
REVIEW
published: 03 July 2019

doi: 10.3389/fmicb.2019.01462

Frontiers in Microbiology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 1462

Edited by:

Ashley C. Banyard,

Animal and Plant Health Agency,

United Kingdom

Reviewed by:

Guanghui Wu,

Animal and Plant Health Agency,

United Kingdom

Nejat Duzgunes,

Arthur A. Dugoni School of Dentistry,

University of the Pacific, United States

*Correspondence:

Lingxiang Mao

maolingxiang@aliyun.com

Specialty section:

This article was submitted to

Virology,

a section of the journal

Frontiers in Microbiology

Received: 14 February 2019

Accepted: 11 June 2019

Published: 03 July 2019

Citation:

Zou X, Wu J, Gu J, Shen L and Mao L

(2019) Application of Aptamers in

Virus Detection and Antiviral Therapy.

Front. Microbiol. 10:1462.

doi: 10.3389/fmicb.2019.01462

Application of Aptamers in Virus
Detection and Antiviral Therapy
Xinran Zou 1,2, Jing Wu 1,2, Jiaqi Gu 1,2, Li Shen 3 and Lingxiang Mao 1*

1Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, China, 2 Jiangsu Key

Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China,
3 Zhenjiang Center for Disease Control and Prevention, Jiangsu, China

Viral infections can cause serious diseases for humans and animals. Accurate and early

detection of viruses is often crucial for clinical diagnosis and therapy. Aptamers are

mostly single-stranded nucleotide sequences that are artificially synthesized by an in vitro

technology known as the Systematic Evolution of Ligands by Exponential Enrichment

(SELEX). Similar to antibodies, aptamers bind specifically to their targets. However,

compared with antibody, aptamers are easy to synthesize and modify and can bind

to a broad range of targets. Thus, aptamers are promising for detecting viruses and

treating viral infections. In this review, we briefly introduce aptamer-based biosensors

(aptasensors) and describe their applications in rapid detection of viruses and as antiviral

agents in treating infections. We summarize available data about the use of aptamers

to detect and inhibit viruses. Furthermore, for the first time, we list aptamers specific to

different viruses that have been screened out but have not yet been used for detecting

viruses or treating viral infections. Finally, we analyze barriers and developing perspectives

in the application of aptamer-based virus detection and therapeutics.

Keywords: aptamers, SELEX, aptasensors, virus detection, antiviral therapy

INTRODUCTION

Aptamers are small single-stranded artificial nucleotides (DNA or RNA), in the range of 10–100
nucleotides (nt), that have a remarkable ability to bind to their targets. Aptamer targets include
a variety of small molecules such as amino acids, nucleotides, and antibiotics (Ellington and
Szostak, 1992), but can also be larger, including proteins (Schneider et al., 1992), viruses and
bacteria (Torres-Chavolla and Alocilja, 2009) as well as other cells (Ku et al., 2015). The secondary
and tertiary structures of aptamers ensure the binding specificity to their targets via aptamer-
target recognition, and may involve aromatic rings, π-π system stacking, van der Waals forces,
electrostatic interactions or hydrogen bonding (Szpechcinski and Grzanka, 2006; Ku et al., 2015).
Because of their binding specificity to their targets, aptamers are often compared to antibodies and
are also known as chemical antibodies or artificial antibodies (Banerjee, 2010; Wang et al., 2016).

The selection method of aptamers, Systematic Evolution of Ligands by Exponential Enrichment
(SELEX), is an in vitro process. Briefly, SELEX is based on iterative cycles of binding, separating
and amplification of nucleotides. The basic mechanism of SELEX is shown in Figure 1. The first
step of conventional SELEX is to incubate the sequence pool with the target (protein, nucleic
acid, etc.). The sequence pool is a nucleic acid library containing 1014-1015 variants of random
30–100 nucleotides flanked by constant sequences at both ends. The random region contains the
sequences that will be tested for high specificity and affinity to the target. Second, sequences that
bind the target is kept, while unbound nucleotides are removed. The third step is to purify and
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FIGURE 1 | The basic mechanism of conventional SELEX. In the binding step,

the sequence pool is incubated with the target. In the separating step,

unbound sequences are removed and bound sequences are separated from

the target. In the amplification step, the separated sequences are amplified,

building a new sequence pool for the next iteration of SELEX.

amplify the bound sequences to form a new sequence pool
for the next cycle. This cyclic process is typically repeated 8–
15 times before achieving the desired aptamer sequence pool
(Torres-Chavolla and Alocilja, 2009; Davydova et al., 2016). A
negative selection, or counter selection, step involves incubating
the sequence pool with target analogs, undesired subtypes, or the
unbound sequences. This step can take place before or after target
incubation to improve the specificity of candidates (Haller and
Sarnow, 1997; Iwagawa et al., 2012). Biotechnology companies
provide aptamer-related services, including the construction
of sequence pools, aptamer selection, aptamer synthesis, and
aptamer modification.

Currently, viral infection is a serious threat for human
beings. Although antibody-based detection methods and drugs
are widely used in clinics, their popularity is hindered by high
cost, antibody instability and the limitation of target types (Resch,
2017; Seo and Gu, 2017). A comparison between aptamers and
antibodies is shown in Table 1. Aptamers have great potential as
a feasible tool in virus detection and therapeutics.

APPLICATIONS OF APTAMERS IN
VIRUS DETECTION

Current techniques to diagnose viral infections include virus
isolation in tissue cultures, immunological and molecular
methods. However, these methods have a variety of limitations;
for example, they are technically demanding, costly and can

produce false positive or false negative results, whereas aptamer-
based assay for virus detection may improve these drawbacks to
some extent (Li et al., 2016; Vidic et al., 2017).

A biosensor is an analytical device that combines a bioreceptor
and a transducer. The bioreceptor recognizes and binds the target
with high sensitivity and selectivity, and averts interference from
other microorganisms or molecules (Hong et al., 2012). The
transducer then translates and outputs biological signals from the
interaction between the analyte and the bioreceptor (Han et al.,
2010). Aptamer-based biosensors, also called aptasensors, use
aptamer as bioreceptors (also named capturing aptamer/probe)
or transducers (also named signal aptamer/probe) (Cheng et al.,
2009; Hianik et al., 2009). Aptasensors are mainly classified
into optical and electronic aptasensors based on the type
of transducer.

Optical Aptasensors
Optical aptasensors for virus detection can be classified into
six categories based on the optical principles used for material
detection. These categories are surface plasmon resonance (SPR)
aptasensors, colorimetric aptasensors, chemiluminescence (CL)
aptasensors, fluorescence aptasensors, surface-enhanced Raman
scattering (SERS) aptasensors, and interferometry aptasensors.

SPR-Based Aptasensors
SPR measures the resonance of free electrons in some metal films
by measuring the change of refractivity of the material bound on
a surface (Adamczyk et al., 1999). For a typical SPR aptasensor,
the capturing aptamer is immobilized on a metal surface, most
often gold. The binding between viruses and aptamers changes
the thickness of the gold surface, and as a result, the refractive
index varies. The bound target on the surface can be quantified
by monitoring the angles or intensity of the polarized light
(Nguyen et al., 2015). The principle of SPR aptasensors is shown
in Figure 2A. SPR sensors have certain advantages, including
that no marking is required, miniaturization and automation
(Skottrup et al., 2008).

Bai et al. (2012) developed an SPR aptasensor for quickly
detecting avian influenza virus (AIV) H5N1 within 1.5 h,
with a detection range from 0.128 to 1.28 hemagglutination
units (HAUs). Compared with other detection methods, this
aptasensor was fast and portable, but the sensitivity was inferior
to virus isolation and PCR methods. Similarly, Tombelli et al.
(2005) proposed an SPR aptasensor for detecting the HIV-1
Tat protein. In another study by Nguyen et al. (2016), a pair
of aptamers, IF10 and IF22, bound different sites of the same
H5N1 virus, acting as the capturing probe and signal probe,
respectively. This built a sandwich-type SPR biosensor platform
for the sensitive detection of H5N1 viruses. In this aptasensor,
the H5N1 virus was first bound by biotin-labeled aptamer IF10,
which was fixed on the surface of the streptavidin-coated SPR
gold chips. Then, the report aptamer IF22 linked with gold
nanoparticles (AuNPs) combined with the virus captured on the
SPR chips, and the AuNPs on IF22 enhanced the angle shift. By
amplifying the signal with the sandwich system, the detection
sensitivity of this biosensor was found to be 200 EID50/ml (50%
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TABLE 1 | Comparative properties of aptamers and antibodies.

