intervals B to G are reported with lower-
case letters in Table 1; In PDS+ sows, cortisol (serum
and saliva) and fasting blood glucose increased signifi-
cantly over time (B to G) relative to baseline A, while
C-peptide decreased over time. In PDS- sows, increases
over time in cortisol (serum and saliva) and fasting
blood glucose concentrations were also noted relative to
the baseline. In contrast to PDS+ sows, serum cortisol
levels in PDS- sows were only significantly increased
relative to the baseline at − 12 to 0 h p.p, and signifi-
cantly decreased 24 to 36 h p.p. Compared to the base-
line, no significant changes were noted for C-peptide in
PDS- sows. Concentrations of prolactin (Additional file 1)
and 8-epi-PGF2α decreased significantly after parturition
in PDS- sows but remained unaltered in PDS+ sows
(Table 1). Concentrations of Na and K did not change
over time in any of the groups (Additional files 2 and 3).
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Differences between hormonal and metabolic parameters
in PDS+ and PDS- sows
Concentrations of cortisol (serum and saliva), CgA, fast-
ing blood glucose, C-peptide and 8-epi-PGF2α differed
between PDS- and PDS+ sows (bold letters and asterisk
symbols; Table 1). From − 36 to − 24 h, serum cortisol
concentration was significantly lower in the PDS+ sows
compared to the PDS- sows, while concentrations were
significantly higher in the PDS+ sows compared to
the PDS- sows 0–36 h p.p. Before parturition, signifi-
cantly higher concentrations of salivary cortisol and
8-epi-PGF2α were demonstrated in the PDS+ sows
(− 12 h to 0 h) compared to the PDS- sows. CgA
concentration was significantly higher in the PDS+
sows compared to the PDS- sows throughout the
whole study period. Fasting blood glucose was signifi-
cantly lower at 24–36 h p.p. and C-peptide was sig-
nificantly lower at 12–24 h p.p. in the PDS+ sows
compared to the PDS- sows (Table 1).

Discussion
To our knowledge, this is the first study that compares
hormonal and metabolic alterations in sows suffering
from PDS and healthy sows in the immediate peripar-
turient period.

Previously established criteria were selected to identify
sows suffering from PDS [4, 45–51], but as already pointed
out by others [52–54], these vary greatly and are associated
with uncertainty. However, the present study, and previous
results showing significant differences between PDS+ and
PDS- sows for several inflammatory parameters [55] sup-
port the usefulness of our PDS definition.
Lactogenesis is influenced by local mammary factors

(e.g. hormonal receptors), by the removal of milk
through suckling, and by circulating nutrients and hor-
mones [56]. Weight loss was more pronounced in heavy
litters, which are expected to suckle with most intensity,
and the limiting factor for milk production in PDS+
sows was thus most likely related to insufficient nutrient
supply or hormonal disturbances.
Obstetric aid was more frequently given in sows diag-

nosed with mastitis, metritis and agalactia [57], coliform
mastitis [58] and post-farrowing discharge [59], but the
significance of the parturition duration in PDS is ob-
scure [4, 50, 57]. Whether extended parturition and in-
creased obstetric aid cause PDS or vice versa remains to
be elucidated.

Chromogranin A and cortisol
The continuously increased CgA concentration among
the PDS+ sows at all time intervals may indicate a

Fig. 1 Mean weight gain (kg/h) in litters from 38 PDS+ sows and litters from 38 PDS- sows. In PDS+ sows, the litter weight gain depended on
the litter weight (kg) at first weighing, where litters with the highest weight had the smallest weight gain. This interdependency was not
apparent in litters born to PDS- sows

Kaiser et al. BMC Veterinary Research          (2018) 14:334 Page 3 of 11



A B

C

E

D
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disturbance in the homeostasis of these sows. Interest-
ingly, this disturbance seemed to occur before the sys-
temic inflammation that, based on clinical signs and
blood biochemical changes, became evident from 12 to
36 h p.p. in the PDS+ sows [55]. The homeostatic func-
tion of CgA in humans includes the endocrine, cardio-
vascular, and immune systems, and the glucose and
calcium balances [60]. Salivary CgA is regulated by a
neuronal pathway [61] and is a reliable marker of stress
in humans [62, 63]. In the human gastrointestinal tract,
CgA is released from enterochromaffin cells and from
neurons of submucosal and myenteric ganglia [64, 65],
and may modulate colonic motility in response to in-
flammation [66]. To our knowledge, CgA has never been
studied in the porcine gastrointestinal tract, but the
present results warrant further investigation, since con-
stipation is considered to be a major feature of PDS [67].
The higher serum and salivary cortisol and higher

