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Background: Hepatocellular carcinoma (HCC) is often associated with the overexpression of multiple 
proteins and genes. For instance, patients with HCC and a high expression of the glypican-3 (GPC3) gene 
have a poor prognosis, and noninvasive assessment of GPC3 expression before surgery is helpful for clinical 
decision-making. Therefore, our primary aim in this study was to develop and validate multisequence 
magnetic resonance imaging (MRI) radiomics nomograms for predicting the expression of GPC3 in 
individuals diagnosed with HCC. 
Methods: We conducted a retrospective analysis of 143 patients with HCC, including 123 cases from our 
hospital and 20 cases from The Cancer Genome Atlas (TCGA) or The Cancer Imaging Archive (TCIA) 
public databases. We used preoperative multisequence MRI images of the patients for the radiomics 
analysis. We extracted and screened the imaging histologic features using fivefold cross-validation, Pearson 
correlation coefficient, and the least absolute shrinkage and selection operator (LASSO) analysis method. We 
used logistic regression (LR) to construct a radiomics model, developed nomograms based on the radiomics 
scores and clinical parameters, and evaluated the predictive performance of the nomograms using receiver 
operating characteristic (ROC) curves, calibration curves, and decision curves. 
Results: Our multivariate analysis results revealed that tumor morphology (P=0.015) and microvascular 
(P=0.007) infiltration could serve as independent predictors of GPC3 expression in patients with HCC. The 
nomograms integrating multisequence radiomics radiomics score, tumor morphology, and microvascular 
invasion had an area under the curve (AUC) value of 0.989. This approach was superior to both the 
radiomics model (AUC 0.979) and the clinical model (AUC 0.793). The sensitivity, specificity, and accuracy 
of 0.944, 0.800, and 0.913 for the test set, respectively, and the model’s calibration curve demonstrated 
good consistency (Brier score =0.029). The decision curve analysis (DCA) indicated that the nomogram 
had a higher net clinical benefit for predicting the expression of GPC3. External validation of the model’s 
prediction yielded an AUC value of 0.826. 
Conclusions: Our study findings highlight the close association of multisequence MRI imaging and 
radiomic features with GPC3 expression. Incorporating clinical parameters into nomograms can offer 
valuable preoperative insights into tailoring personalized treatment plans for patients diagnosed with HCC.
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Introduction 

Hepatocellular carcinoma (HCC) is one of the most 
prevalent malignant liver tumors and has an incidence 
that is increasing globally, with a 3- to 5-year survival rate 
ranging between 5% and 15% (1,2). Additionally, HCC 
accounts for 75–85% of all liver primary cancers and is the 
primary pathological type of liver cancer. Despite advances 
in the treatment of HCC, 80% of patients with HCC are 
diagnosed in the intermediate to advanced stages, leading to 
a poor prognosis (3).

The genesis of HCC is often associated with the 
overexpression of a variety of proteins and receptors. Among 
these, the levels of the glypican-3 (GPC3) gene and protein 
expression in HCC tumor tissues have been found to be 
significantly higher than those in normal liver tissues. GPC3, 
a glypican, is expressed during embryonic development and 
in adult ovaries, among other tissues, but not in healthy 
adult livers (4). One study found that high GPC3 expression 
is closely associated with serum α-fetoprotein (AFP) levels, 
and this can serve as a diagnostic and prognostic biomarker 
for HCC (5). GPC3 has emerged as an effective target for 
therapy in HCC, and it has been found that patients with 
high levels of GPC3 have shorter survival than do those 
with low GPC3 levels (6,7). Consequently, the preoperative 
assessment of GPC3 expression can be beneficial in clinical 
decision-making and in enhancing the treatment and 
prognosis of patients with HCC.

Presently, the preoperative assessment of GPC3 
expression primarily relies on the liver biopsy examination, 
which is an invasive procedure that often fails to capture 
the overall heterogeneity of the tumor and poses a risk of 
tumor dissemination. Conventional imaging captures only 
basic features such as the size, location, and enhancement 
pattern of lesions and organs (8). As a recent and emerging 
noninvasive diagnostic modality, radiomics has been used to 
extract high-throughput radiological data from quantitative 
image features (9). This technology assists in the diagnosis 
and prediction of clinical outcomes while allowing for 
the in-depth characterization of different genetic tumor 

traits across various clinical scenarios and is thus referred 
to as virtual biopsy technology. Radiomics technologies 
have improved the generalization and universality of the 
noninvasive diagnosis, prognostication, and decision-
making in tumor treatment.

Previous studies have demonstrated a close link between 
GPC3 expression and the histological features of magnetic 
resonance imaging (MRI). Radiomics models constructed 
derived from diffusion-weighted histograms, gadoxetic 
acid-enhanced MRI three-dimensional quantitative 
analysis, and iterative decomposition of water and fat with 
echo asymmetry and least-squares estimation quantitation 
sequence (IDEAL-IQ) have proven efficacious in assessing 
GPC3 expression levels in intrahepatic HCC (10-14).