Property Aptamer Antibody References

Time needed for selection Several weeks Several months -

Cost of the selection ∼$4000 for individual aptamer

sequences

∼$8,000 for mouse monoclonal antibody

∼$20,000 for rabbit monoclonal antibody

-

Synthesis and manufacture Chemically synthesis in vitro Produced in animal and then by

recombinant methods

-

Modification Easy and controllable Limited and uncontrollable Binning et al., 2012; Wandtke et al., 2015

Stability Stable in different environmental

conditions

Requiring special conditions for the storage

and handling

Davydova et al., 2016; Wang et al., 2016

Batch-to-batch variation Little or no Difficult to avoid Torres-Chavolla and Alocilja, 2009; Davydova et al.,

2016

Size 5–25 kDa Usually more than 125 kDa Banerjee, 2010

Chemical property Mainly nucleic acids Protein -

Target range Wide to almost anything Limited to antigenic targets O’Sullivan, 2002; Proske et al., 2005;

Torres-Chavolla and Alocilja, 2009; Wandtke et al.,

2015; Davydova et al., 2016

In vivo complications No intrinsic immune response May lead immune response Szpechcinski and Grzanka, 2006

Specificity and affinity High High -

Clinical application Immature Mature -

embryo infective dose/ml) for H5N1 virus in feces samples,
comparable with the sensitivity of ELISA.

Colorimetric-Based Aptasensors
In colorimetric detection, a shift of color is measured, which is
either directly observed by eye or using a spectrophotometer.
Colorimetric methods have merits, such as their low cost,
simplicity, and portability, and thus have been widely applied in
aptasensors (Feng et al., 2014; Ng et al., 2016). The principle of
typical colorimetric-based aptasensors is shown in Figure 2B.

Nanomaterial-assisted colorimetric aptasensors
For this type of aptasensor, nanomaterials support the capturing
aptamer, and some also take part in the signal conversion.
To fabricate an aptasensor for detecting the influenza A virus,
Chen et al. (2016) used an H3N2-specific aptamer modified
with magnetic beads to capture the virus. AuNPs were modified
with glucose oxidase (GOx) and concanavalin A (Con A), and
these Con A-GOx-AuNP complexes were used for the output
signal. The complexes bound the virus through a Con A-glycan
interaction, and the GOx transformed the chemical signal into a
color signal. This aptasensor detected the H3N2 virus at levels as
low as 11.16µg/ml with the help of a UV-vis instrument.

The hydrothermal reaction of HAuCl4 and graphene
oxide produces graphene/AuNPs (Wang et al., 2010). In
addition, the graphene/AuNPs have a peroxidase-like activity,
mediating a catalytic reaction that is accompanied by a
color change (He et al., 2011; Liang et al., 2011). Based
on the graphene/AuNP hybrids, Liu et al. (2012) proposed
a label-free aptasensor for detecting hepatitis C virus
(HCV). In this system, the ssDNA aptamer prevents the
peroxidase substrates from contacting the active interface
and depresses the catalytic ability of the graphene/AuNPs.
However, catalytic activity is recovered when viruses are

present because the combination of the aptamer and virus
reduces this catalytic hindrance. Finally, the substrate 3,3′,5,5′-
tetramethylbenzidine is added to the system to visualize the
result. The resulting color changes are highly correlated to the
amount of virus.

Enzyme-linked aptamer assays (ELAA)
An ELISA is a basic diagnostic method for detecting complex
target molecules. In ELAA, aptamers are used as a substitution
for antibodies as the bio-receptor or the transducer (Nie
et al., 2013). ELAA is also known as an enzyme-linked
oligonucleotide adsorption test (ELOSA or ELONA) or an
enzyme-linked aptasorbent assay (ELASA) (Rasoulinejad et al.,
2016; Stoltenburg et al., 2016).

An ELAA for detecting the influenza A virus H5N1 used
the aptamer RHA0006, which targets the hemagglutinin (HA)
protein (Shiratori et al., 2014). In this aptasensor, the aptamer
was immobilized on wells to capture the HA protein, and
another 3′-biotinylated aptamer induced a color reaction in
cooperation with streptavidin (SA)-horseradish peroxidase
and the chromogen reagent 3,3′,5,5′-tetramethylbenzidine.
This sandwich enzyme-linked aptasensor also recognized
the H1N1 and H3N2 subtypes. The lower limit of detection
reached 0.1 µg/well. Analogous ELAAs have been used to
detect human norovirus (Escudero-Abarca et al., 2014),
Zika virus (Lee and Zeng, 2017), and HCV (Park et al.,
2013). In developing the Zika ELAA, researchers tested
different pairs of capturing agent and detection agent.
The aptamer/antibody pair exhibited the best detection,
comparable to capacitive or impedimetric immunoassays
and antibody-based ELISA kits. The detection limit of the
aptamer1/aptamer2 pair was worse than the aptamer/antibody
pair, but the author postulated that further research to
optimize the aptamer/antibody pair may improve the
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FIGURE 2 | Schematic illustration of optical aptasensors. (A) Mechanism of SPR aptasensors. The aptamer-virus interaction changes the angle of reflected light,

which indicates the amount of virus captured by the aptamers. (B) Mechanism of typical colorimetric-based aptasensor and CL aptamers. The aptamer is incubated

with the virus, then catalytic-active complexes that bind the captured virus are added. Appropriate chromogenic or CL reagents are added to affect the color or

luminous intensity of the sample. The change in color or luminous intensity is correlated to the amount of virus in the sample. (C) Mechanism of LFA-based

aptasensor. In the presence of the target virus, both the aptamer and the AuNP-antibody complex bind to the virus, and the biotin on the aptamer enables the

complex to be bound onto the streptavidin on the test line, allowing detection by the color of GNPs. The color of the test line does not change if there is no target in

the sample. With or without virus, the AuNP-antibody complex is caught by the anti-antibody on the control line to cause a color change as a control. (D) Mechanism

of the fluorescent quench method. Target virus can bind with F-BA1-D and DA-2 and change the structure of F-BA1-D, separating the fluorophore and the quencher

and releasing fluorescence.

detection effect. The aptamer has lower production cost
and displayed a high degree of batch-to-batch consistency
(Lee and Zeng, 2017).

Aptasensors based on lateral flow assay (LFA)
A lateral flow immunochromatographic assay (LFA) takes
advantage of a series of capillary beds that transport fluid. LFA is
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widely used in clinical point-of-care detection, such as detecting
levels of human chorionic gonadotrophin, HIV, HBV, and so on.
Based on LFA, Le et al., 2017 put forward a method for detecting
a multiplex strain-specific influenza virus. In this aptasensor, the
virus was added into the sample pad and was conjugated with a
biotinylated aptamer and an AuNP-labeled monoclonal antibody
to form a complex at the conjugate pad. When the fluid reached
the text line where SA was located, the conjugate was bound by
biotin-SA, leading to a visible color change in the text line. The
detection limit was about 2 × 106 virus particles. The working
mechanism of aptamer-based LFA is shown in Figure 2C.

CL Aptasensors
CL is defined as material molecules generating optical radiation
after absorbing chemical energy. In CL methods, the intensity of
the luminous radiation reflects the concentration of the analytes.
CL analysis has high sensitivity (detection limit of 10−12 to 10−21

mol) due to the ability to carry out photon metering without
interference from scattered light background when an external
excitation source exists, as well as a wide linear range (3–6 orders
of magnitude). CL assays are another technology extensively
applied in clinical diagnosis. The detecting principle of a typical
CL aptasensor is similar to the principle of colorimetric-based
aptasensors, shown in Figure 2B.