serum CgA concentrations demonstrated in the PDS+
sows may reflect differences in stress level [40] in the
two groups, but could also be related to inflammation
caused for example by a bacterial infection [20]. CgA
has been investigated to a limited extent in swine, but a
previous study demonstrated CgA release in response to
experimentally induced transportation stress [40]. To de-
termine the potential occurrence of stress in PDS+ sows,
detailed behavioral observations are needed.
An increased cortisol level during the periparturient

period is a normal physiological occurrence [15, 16] as also
suggested by the results in our study, where PDS- sows
showed increased cortisol concentrations (compared to the
baseline) from − 24 h a.p. (Table 1). Inflammation [20] and
stress [18] have also been shown to cause cortisol release
in pigs. We have previously demonstrated a significant in-
flammatory response 12–36 h p.p. in the PDS+ sows [55],
which could have contributed to the higher cortisol con-
centrations observed in sows developing PDS. Normal
physiological alterations, inflammation, and stress may all
have contributed to the increased cortisol concentration
observed in the PDS+ sows, but stress was not further
assessed in our study populations.

8-epi-PGF2α
The increased 8-epi-PGF2α concentrations in PDS+ sows
suggest that oxidative stress may be a feature of PDS,
caused either by antioxidant deficiency or excessive pro-
duction of free radicals [42]. Cells of the immune system

are particularly susceptible to oxidation [68] and oxida-
tive stress may thus affect the immune responses.
8-epi-PGF2α is released after stimulation of the adrenal
cortex [69], thus explaining the coinciding 8-epi-PGF2α,
CgA and salivary cortisol responses 0–12 h after partur-
ition. Further research is required to determine the role
of 8-epi-PGF2α and its potential as an early biomarker
for PDS.

Glucose and C-peptide
Compared to the baseline, a significantly increased fast-
ing blood glucose concentration was demonstrated in
both groups after parturition (Table 1). Increased blood
glucose and reduced insulin responsiveness have previ-
ously been described in late gestation and early lactation
in healthy sows [17, 70]. Reduced insulin responsiveness
is believed to support the transportation of glucose into
the udder [11, 71]. The changes observed in PDS- sows
(unaltered C-peptide concentration in conjunction with
increased blood glucose) are consistent with the reduced
insulin responsiveness normally observed in the transi-
tion period. Interestingly, three individual sows displayed
extremely high glucose values ranging from 12.7 to
24.3 × 10− 3 mol/L (Fig. 2D). In these sows, the high
glucose concentrations were accompanied by high
C-peptide values (Additional file 4). A similar syndrome,
referred to as “physiological insulin resistance”, is de-
scribed in humans after fasting [72]. The significantly
decreased levels of C-peptide in the PDS+ sows com-
pared to the baseline may reflect insufficient feed intake.
The sow’s ability to mobilize glucose might be crucial

for the development of PDS, and post-feeding blood glu-
cose and insulin concentrations can affect piglet growth
[73]. The poor litter weight gain and lower C-peptide
concentration 12–24 h p.p. in the PDS+ sows could re-
flect a reduced feed intake and low lipid and protein me-
tabolism. Indeed, glucose homeostasis is challenged
during parturition, where sows may be depleted of en-
ergy if the onset of farrowing starts more than 3 h after
the last meal was consumed [74]. However, we were not
able to demonstrate an association between PDS and
feeding time relative to parturition.

Prolactin
Reduced prolactin concentration has previously been
found in sows suffering from metritis-mastitis-agalactia
syndrome [75], and experimental lipopolysaccharide

(See figure on previous page.)
Fig. 2 Raw data for A. chromogranin A (CgA; 10− 5 g/L), B. saliva cortisol (10− 5 g/L), C. serum cortisol (10− 5 g/L), D. fasting blood glucose
(10− 3 mol/L), E. C-peptide (10− 12 mol/L) and F. 8-epi prostaglandin F2 alpha (8-epi-PGF2α; 10− 9 g/L) assessed from 60 h ante partum
(time interval A) until 36 h post partum (time interval G) in sows suffering from postpartum dysgalactia syndrome (PDS+, red) and
healthy sows (PDS-, blue). Each point represents the precise sample time of each observation relative to parturition of piglet number one
(0 h). The line represents the mean value at each sampling time point
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(LPS) administration has also been shown to cause low-
ered serum prolactin [76]. In contrast to these previous
studies, prolactin decreased in PDS- sows, but remained
unchanged in PDS+ sows (Table 1). How prolactin may
be involved in the reduced milk production observed in
PDS+ sows was not clear from our results.

Conclusions
Salivary CgA, cortisol and serum 8-epi-PGF2α are in-
creased in PDS+ sows before parturition, reflecting a
situation of activation of the adrenergic system (CgA),
adrenal system (cortisol) and oxidative stress
(8-epi-PGF2α), and these analytes may potentially serve
as biomarkers in the early detection of PDS. In addition,
PDS+ sows showed metabolic changes consisting of de-
creased glucose and C-peptide concentrations that may
be caused by a lower energy intake due to sickness.
The interrelationship between the metabolites and

hormones assessed in the current study are not entirely
clear. Our results suggest that the homeostasis of PDS+
sows may be affected before parturition and that the
normal periparturient glucose metabolism is disrupted
in PDS+ sows. The persistently high CgA concentration
in PDS+ sows is a highly interesting finding that war-
rants further investigation.

Methods
Experimental design
The study was carried out as described in detail in our
previous publication [55]. Briefly, a case-cohort study was
performed in one herd that bought sows from a conven-
tional breeder. In all, 109 sows were included, from which
38 (34.9%) were categorized as PDS positive (PDS+) and
retrospectively matched with the 38 healthy sows (PDS-).
All sows (n = 109) were systematically observed and

sampled every 24 h from at least 60 h before expected
parturition until PDS occurred or until 36 h p.p. Due to
animal welfare considerations it was necessary to treat
sick sows. Therefore, a clinical definition of PDS were
defined and sows was deemed PDS+ if at least two of
the following clinical criteria were fulfilled: 1. Reduced
feed intake, defined as “trough not empty within 30 min
after feeding”, 2. General inflammation of the udder,
characterized by a subjective assessment of redness,
swelling and increased skin temperature, 3. rectal
temperature ≥ 39.5 °C. Sows farrowing prematurely or
sows that were treated for other reasons were excluded
from the study. All observations were performed by a
veterinarian (the first author). The sows remained in the
farm and were kept according to common management
routines after completion of the study.
Prior to parturition, monitoring included: 1. samples

of saliva and capillary blood taken before the morning
feeding as described below, 2. clinical examinations and

3. blood sampling from v. jugularis as described below.
Except for 1., all recordings were done after the morning
feeding.
Body condition was evaluated based on a Danish

4-point scoring system, where score was 1 considered
thin, 2) lean, 3) medium and optimal body condition,
and 4) fat [77]. Sows that were considered PDS+ (n = 38)
were treated immediately after the veterinary clinical
examination and sampling. All sows continued in the
production at the farm after they exited the study.
Litters were equalized to 15 piglets and subsequently

weighed on two occasions: within 24 h p.p. and again
when the sows left the study. The weight of dead piglets
was registered daily and included in the total litter
weight. Cross-fostering was not allowed after litter
standardization. The electronic scale (WEDO S/N
45705, Werner Dorsch GmbH, Germany) was calibrated
daily.

Sampling
Saliva was collected by a cotton swab without additives
(Salivette® Cortisol, Haunisen, Denmark). The sows were
allowed to chew on the swab for 3 min. The swabs were
centrifuged for 5 min at 1000×g and immediately stored
on ice. The saliva was tested for CgA by a time-resolved
immunofluorometric assay (TR-IFMA) previously de-
scribed by Escribano and coworkers [40]. Saliva cortisol
was tested by a solid-phase, competitive chemilumines-
cent enzyme immunoassay using an automated bio-
chemistry analyzer (IMMULITE 1000 Immunoassay
System cortisol, Siemens, California, US) as previously
described [18] and according to the manufacturer’s
instructions. Blood sample droplets for fasting blood
glucose were collected from v. auricularis after adminis-
tration of cutaneous lidocaine spray on the dorsal area
of the ear (Xylocain 100 mg/mL, AstraZeneca, UK). The
blood glucose concentration was immediately measured
using the Accu-Chek Aviva system (Roche Diagnostics, Ba-
sel, Switzerland; [78]). Following sampling, each sow was
given a small lump of sugar as a “reward”. Blood samples
were collected from v. jugularis in tubes without additives
(BD, New Jersey, US) for preparation of serum and kept at
room temperature for a maximum of 30 min. before being
processed. The tubes were centrifuged for 10 min. at
3000×g and sera and saliva were stored at -80 °C until ana-
lysis. Potassium (K) and sodium (Na) were analyzed by the
Hematology System Complete Blood Count method using
an automated biochemistry analyzer (ADIVA 2120/2120i,
Siemens Healthcare A/S, Denmark). Plasma prolactin was
analyzed by a commercially available porcine ELISA kit
(#SEA846Po, Cloud-Clone Corp. Texas, US) as described
elsewhere [79]. The absorbance was read at 450 nm (Polar
Star/Galaxy, BMG Labtech, Germany). Concentrations of
C-peptide in serum were determined by a porcine-specific
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C-peptide ELISA (#10-1256-01, Mercodia AB, Sweden) as
described previously [80–82] in accordance with the instruc-
tions given by the manufacturer, and the absorbance was
read at 450 nm (Polar Star/Galaxy, BMG Labtech,
Germany). The concentration of 8-epi prostaglandin F2
Alpha (8-epi-PGF2α) was analyzed by a pan-308 species
commercial ELISA (#CEA701Ge, Cloud-Clone Corp., Texas,
US) as described in humans by Haxhi and coworkers [83].