Based on a CL immunosorbent assay, Ahn et al. (2009)
developed an aptasensor to detect severe acute respiratory
syndrome coronavirus (SARS-CoV), with an aptamer capturing
the SARS-CoV N protein. An enzyme-labeled secondary
antibody to the N protein was employed to transduce the signal.
This aptasensor detected SARS-CoV N protein at levels as low
as 2 pg/ml. According to an analogous principle, Xi et al.
(2015) constructed an aptasensor for detecting hepatitis B surface
antigen (HBsAg). In this aptasensor, Fe3O4-SiO2 magnetic NPs
were connected with the aptamer to help separate the targets
from the sample. The linear range of this aptasensor was 1–
200 ng/ml. This aptasensor had a lower detection limit than the
limit of the ELISA used in clinical applications.

Fluorescence Aptasensors
Fluorescent aptamer biosensors use fluorophores as the signal
output element. The outcome is reflected by changes in the
fluorescence intensity or by the production of fluorescence
polarization (Dwivedi et al., 2010; Ohk et al., 2010).

Aptasensor response with fluorescence intensity
Wang et al. (2016) applied a fluorescent-labeled universal
aptamer to build an integrated microfluidic detection device for
multivirus diagnosis. In this aptasensor, aptamers distinguished
influenza A H1N1, H3N2, and influenza B viruses. For this
aptasensor, an aptamer was modified on magnetic beads to catch
the virus, and another fluorescence-labeled universal aptamer
marked the captured analyte. Detection could be finished
in 20min, enabling point-of-care identification of influenza
infection. In another study, a sol-gel protein chip was generated
for detecting HCV core antigen in patient serum. In this chip, the

aptamer was used to capture the virus, and anti-HCV and Cy3-
labeled goat secondary antibodies were applied as signal probes
(Lee et al., 2007).

Hmila described an aptamer-real-time-PCR method to detect
the H9N2 influenza virus (Hmila et al., 2017). The capturing
aptamer, specific to H9N2, was attached onto a particular strip.
After virus binding by the capturing aptamer, a reporter aptamer
was added into the system to bind the virus. The content of virus
was calculated by measuring the bound reporter aptamer using
the TaqMan RT-PCR reaction. This PCR method directly used
swab samples without extracting nucleic acids, yielding a limit
1000-fold lower than a clinical ELISA. Liu et al. (2019) designed
an aptamer selection strategy and identified two candidates for
human noroviruses. These aptamers successfully detected human
noroviruses from clinical samples as part of an in situ capture
RT-qPCR assay.

In 2000, Yamamoto and his team reported a detection method
to analyze the Tat protein of HIV-1 using aptamer-derived
oligomers (Yamamoto et al., 2000a). They selected an aptamer
RNATat specific to the HIV Tat protein (Yamamoto et al., 2000b).
To build a molecular beacon aptamer, the aptamer RNATat was
split into two oligomers. The beacon aptamer, named F-BA1-
D, had a hairpin structure in its body region, a fluorophore at
the 5′-end, and a quencher at the 3′-end. The hairpin structure
placed the quencher and fluorophore near each other, inhibiting
fluorophore emission. The other oligomer, DA-2, was a non-
structured oligomer. As shown in Figure 2D, when the HIV-1
Tat protein was present, a stabilized ternary complex (Tat/F-BA1-
D/DA-2) formed, in which the fluorophore and the quencher
were separated, and fluorescent light was released (Yamamoto
et al., 2000a). In Xiao’s research, an aptamer specific to the prion
protein PrPC similar to the aptamer RNATat mentioned above
was designed. The detection range of this fluorescence aptamer
sensor was 1.1-44.7 g/l, and the minimum limit of detection was
0.3 g/l (Xiao et al., 2009). This fluorescence quench assay was used
to detect Influenza A virus DNA and the dengue virus genome
(Fletcher et al., 2010; Liu et al., 2017).

Metal-enhanced fluorescence occurs when the emission of
the fluorophore is enhanced around specific metal materials,
modifying spectral characteristics and reducing photophysical
constraints. Pang et al. (2015) applied metal-enhanced
fluorescence to design an aptasensor for detecting H5N1.
The main reagents included a core–shell of Ag-SiO2 NPs,
aptamers and thiazole orange. When the H5N1 or HA protein
was captured by the aptamers, the conformation of the aptamers
changed into a G-quadruplex structure, causing thiazole orange
fluorescence. This aptasensor detected H5N1 in both aqueous
solution and patient serum. The detection process could be
completed in under 30 min.

Utilizing the chemiluminescent resonance transfer
strategy, Kim et al. (2018) designed an aptasensor for
detecting norovirus GII. In this aptasensor, guanine-
modified DNA aptamers were used to capture the target.
In the presence of tetra-n-propylammonium hydroxide and
dimethylformamide, the guanine of single-stranded DNA
reacted with 3,4,5-trimethoxylphenylglyoxal, producing a high-
energy intermediate. This intermediate then delivered energy to
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fluorescent dye (e.g., fluorescein, 6-FAM), which in turn emitted
detectable light. The detection limit was 80 ng/ml in tap water.

Aptasensor response with fluorescence polarization
Szakács et al. (2018) proposed an aptamer-based fluorescent NP
tracking analysis of viruses. In this study, human respiratory
syncytial virus (RSV) was the analyte. The fluorescent aptamer
bound viral glycoproteins to mark RSV. RSV could then be
identified and counted using fluorescent nanoparticle tracking
analysis. This analysis method was able to detect viruses larger
than∼80–100 nm.

Quantum dots (QDs), also referred to as artificial atoms, are
spherical-like inorganic semiconductor fluorescent nanocrystals.
Compared with traditional organic dyes, QDs as fluorophores
have good stability, perform well in multi-signal detection, and
have other advantages as well (Michalet et al., 2005; Ikanovic
et al., 2007). QDs are extensively used in fluorescent detection.
Based on fluorescence polarization technology, Zhang et al.
(2013) utilized a bifunctional DNA aptamer and QDs to develop
an aptasensor for detecting H1N1. Briefly, a DNA sequence
specific to H1N1 was modified on QDs to build a capturing
probe. Another aptamer, specific to both the H1N1 protein
and SA, amplified the fluorescence polarization value. This
aptasensor detected H1N1 at levels as low as 3.45 nM.

SERS-Based Aptasensors
Raman spectroscopy is a type of scattered spectrum that provides
“the unique chemical dactylogram” of molecules. When a laser
light penetrates the medium, photons collide with the molecule,
allowing the interaction of photons and the molecular vibrational
energy or rotational energy. The energy of the photons can be
adjusted, and the resulting energy changes reveal characteristics
about the medium (Sassolas et al., 2011). However, its low
sensitivity limits the application of Raman scattering. SERS
overcomes this weak point by adsorbing molecules on rough
metal surfaces or nanostructures (Otto, 1991; Kneipp et al., 1999;
Sassolas et al., 2011; Xu et al., 2013).

Negri et al. (2012) developed a label-free SERS-based
aptasensor to detect the viral nucleoprotein of influenza. In
the system, Ag nanorods acted as the active substrates, and
polyvalent anti-influenza aptamers were immobilized on the
surface. The binding of the target and aptamer changed the
nucleotide secondary structure, which was sensed by SERS.

Interferometry Aptasensors and Other

Optical Aptasensors
Interferometry is a label-free technique that measures light
intensity generated by the interference of different light beams.
The information includes the index of refraction or physical
properties, for example, the thickness of a film (Roh et al., 2011;
Shah and Duncan, 2014). Roh et al. (2011) detected HCV with
an Octet optical platform, where the HCV-specific RNA aptamer
was coated on the optical organic film layer of a tip by biotin-SA
binding. When the virus attached to the aptamer, the thickness
of the organic film changed, and as a result, the signal spectrum
changed. This platform had a detection limit of 700 pg/ml.

Electrical Aptasensors
Electrical aptasensors detect targets as the binding between
the aptamer and target causes or changes an electrical signal.
These aptasensors are classified as electrochemical aptasensors or
piezoelectric transducers based on their detection mechanism.

Electrochemical Aptasensors
Typical electrochemical aptasensors immobilize the capturing
aptamer on the electrode. Electrochemical aptasensors are
categorized based on their method of producing electrical signals.
First, in aptasensors without enzymes, the binding of aptamers
to targets directly leads to an electrical signal change. Second,
in aptasensors with enzymes, the electrical signal change is
aided by enzyme catalysis. The third is based on a field-effect
transistor (FET).