Statistical analyses
The exact sampling times (date:hour:min.) were retro-
spectively related to the exact time of the birth of the
first piglet as revealed by the video records.
The sampling time points were grouped into time in-

tervals where 0 h was the time of birth of the first piglet:
A. -60 to − 36 h; B. -36 to − 24 h; C. -24 to − 12 h; D.
-12 to 0 h; E. 0 to 12 h; F. 12 to 24 h, and G. 24 to 36 h.
The number of observations within each interval may
vary because of the individual sampling times relative to
parturition (0 h).
For statistical evaluation, two autoregressive linear regres-

sion models (A and B) were performed in the PROC
MIXED procedure of Statistic Analytical Software, Enter-
prise Guide 7.1 (SAS® Institute, Cary, North Carolina, USA).
Least-squares means (LSMEANS) and standard deviations
(SD) were included in the statistical model A. Model A in-
cluded OUTCOME PARAMETERij = μ +TIMEi +GROUPj
+ TIME*GROUPij + εij, where OUTCOME PARAMETERij
was the measured value of the hormone or metabolic pa-
rameters; μ was the value of the observations at time 0;
TIMEi was the explanatory variable “time intervals A-G”;
GROUPj was the explanatory variable “PDS+/PDS-”;
TIME*GROUPij was the interaction between the two
groups and time, and εij was the random residual error
term. When significant interaction was identified using
model A, differences between the relevant groups and time
intervals were accepted. In case of non-significant inter-
action, model A was replaced with model B consisting of
the OUTCOME PARAMETERij = μ +TIMEi + GROUPj
+ εij. If non-significant changes in TIMEi occurred in
model B, the OUTCOME PARAMETERij was considered
non-significant. Significance was considered for p < 0.05.
Parity and body condition score were included as explana-
tory variables. From preliminary analyses, obstetric aid and
farrowing duration were not found to be associated with
any of the outcome variables. Logarithmic transformation
was used for serum and saliva cortisol, CgA, prolactin, Na
and K, in order to improve normality of residuals plots.
The back-transformed SD for these variables is not nor-
mally distributed and cannot be interpreted directly.
Fischer’s exact test was used to examine associations be-
tween PDS and body condition, obstetric aid and the pos-
sible impact of feeding time relative to parturition (less
than or more than 4 h) in the PROC FREQ procedure of

Statistic Analytical Software, Enterprise Guide 7.1 (SAS®
Institute, Cary, North Carolina, USA). An average weight
gain per hour (kg/h) was calculated for each litter. These
were compared for PDS+ and PDS- piglets using the
PROC MIXED procedure of Statistic Analytical Software,
Enterprise Guide 7.1 (SAS® Institute, Cary, North Carolina,
USA). The association between parturition duration and
PDS was tested by a simple t-test in the PROC TTEST
procedure of Statistic Analytical Software, Enterprise Guide
7.1 (SAS® Institute, Cary, North Carolina, USA).

Additional files

Additional file 1: Raw data of prolactin (10− 9 g/L) assessed from 60 h
ante partum (time interval A) until 36 h post partum (time interval G) in
sows suffering from postpartum dysgalactia syndrome (PDS+, red) and
healthy sows (PDS-, blue). Each point represents the precise sample time of
each observation relative to parturition of piglet number one (0 h). The line
represents the mean value at each sampling time point. (DOCX 33 kb)

Additional file 2: Raw data of sodium (Na; 10− 3 mol/L) assessed from
60 h ante partum (time interval A) until 36 h post partum (time interval
G) in sows suffering from postpartum dysgalactia syndrome (PDS+, red)
and healthy sows (PDS-, blue). Each point represents the precise sample
time of each observation relative to parturition of piglet number one
(0 h). The line represents the mean value at each sampling time point.
(DOCX 35 kb)

Additional file 3: Raw data of potassium (K; 10− 3 mol/L) assessed from
60 h ante partum (time interval A) until 36 h post partum (time interval
G) in sows suffering from postpartum dysgalactia syndrome (PDS+, red)
and healthy sows (PDS-, blue). Each point represents the precise sample
time of each observation relative to parturition of piglet number one
(0 h). The line represents the mean value at each sampling time point.
(DOCX 31 kb)

Additional file 4: Glucose and C-peptide concentrations obtained in
three sows on repeated sampling occasions. (DOCX 14 kb)
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