Aptasensors without enzymes
In aptasensors without enzymes, aptamers are immobilized on
the electrode and the binding of aptamer to its target changes the
impedance directly. The basic mechanism is shown in Figure 3A.
Using microfluidic chips, Lum and his team built an impedance
aptasensor to detect AIV H5N1 (Lum et al., 2015). In this
biosensor, an SA-covered gold microelectrode was embedded
on a microfluidic biochip. The chip was connected to the
test-sense and the counter-reference probes of the impedance
analyzer. Biotin-modified DNA aptamers were immobilized
on the electrode. When the virus sample flowed through the
microfluidic module, the aptamer captured the target, increasing
the impedance. Detection took under 30min, and the minimum
detection limitation was 0.0128 HAU. Following the same
principle, aptasensors were developed to detect influenza A virus
(Kirkegaard and Rozlosnik, 2017) and vaccinia virus (Labib et al.,
2012). Karash et al. (2016) designed an analogous aptasensor
to detect H5N1 in chicken tracheal samples. Unlike previous
methods, they used network-like thiocyanic acid/AuNPs to
amplify the signal. This aptasensor finished detection within 1 h
with a detection limit of 1 HAU for theH5N1(+) tracheal chicken
swab samples, comparable to the conventional RT-PCR method.

Giamberardino et al. (2013) fabricated an electrochemical
impedance aptasensor for rapidly detecting noroviruses from
clinical samples. This aptasensor employs an AuNP-modified
screen-printed carbon electrode modified with an aptamer. The
working mechanism was similar to the sensors introduced above.
The detecting signal was a decreased redox current, measured by
square wave voltammetry. The detection limit of this aptasensor
was 180 virus particles. Although the aptasensor showed promise
in on-site application, it needs further development before
clinical applications would be feasible.

Aptasensors with enzymes
The basic mechanism of aptasensors with enzymes is shown
in Figure 3B. Electrochemical impedance spectroscopy (EIS)
is an electrochemical measuring method that applies a small
amplitude sinusoidal potential or current as a disturbance signal.
In EIS bio-sensors, the incident sinusoidal wave changes when
it passes through the electrode, and these changes reflect the
characteristics of the electrode. Bai et al. (2018) modified the
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FIGURE 3 | Schematic illustration of electrical aptasensors. (A) Mechanism of typical electrochemical aptasensor without enzymes. The combination of aptamer and

target virus changes the electrical signal on the electrode. (B) Mechanism of electrochemical aptasensor with enzymes. (C) Mechanism of a nanogate. With no target

virus, the aptamer binds the bio-nanogate to close the “door” and keep the enzyme away from the coenzyme and substrate. The target virus can grab the aptamer

from the nanogate, and the enzyme on the electrode reacts with the coenzyme and substrate, leading to a change in the electrical signal on the electrode. (D)

Mechanism of a diamond-aptamer FET sensor. The aptamer probe is on the diamond-FET surface. In the presence of virus, the aptamer captures the virus and forms

a complex with a second aptamer strand. This causes changes in the electric charges on the surface, which is sensed by the electrode.

gold working electrode with aptamers to build an EIS biosensor
for detecting H1N1 virus. The detection limit was 0.9 pg/µL.
Based on an increased ion strength, Fu et al. (2014) proposed
an aptasensor for detecting H5N1. In this aptasensor, the
capturing aptamer was fixed on magnetic beads, and AuNPs-
GOx-ConA complexes were used to trigger an enzyme catalysis
reaction, which increased the ionic strength and decreased the
impedance. The change in impedance was detected by EIS.

This aptasensor detected H5N1 as low as 8×10−4 HAU in
200µL samples. The EIS strategy was also adopted in aptasensors
for detecting HCV (Ghanbari et al., 2017), in which a glassy
carbon electrode was modified with graphene quantum dots.
The capturing aptamer, specific to the HCV core antigen,
was immobilized onto the glassy carbon electrodes by the
noncovalent electrostatic interactions, hydrogen-bonding and
π-π stacking. The ferricyanide/ferrocyanide was employed as
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the signal reporter. This compound slightly inhibited electron
transfer caused by redox. Once the HCV core antigen combined
with the aptamer, the complex strengthened the inhibition. These
changes were measured by EIS. This aptasensor detected 3.3
pg/ml, with two different linearity ranges, 10–70 pg/ml and 70–
400 pg/ml, much more effective than other reported PCR or
EIS methods.

Nanogates are nanodevices that control chemical or biological
reactions. The basic mechanism is shown in Figure 3C. Utilizing
this technology, Wang et al. (2015) developed a label-free
aptasensor for AIV H5N1. To fabricate the bio-nanogate, two
thiolated ssDNA probes hybridized with the aptamer and were
fixed on a nanoporous gold film. Then, this “gate” covered
the surface of a lactate dehydrogenase-coated glassy carbon
electrode. The hybridization of ssDNA and aptamer restricted
the enzymatic reaction by keeping lactate dehydrogenase from its
coenzymes and substrates in the testing solution. The binding of
the virus to aptamers caused the aptamers to dissociate from the
ssDNAs, “opening” the gate and allowing lactate dehydrogenase
to contact the testing solution and react with its coenzymes and
substrates. The enzymatic reaction produced a current signal on
the electrode. This biosensor detected H5N1 as low as 2−9 HAU
in about 1 h and had a linear range of 2−10-22 HAU.

Another electrochemical aptasensor, based on an enzymatic
reaction for detecting H5N1, involves the AuNP-modified
electrode functionalized with 3-mercaptopropionic acid and
coated with a DNA aptamer to recognize the targets (Diba
et al., 2015). An anti-H5N1 antibody, modified with alkaline
phosphatase, generated an electrocatalytic reaction with the
substrates. The lowest detectable concentration of this biosensor
was 100 fM, and the linear range was 100 fM to 10 pM.

FET aptasensors
FET is a type of voltage-controlled semiconductor device
that regulates electrical behaviors with an electric field.
FET aptasensors immobilize aptamers on FET to detect
changes in the charge distribution as a result of the binding
of aptamers and target molecules. A diamond-aptamer
FET sensor was investigated for detecting HIV-1 (Rahim
Ruslinda et al., 2013). The mechanism of this diamond-
FET aptasensor is shown in Figure 3D. In this sensor, the
aptamer RNATat, against the Tat protein of HIV-1, was
linked to an aminated diamond surface by terephthalic acid.
When virus was captured by the RNATat aptamer, a second
strand, which could also bind the Tat protein, was added to
change the potential gate voltage by transforming the duplex
structure of itself and of the initial aptamer. The change
in the gate potential reflected the binding of aptamer and
analyte. This aptasensor detected 1 nM HIV-1 Tat protein
in samples.

Piezoelectric Transducers
Piezoelectric effect is the ability of certain materials to generate
an electric charge in response to applied mechanical stress.
Quartz crystal microbalance (QCM), a type of piezoelectric
transducer, uses the piezoelectric properties of quartz crystals
to translate changes on the quartz crystal electrode surface into

changes in the output signal frequency. In QCM aptasensors,
the aptamer is fixed on the quartz crystal electrode to capture
the target, and the combination of the aptamer and target
changes the quality of the pole, which is then transduced
into detectable frequency changes. Minunni et al. (2004) used
an RNA aptamer to develop a biosensor for detecting the
Tat protein of HIV-1. The lowest detectable concentration
was 0.25 mg/L, and the sensor was regenerated with NaOH
and alcohol. Comparing an antibody-based sensor with this
aptasensor, the antibody-based sensor had a wider linear range
but a lower sensitivity. This method was reproducible. Wang and
Li (2013) employed an ssDNA crosslinked polymeric hydrogel
in a QCM aptasensor for rapid and accurate detection of
AIV H5N1. The aptamer, specific to the surface protein of
H5N1, was hybridized with an ssDNA and crosslinked with
the polymer hydrogel, a network of water-insoluble polymer
chains. The aptamer-ssDNA gel was fixed on a gold surface
using a self-assembled monolayer method. In the absence of
target virus, the gel retained a shrunken state. The combination
of aptamer and the virus disrupted the connection between
the aptamer and the ssDNA, causing the gel to swell. These
changes were transduced to a detectable decreased frequency.
The detection process took 30min, with a detection limit
of 0.0128 HAU. Compared with the antibody-based QCM
sensor, the aptasensor had an improved detection time and
detection limit.

Atomic force microscopy is a type of scanning probe
microscopy with excellent resolution. This technology works by
controlling and detecting the interactions between the sample
and the mechanical probe. In a study by Pleshakova et al. (2018),
an aptamer specific to the HCV core antigen was immobilized on
an atomic force microscopy chip, and after incubation with the
antigen, the chip underwent atomic force microscopy scanning
for mass spectral analysis. The detection limit was as low
as 0.1 pM.

Other Electrical Aptasensors
A single-molecule real-time aptasensor for detecting HIV-1
was introduced by Niedzwiecki et al. (2013). This study used
nanopores, the resistive-pulse technique, and an RNA aptamer
with specificity to the HIV-1 nucleocapsid protein 7 called SL3.
A voltage was applied across a silicon nitride membrane, and the
ionic current passing through the nanopores on the membrane
was tested. When the aptamer-protein complex passed through
the membrane, the current was interrupted and was replaced by
a translocation event signal.

Other
A direct virus detection method was introduced by Le et al.
(2014). According to this study, RNA aptamer-modified AuNPs
coated a viral envelope to form a gold nanoshell, which
was visualized using transmission electron microscopy. This
aptamer-based method successfully detected influenza H3N2
viral particles. Aptasensors applied in virus detection are
summarized in Table 2.
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TABLE 2 | Summary of aptasensors applied in virus detection.

Virus Target site Detection technique Detection limit Aptamer sequence References

H1N1 HA Impedance aptasensor - - Kirkegaard and

Rozlosnik, 2017

- Fluorescence method 3.45 nM 5′-ACACAAATCCTATTGACCGCTGTGTGACGCAACACTCAAT-3′ Zhang et al., 2013

Influenza A virus genes Fluorescence method - 5′-CCCTTTAACCCCTTCTTCATCGAGAGTGTAGTCGGAAGAA-3′ Liu et al., 2017

HA Electrochemical

method

103 pfu/ml 5′-AATTAACCCTCACTAAAGGGCTGAGTCTCAAAACCGCAATACACTGGTTGTATGGT

CGAATAAGTTAA-3′
Kiilerich-Pedersen

et al., 2013

- EIS method 0.9pg/µL - Bai et al., 2018

H3N2 Surface protein Colorimetry 11.16µg/ml 5′-AATTAACCCATCACTAAAGGGCTGAGTCTCAAAACCGCAATAACTGGTTGT

ATGGTCGAATAAGTTAA-3′
Chen et al., 2016

H5N1 HA SPR 0.128 HAU 5′-GTGTGCATGGATAGCACGTAACGGTGTAGTAGATACGTGCGGGTAGGAAGAA

AGGGAAATAGTTGTCCTGTTG-3′
Bai et al., 2012

HA Impedance method 0.0128 HAU 5′-GTGTGCATGGATAGCACGTAACGGTGTAGTAGATACGTGCGGGTAGGAAGAA

AGGGAAATAGTTGTCCTGTTG-3′
Lum et al., 2015

HA Impedance method 0.25 HAU for pure virus

solution

5′-GTGTGCATGGATAGCACGTAACGGTGTAGTAGATACGTGCGGGTAGGAAGAAA

GGGAAATAGTTGTCCTGTTG-3′
Karash et al., 2016

HA Electrochemical

method

2−9 HAU 5′-GTGTGCATGGATAGCACGTAACGGTGTAGTAGATACGTGCGGGTAGGAAGAAAG

GGAAATAGTTGTCCTGTTG-3′
Wang et al., 2015

HA Electrochemical

method

100 fM 5′-TTGGGGTTATTTTGGGAGGGCGGGGGTT-3 Diba et al., 2015

HA QCM 0.0128 HAU 5′-GTGTGCATGGATAGCACGTAACGGTGTAGTAGTAACGTGCGGGTAGGAAGAAAGG

GAAATAGTTGTCGTGTTG-3′
Wang and Li, 2013

HA ELASA 0.1 µg/well 5′-GGGTTTGGGTTGGGTTGGGTTTTTGGGTTTGGGTTGGGTTGGGAAAAA-3′ Shiratori et al., 2014

- SPR 200 EID50/ml 5′-CGTACGGTCGACGCTAGCCGAAGGTTGGAGTAGGCTAAATTGGGTGTGCACGTG

GAGCTCGGATCC-3′
Nguyen et al., 2016

HA MEF 2ng/ml in aqueous

solution;

3 ng/ml in

human serum

5′-TTGGGGGCGGGAGGGTTTATTGGGGTT-3′ Pang et al., 2015

HA Impedance aptasensor 0.0008 HAU in 200 µL

sample

5′-GTGTGCATGGATAGCACGTAACGGTGTAGTAGTAACGTGCGGGTAGGAAGAAAG

GGAAATAGTTGTCGTGTTG-3′
Fu et al., 2014

H9N2 - PCR 102 TCID50/ml 5′-CCTTGTTCTATTGAACCTCTTAGTCTGGTCCTCAGTTGGG-3′ Hmila et al., 2017

Influenza A viruses and

influenza B viruses

Viral particles Microfluidic system - 5′-ACAGCACCACAGACCACCCGCGGATGCCGGTCCCTACGCGTCGCTGTCACGCTGG

CTGTTTGTCTTCCTGCC-3′
Wang et al., 2016

Influenza virus HA TEM 3 × 108 viral particles - Le et al., 2014

Nucleoprotein SERS - 5′-TACgACTCACTATAgggATCCTgTATATATTTTgCAACTAATTgAATTCCCTTTAg

TgAgggTT-3′
Nitsche et al., 2007;

Negri et al., 2012

HIV-1 Tat protein QCM 0.25 ppm 5′-ACGAAGCUUGAUCCCGUUUGCCGGUCGAUCGCUUCGA-3′ Tombelli et al., 2005

Tat protein SPR 0.12 ppm 5′-ACGAAGCUUGAUCCCGUUUGCCGGUCGAUCGCUUCGA-3′ Tombelli et al., 2005

Reverse transcriptase

(RT)

CE/LIF assay 50nM 5′-ATCCGCCTGATTAGCGATACTTACGTGAGCGTGCTGTCCCCTAAAGGTGATACGTC

ACTTGAGCAAAATCACCTGCAGGGG-3′
Pavski and Le, 2001

(Continued)
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TABLE 2 | Continued

Virus Target site Detection technique Detection limit Aptamer sequence References

RT Radioactivity-based RT

nucleotide

incorporation assays

- - DeStefano and Alves

Ferreira-Bravo, 2018

Tat protein Fluorescence method - 5′-ACGAAGCUUGAUCCCGUUUGCCGGUCGAUCGCUUCGA-3′ Yamamoto et al.,

2000a

Tat protein FET 1nM 5′-UCGGUCGAUCGCUUCAUAA-3′ Rahim Ruslinda et al.,

2013

Tat protein QCM 0.25 ppm 5′-ACGAAGCUUGAUCCCGUUUGCCGGUCGAUCGCUUCGA-3′ Minunni et al., 2004

NLC protein 7 (NCp7) Nanopore and

resistive-pulse

technique

- 5′-GGACUAGCGGAGGCUAGUCC-3′ Niedzwiecki et al., 2013

HBV HbsAg Chemiluminescence 0.1 ng/ml 5′-GGGAATTCGAGCTCGGTACCCACAGCGAACAGCGGCGGACATAATAGTGCTT

ACTACGACCTGCAGGCATGCAAGCTTGG-3′
Xi et al., 2015

HCV Envelope protein E2 ELASA 3.8–7.8 × 102 FFU/ml - Park et al., 2013

DNA Colorimetry 11 nM - Liu et al., 2012

Core antigen Fluorescence assay - 5′-GGGCCGTTCGAACCGAGCATGGATCGAGGATGGGAACACCCAGTAGGAGGAT

GGGCATGGCCGGACCCAAA-3′

ATTAGCAGTGGGACAGTACTCAGGTCATCCTAGG-3′

Lee et al., 2007

Core protein ELASA - 5′-ACTATACACAAAAATAACACGACCGACGAAAAAACACAACC-3′ Shi et al., 2014

Core antigen LFA 10 pg/ml with reader;

100 pg/ml with

unaided eye

5′-GATCGAGGATGGGAACACCCAGTAGGAGGATGGGCATGGCCGGACCCAAAAT

TAGCAGTAAAAAAAAAAAAAAAAAA-3′
Wang et al., 2013

NS5B protein Octet aptasensor 700 pg/ml 5′-GGCCACAUUGUGAGGGGCUC-3′ Roh et al., 2011

Core antigen Electrochemical

method

3.3 pg/ml 5′-ACTATACACAAAAATAACACGACCGACGAAAAAACACAACC-3′ Ghanbari et al., 2017

Helicase Fluorescence method - 5′-GGGAGAGCGGAAGCGUGCUGGGCCACAUUGUGAGGGGCUCAGGUGGAUCGCAU

GGCCGUGUCCAU-3′
Cho et al., 2004; Jun

et al., 2010

Core antigen AFM-scanning 10−14 M 5′-ACGCTCGGATGCCACTACAGTAACACACACAACTTAAAATCATACAAAAAAGAG

TAAATGCCTCATGGACGTGCTGGTGA-3′
Pleshakova et al., 2018

Norovirus GII - Chemiluminescence 80 ng/ml 5′-GGGGGTTTTCATCTGTGTGAAGACTATATGGCGCTCACATATTTCTTTC-3′ Kim et al., 2018

Norovirus GII.3 Capsids protein Electrochemical

method

180 virus particles 5′-GCTAGCGAATTCCGTACGAAGGGCGAATTCCACATTGGGCTGC

AGCCCGGGGGATCC-3′
Giamberardino et al.,

2013

Norovirus GII.4 P particles In situ capture

RT-qPCR assay

- 5′-CGATCAAACGTTCAAGCGGGGCCCGGAGGCGTGACTTGGA

CAGGCAGGCGTTACGATGCATCCCGCAAATGACGCATGA-3′
Liu et al., 2019

Dengue virus EcoRI Fluorescence method - 5′-CCGACGAGCAAGTAGCTCCAAGACGAGTTCAACCCCAGAATCAGGTCGG-3′ Fletcher et al., 2010

SARS coronavirus N protein Chemiluminescence 2 pg/ml 5′-GGGAGAGCGGAAGCGUGCUGGGCCUGUCGUUCGCUGUCUUGCUACGUU

ACGUUACACGGUUGGCAUAACCCAGAGGUCGAUGG-3′
Ahn et al., 2009

Bovine viral diarrhea

virus type 1

- SPR 500 TCID50/ml 5′-CGTACGGAATTCGCTAGCTGCGCATCCACAAATGTATTGTCGGGGG

ATGGATCCGAGCTCCACGTG-3′
Park et al., 2014

Vaccinia Intact virus particles Impedimetric method 60 virions/ml 5′-CTCCTCTGACTGTAACCACGCGCGCCCCCGCTGTTCGAGCCGATAGAGGG

CTAGTGTCATGCATAGGTAGTCCAGAAGCC-3′
Labib et al., 2012

(Continued)
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APTAMERS IN ANTIVIRAL THERAPY

Viral infection is an intractable problem for human health, which
has been highlighted in recent years. Efficient and early treatment
improves the prognosis, but current treatment of viral infections
is not satisfactory. Many antiviral drugs and vaccines are
inefficient due to frequent virus mutations and viruses escaping
the host immune system (Dunning et al., 2014; Marascio et al.,
2014; Sahu, 2015). Moreover, many antiviral drugs have strong
side effects, such as rashes, central nervous system disorders,
influenza-like symptoms, hematologic abnormalities, or organ
damage (Vcev, 2009; Frasca et al., 2012). At the same time,
antiviral drugs may interact with other drugs, leading to even
lower efficacy (Soriano et al., 2015).

Viral infection involves adsorption, penetration, uncoating,
synthesis of macromolecule, assembly, and release. These
processes may be inhibited by using specific molecules that
target virus-infected cells or virus components. As a novel
targeted molecule, aptamers could be applied to antiviral
therapy. Several mechanisms such as clathrin- and caveolae-
mediated endocytosis, macropinocytosis and phagocytosis
could aid in aptamer uptake. Aptamers are distributed to
subcellular compartments by endocytic vesicles according to
the physiology of the host cells (Yoon and Rossi, 2018). In the
following sections, we introduce antiviral aptamers that employ
various mechanisms.

Suppressing Virus Attachment to
Host Cells
Aptamers can impede virus entry into cells by affecting the
virus or cell-surface receptors. The cellular protein nucleolin is
thought to be involved in the attachment or entry of different
viruses (Hovanessian, 2006; Xiao et al., 2011; Thongtan et al.,
2012). Nucleolin interacts with the dengue virus capsid protein,
taking part in the formation of infectious virus particles. This
interaction was disturbed by the RNA aptamer AS1411, which
bound to nucleolin (Balinsky et al., 2013). The influenza virus
surface glycoprotein HA attaches to the sialic acid receptor of the
host cell, playing a significant part in an early step of influenza
infection (Skehel and Wiley, 2000; Eckert and Kim, 2001). An
RNA aptamer, HA12-16, obstructed influenza virus infection
in vulnerable cells by disabling the receptor-binding domain
of the HA protein and enhancing cell viability (Kwon et al.,
2014). A modified DNA aptamer, C7-35M, directly targeted the
globular region of the AIV H9-type HA protein, suppressing
virus attaching to host cells (Choi et al., 2011). In the penetration
process of herpes simplex virus, the gD protein plays a key
role by recognizing two protein receptors on target cells, herpes
virus entry mediator and nectin-1 (Carfí et al., 2001). Based
on this theory, two anti-herpes simplex virus-1 RNA aptamers
were selected, which disturbed the interaction of the gD protein
and the herpes virus entry mediator. This interference was
dose-dependent (Gopinath et al., 2012). Similarly, another DNA
aptamer targeting gD was selected for curbing herpes simplex
virus-1 infection (Yadavalli et al., 2017).
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TABLE 3 | Summary of aptamers and aptamer-based experiments in antiviral therapy.

Virus Aptamer type Application Aptamer sequence References

DENV RNA Blocking the interaction between NCL

and DENV capsid protein

5′-GGTGGTGGTGGTTGTGGTGGTGGTGG-3′ Balinsky et al., 2013

RNA Binding and inhibiting the methylation

activity of MTase

5′-GGGAGAGCGGAAGCGUGCUGGGCCCAGUGGUUGGGCACAUAUAGACUGUGUAAU

UCGUAUAGUGUGCAUAACCCAGAGGUCGAUGGAUCCCC-3′
Jung et al., 2018

Influenza virus ssDNA Targeting the HA 5′-AACGCTCACTCCCCCAAGAAGAACCCCCCCCCCCCCCCCCCCCCCAGTGAGCGTT-3′ Musafia et al., 2014

Influenza virus

(H5N1)

DNA Binding to the HA1 protein to disrupt

virus entry

5′-GAATTCAGTCGGACAGCGGGGTTCCCATGCGGATGTTATAAAGCAGTCGCTTA

TAAGGGATGGACGAATATCGTCTCCC-3′
Cheng et al., 2008

Influenza A virus DNA Binding and inhibiting the endonuclease 5′-CCGTAATACGACTCACTATAGGGGAGCTCGGTACCGAATTCGCAAGCGT

CTGCATCCCGGTGGGACCATTAAAGCTTTGCAGAGAGGATCCTT-3′
Yuan et al., 2015

AIV DNA Hindering viral absorption or inhibiting

HA-mediated membrane fusion by

binding to HA

5′-GCTGCAATACTCATGGACAGCCTCCTGGGGTCAGGCTCAGACATTGATA

AAGCGACATCGGTCTGGAGTACGACCCTGAA-3′ or

5′-GCTGCAATACTCATGGACAGGGGCCGCGCCTGGTCGGTTGGGTGGGTGG

CGCCCGGGACGGTCTGGAGTACGACCCTGAA-3′

Zhang et al., 2015

DNA Recognize the HA protein and inhibit the

binding of the virus

5′-ATTAACCCTCACTAAAGGGAGGTAGTTATAGTATATGGAAGGGGGTGTT

ATGGTCGAATAAGTTAACG-3′
Jeon et al., 2004; Choi

et al., 2011

RNA Neutralizing the receptor-binding domain

of HA

5′-GCUUGACGGAGAUCAAGGGCGAGUCUCAUACCAAGUUGAUGGGG-3′ Kwon et al., 2014

HSV-1 RNA Binding to the gD protein to interfere with

the binding of gD and the host receptors

5′-GGGAGCUCAGCCUUCACUGCACGAGAGAGGUCGUCCCCAGGGGAGAA

CUCGUGCUCCUGGAGGCAAGUUGACUGCUCGCUCUCAGCUGGUCAAGGGCA

CCACGGUCGGAUCCUG-3′

Gopinath et al., 2012

DNA Binding to the gD protein to interfere with

the binding of gD and the host receptors

5′-GGGCACGAGAGAGGTCGTCCCCAGGGGAGAACTCGTGCTCCTGG-3′ Yadavalli et al., 2017

JEV RNA Suppressing JEV MTase to inhibit viral

cap methylation

5′-CCACGACAGCAUGCCAAUAGAUGCGCAUGGAGACGACAGCAU-3′ Han and Lee, 2017

HBV DNA Targeting the HBV core protein to reduce

the synthesis of extracellular HBV DNA

5′-ACGCTCGGATGCCACTACAGCTTCCCCTAATCTGGCGCTCTCATCTAATTT

CCCTTCCTGCTCATGGACGTGCTGGTGAC-3′
Zhang et al., 2014

RNA Interfering with viral P-ε complex

formation

5′-UGUUCAUGUCCUACUGUUCAAACAAAAAAACUGUGCACAAAAAUAAAUU

GGGGCAUGGACA-3′
Feng et al., 2011

DNA Impairing virion formation by inhibiting

the matrix domain- matrix binding

domain interaction

5′-gcgggtcgacgtttgCACACGCGAGCCGCCATGTCTGGGCcacatccatgggcgg-3′ Orabi et al., 2015

Recombinant

proteins

Working on the core protein to disturb

viral capsid formation and DNA

replication

- Butz et al., 2001;

Zhang et al., 2009

Recombinant

proteins

Redistributing intracellular target protein

into perinuclear inclusion bodies to

inhibit viral capsid formation

- Tomai et al., 2006

HCV RNA Suppressing HCV NS5B replicase 5′-UUGAACGAUUGGUAGUAGAAUAUCGUCAG-3′ Lee et al., 2013

RNA Recognizing the GTP binding site of

NS5B to suppress the activity of

polymerase

5′-CGAAGCCGCUAUGGACCAGUGGCGCGGCUUCGGCCCGACGGAGUG-3′ Biroccio et al., 2002

DNA Binding to NS5B and inhibiting its

polymerase activity

- Bellecave et al., 2008

(Continued)
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TABLE 3 | Continued

Virus Aptamer type Application Aptamer sequence References

DNA Inhibiting E2 protein binding to CD81 5′-GCGGAATTCTAATACGACTCACTATAGGGAACAGTCCGAGCCGAATGAGGAATAATCTAGCT

CCTTCGCTGAGGGTCAATGCGTCATAGGATCCCCC-3′
Chen et al., 2009

Cytomegalovirus Recombinant

proteins

Neutralizing the NLS sites of pUL84 to

interfere viral replication and production

- Kaiser et al., 2009

Rabies virus ssDNA Recognizing the RABV glycoprotein on

infected cells to inhibit the earliest stages

of infection

5′-TATTTTTATATTTGTTTGACAGTCGCTTGCTTGTGTAGGCGTT-3′ Liang et al., 2014

HIV-1 RNA Working on the nucleocapsid protein - Kim et al., 2002

RNA Preventing the gp120 from interacting

with the chemokine receptor

- Lopes de Campos

et al., 2014

RNA - 5′-UAAUACGACUCACUAUAGGGAGACAAGACUAGACGCUCAACAGGACCGAGAGAUGCAAC

UAGUGAUUUCCCUCAUAAUCAUUCUAAGAGCUUCGACAUGAGA

CUCACAACAGUUCCCUUUAGUGAGGGUUAAUU-3′

London et al., 2015

DNA Inhibiting the RT 5′-cgcctgattagcgatactCAGGCGTTGGGGGGGGGGGG-3′ or

5′-atccgcctgattagcgatatCAGAAGGATAAACTGTCCAGAAC-3′
Ditzler et al., 2011

RNA Inhibiting the RT 5′-GACAGGGCCCGTTTTCCAGTGTTTTCCCCTTTATCTCCTGGGTTCGTAGGGAATTCAG-3′ Lange and Burke, 2014

DNA Inhibiting the RT 5′-GGGGGTGGGAGGAGGGTAGGCCTTAGGTTTCTGA-3′ Shiang et al., 2013

DNA Inhibiting both HIV infection and HIV-1

integrase

- Magbanua et al., 2013

RNA Inhibiting RT activity by competing with

the primer/template for access to RT

5′-GGGCAACCGGUGUCUACCGGGCUUCGGCCCGGUUCAAGGACACCGCCACUGC-3′ Whatley et al., 2013

HIV DNA Targeting delivery of siRNAs 5′-GTGACGTCCTGATCGATTGTCGCATTCGGTGTGACGATCTGCUCUAUUAGAUACAGGAGtt-3′ Zhu et al., 2012

DNA Inhibiting both HIV infection and HIV-1

integrase

- Magbanua et al., 2013

RNA Binding to CycT1 to restrict the

production of transcription elongation

factor B

5′-GGTAATACGACTCACTATAGGGAGATACCAGCTTATTCAATTCCUACCAA

AUACGAGCCCAUCGUCACGUUCUCUUAUCUACAGATAGTAAGTGCAATCT-3′
Um et al., 2012

Ebola virus RNA Depressing the activity of the

polymerase by interfering with the

binding of gD and the host receptors

5′-GGGAGACAAGAAUAAACGCUCAAGGCAUUUCUGCUAGUCUGGUUGUAA

GAUAUUCAACACGUGAGUUUCGACAGGAGGCUCACAACAGGC-3′ or

5′-GGGAGACAAGAAUAAACGCUCAACGUUCAGUAUAACAGUCCGAGUCUA

ACACACAAUGGGACACUGAAUUCGACAGGAGGCUCACAACAGGC-3′

Binning et al., 2013

HPV RNA Binding to virus capsid and interrupting

the binding of the virus capsid to

heparan sulfate (HS) receptors

5′-GGGAACAAAAGCUGCACAGGUUACCCCCGCUUGGGUCUCCCUAUAGUGAGUCGUAUUA-3′

or 5′-GGGAACAAAAGCUGCACAGGUUACCCCCGCUUGGGUCUCC-3′
Valencia-Reséndiz

et al., 2018
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Inhibiting Replication of Viruses
Various enzymes play different and significant roles in the virus
replication cycle. Enzymes or their corresponding substrates
could be targeted by antiviral aptamers. Inhibiting the replication
of viral nucleic acid is another method in antiviral therapy.

In Japanese encephalitis virus, a single methyltransferase
domain catalyzes the methylation of the RNA cap in the
cytoplasm. This domain is on the N-terminal region of the viral
non-structural protein NS5. A 24-mer truncated RNA aptamer
modified with 2’-O-methyl pyrimidines against the Japanese
encephalitis virus methyltransferase restrained viral production
in host cells (Han and Lee, 2017). Jung et al. (2018) reported an
analogous study in dengue virus.

The HCV non-structural 5B polymerase is an important
RNA-dependent RNA polymerase that catalyzes HCV RNA
replication (Luo et al., 2000; Cheney et al., 2002). Biroccio
et al. (2002) selected an RNA aptamer B.2., characterized
by a stem-loop structure, that potently inhibited the non-
structural 5B polymerase. The B.2. aptamer and the template
RNA have different binding domains on the RNA-dependent
RNA polymerase, and B.2. could noncompetitively bind the RNA
polymerase, weakening its activity. Two RNA aptamers, 27v and
127v, specific to the non-structural 5B polymerase, inhibited
HCV polymerase activity in vitro (Bellecave et al., 2008). By
competing for the binding sites of the polymerase with viral
RNA template, the aptamer 27v blocked both the initiation and
the elongation of viral RNA synthesis, while the aptamer 127v
inhibited the initiation and postinitiation events.

The multifunctional regulatory protein pUL84 is fundamental

in the early phase of human cytomegalovirus replication.

By mediating the cellular importin-α/β pathway, nuclear

localization signal is involved in the nuclear trafficking of
pUL84. In Kaiser’s research, peptide aptamers aimed at
the nuclear localization signal domain of pUL84 abrogated
the nuclear translocation of this viral replication factor by

restraining the interaction between importin-α proteins and
pUL84 (Kaiser et al., 2009).

The HBV core protein is significant in the production of the
HBV nucleocapsid and affects viral envelopment (Deres et al.,
2003; Roseman et al., 2005). Aptamer No.28 efficiently impeded
HBV nucleocapsid assembly and suppressed viral replication
(Zhang et al., 2014). Similarly, under intracellular conditions, a
peptide aptamer against the HBV core protein prevented viral
replication by disturbing capsid formation (Butz et al., 2001).

The HIV-1 nucleocapsid protein is crucial in the
encapsidation of virus nucleic acids and the installment of
virus particles (Kim et al., 2002). The retroviral psi packaging
element is a cis-acting RNA element in the genome of HIV
and is involved with regulating the packaging process of the
viral genome in replication (Lever et al., 1989; McBride and
Panganiban, 1997; McBride et al., 1997; Lever, 2007). Based on
this, RNA aptamers specific to the HIV nucleocapsid protein
were selected for disturbing viral packaging. The aptamers
worked by competing for the psi RNA (Kim et al., 2002).

As a Delivery Tool
Small interfering RNA (siRNA) is a category of dsRNA 20-
25 base pairs in size. By inducing degradation of mRNA after
transcription, siRNA can inhibit the expression and translation
of corresponding genes (Agrawal et al., 2003). SiRNA can also
interfere with the formation of the chromatin structure of a
genome (Hamilton and Baulcombe, 1999; Elbashir et al., 2001).
SiRNA has shown great value in biomedical research and drug
development since its discovery. However, off-targeting restricts
siRNA applications in therapies (Shen et al., 2012). Aptamers
are a desirable siRNA delivery tool of siRNA due to their high
specificity, affinity to targets, and low toxicity.

The application of aptamer-siRNA in HIV-1 therapy has been
a hot topic in recent years. Envelope glycoprotein GP120 (gp120)
is a glycoprotein expressed on the HIV envelope. By attaching

TABLE 4 | Summary of aptamers that have not been used in virus detection or antiviral therapy.

Virus Binding site Sequence References

HPV-16 L1 protein 5′-GGGAACAAAAGCUGCACAGGUUACCCCCGCUUGGGUCUCCCUAUAGU

GAGUCGUAUUA-3′
Leija-Montoya et al.,

2014

HBV HBsAg 5′-GTTGATTGCGTGTCAATCATGGCCGTCTATAATGATCG

TAAACGACGGGTCATGTGTATGTTGGGGATTGGGACCTGATTGAGTTCAG

CCCACATAC-3′

Liu et al., 2010

HCV Envelope glycoprotein

E2

5′-GAATGAGGAATAATCTAGCTCCTTCGCTGA-3′ Chen et al., 2009

Human noroviruses

(GII.2 and GII.4)

Capsid protein 5′-GTCTGTAGTAGGGAGGATGGTCCGGGGCCCCGAGACGACGTTATCAGGC-3′ Beier et al., 2014

Dengue virus Envelop protein

domain III

5′-GCACCGGGCAGGACGTCCGGGGTCCTCGGGGGGC-3′ Chen et al., 2015

Envelop protein

domain III

5′-CGGCATTCTCCTGCTACGAGG-CGCTGCGGTACACCCCGACTCCAC –

GAGCCACTGTCTACGGACATCTG-3′
Gandham et al., 2014

SARS CoV Nucleocapsid protein 5′-GCAATGGTACGGTACTTCCGGATGCGGAAACTGGCTAATTGGTGAGGC

TGGGGCGGTCGTGCAGCAAAAGTGCACGCTACTTTGCTAA-3

Cho et al., 2011

Vaccinia Surface protein 5′-ATCGTCTGCTCCGTCCAATAGTGCATTGAAACTTCTGCATCCTCGTTTGGT

GTGAGGTCGTGC-3′
Tang et al., 2009

Ebolavirus Soluble glycoprotein 5′-GGGCGCUCAAUUUUUUAUUGCAUUUUUCUUUGAGCGCCC-3′ Shubham et al., 2018
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to the specific cell surface receptors, gp120 participates in the
process of virus entry into cells (Dalgleish et al., 1984; Curtis et al.,
1992). Zhou and coworkers employed the anti-gp120 aptamer-
siRNA chimera for HIV-1 treatment. The aptamer carried the
siRNA to cells infected with HIV-1, then the siRNA inhibited
HIV replication (Zhou et al., 2008). In later studies, Zhou found
that the aptamer could neutralize virus infection and transfer
functional siRNAs to HIV-1 infected cells (Zhou et al., 2011).
To improve the transport capacity of aptamers as siRNA carriers,
researchers modified gp120-specific aptamers with a 3′ 7-carbon
linker, which was bound with a 16-nucleotide 2′ OMe/2′ Fl
GC-rich bridge sequence. The sequence promoted the non-
covalent combination and interaction of various siRNAs with the
aptamers (Zhou et al., 2013). The aptamer-siRNA system has also
been studied by other researchers (Catuogno et al., 2015).

Others
To mitigate HIV-associated cardiomyopathy, Lopes de Campos
et al. (2014) employed an anti-gp120 aptamer UCLA1. By
directly binding to HIV-1 and neutralizing the virus, the
aptamer protected cardiomyocytes from apoptosis and indirectly
prevented infection of monocyte-derived macrophages.

Aptamers applied in antiviral therapy are summarized
in Table 3.

VIRUS-TARGETING APTAMERS

In addition to the aptamers mentioned above, there are many
aptamers for detecting different viruses that have not been
used in virus detection or antiviral therapy. Table 4 summarizes
aptamers that target different viruses.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Aptamer technologies are being increasingly applied in research,
for diagnosis and therapy, because of the high binding specificity
and affinity, and other advantages of aptamers (Table 1).
Although many studies have been published on virus detection
and treatment, few aptamer-based products are commercially
available for clinical diagnosis and therapy (González et al., 2016).
In addition, several of these studies have compared the aptasensor
with other detection methods in detail (Minunni et al., 2004;
Wang and Li, 2013; Ghanbari et al., 2017). Nevertheless, aptamer

technologies still face many impediments; for instance, the
aptamer screening process is difficult. Even though the principles
of SELEX are the same for diverse targets, the experimental
details are often quite different, requiring significant time and
effort to establish suitable reaction conditions. Also, selection
failure is common due to significant uncertainties in PCR
bias, PCR artifacts, and background binders (Rozenblum et al.,
2016). Another difficulty in developing aptamer technologies is
that aptamers are screened under certain conditions which do
not always exactly replicate the conditions of complex clinical
samples, so the structure, function, the binding affinity and
specificity of aptamer could possibly be changed in clinical
samples. Another hurdle for aptamer technologies is that special
bases are used to construct aptamers to optimize their affinity
and specificity, causing increased synthesis costs. To optimize
the selection process and aptamer properties, researchers have
proposed improved strategies, such as SOMAmer, bead-based
selection, Cell-SELEX and microfluidics technology, and have
achieved remarkable results (Sun and Zu, 2015). In addition,
diverse chemical modifications to the nucleotide composition
of aptamers, including pegylation, have improved the metabolic
stability of aptamers. Aptamer applications in virus detection and
therapies can be improved by (1) improving aptamer screening
technologies; (2) further understanding the 3D models and the
factors influencing the binding of aptamers and their targets;
and (3) further verifying aptamers as diagnostic and therapeutic
agents both in vitro and in vivo. In conclusion, while there are
still some gaps in developing aptamers for clinical applications,
aptamers will be widely used in virus detection and therapy with
the improvement of the relevant technologies.
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