However, most of these previous studies have reported 
the extraction of histological features based on single MRI 
sequences or enhanced sequences. There is currently no 
evidence of the efficacy of multisequence MRI imaging for 
histological analysis in assessing levels of GPC3 expression. 
Compared to single sequences, multimodality MRI 
sequences offer more comprehensive information on overall 
tumor heterogeneity and yield more reliable diagnostic 
results. Therefore, in this study, our aim was to examine the 
significance of preoperative multisequence MRI imaging 
features in predicting levels of GPC3 expression in patients 
with HCC and to develop nomograms for assessing the 
clinical utility of predicting GPC3 expression. We present 
this article in accordance with the TRIPOD reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-24-111/rc).

Methods

General data

This study retrospectively collected the archived data of 
395 patients who had undergone radical hepatectomy and 
were pathologically diagnosed with HCC at the Affiliated 
Hospital of Hebei University (HBU) from January 2019 
to June 2023. A total of 123 eligible cases were selected 
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Patients who underwent MRI and hepatectomy for HCC 

GPC3 (low) HCC
(n=25)

GPC3 (low) HCC
(n=5)

GPC3 (high) HCC
(n=98)

GPC3 (high) HCC
(n=15)

 Patients diagnosed from January 
2019 to June 2023 in HBU (n=395)

 Patients in TCIA (n=40)

Included patients:
(I)	 Histopathologically 

confirmed HCC
(II)	 Complete MRI
(III)	 Complete clinical data

Included patients:
(I)	 Histopathologically 

confirmed HCC
(II)	 Complete MRI
(III)	Complete clinical data
(IV)	RNA-seq from TCGA

Excluded patients: n=136
(I)	 Poor image quality
(II)	 Receiving therapy 

during MRI and surgery

Excluded patients: n=17
(I)	 Poor image quality
(II)	 Receiving therapy 

during MRI and surgery

Expression of GPC3 Expression of GPC3

123 HCC patients 20 HCC patients 

259 HCC patients 37 HCC patients

Figure 1 Flowchart of the study population. MRI, magnetic resonance imaging; HCC, hepatocellular carcinoma; HBU, Affiliated 
Hospital of Hebei University; GPC3, glypican-3; TCIA, The Cancer Imaging Archive; RNA-seq, RNA sequencing; TCGA, The Cancer 
Genome Atlas.

after inclusion and exclusion criteria were applied, and 
these cases were used in the construction and testing of 
prediction models. In addition, the data of 40 patients with 
pathologically confirmed HCC were downloaded from 
The Cancer Imaging Archive (TCIA) website (https://dev.
cancerimagingarchive.net), with abdominal MRI image 
data and corresponding extensible markup language (XML) 
clinical data available for each patient. A total of 20 eligible 
patients were screened out after inclusion and exclusion 
criteria to be used as an independent external validation 
set in evaluating the generalizability of the model. This 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013) and was approved by Ethics 
Committee of the Affiliated Hospital of Hebei University 
(No. HDFYLL-KY-2024-019). Written informed consent 
was obtained from all participants.

The inclusion criteria were as follows: (I) a diagnosis of 
HCC confirmed through histopathology of the primary 
tumor at the time of surgery or biopsy; (II) complete MRI 
imaging data; (III) complete clinical data, including age, 

gender, GPC3 expression status, preoperative serum AFP 
levels, presence of liver cirrhosis, and the presence of 
microvascular invasion (MVI) around the tumor; and (IV) for 
those in the TCIA, a complete plain scan, dynamic enhanced 
MRI images, and RNA sequencing data from The Cancer 
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/).

The exclusion criteria were as follows: (I) previous 
treatments prior to surgery and (II) low-quality liver MRI 
images or pathologic tissue images (Figure 1).

Histopathology

A pathologist with 10 years of clinical experience 
retrospectively analyzed all HCC samples. To minimize the 
occurrence of false-positive results, the immunoreactivity 
profile was assessed by measuring the percentage of GPC3 
positivity. In this context, we defined GPC3 high expression 
as the presence of immunoreactivity in ≥5% of the tumors. 
Samples with GPC3 immunoreactivity in tumor cells less 
than 5% were considered to be low expression. We defined 

https://dev.cancerimagingarchive.net
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MVI as the presence of a tumor thrombus in the small 
blood vessels surrounding the tumor detectable only under 
microscopic examination.

MRI instruments and methods

The 1.5 T Amira (Siemens Healthineers, Erlangen, 
Germany) and 3.0 T Discovery 750HD (GE HealthCare, 
Chicago, IL, USA) MR scanners equipped with a 
dedicated eight-channel phased-array coil for abdominal 
imaging were used for imaging the patients. All patients 
in our cohort underwent an MRI scan with or without 
contrast, which was performed using an EZEM double-
barrel high-pressure injector (E-Z-EM Inc., USA) 
with gadobenate dimeglumine (Gd-EOB-DTPA) as 
the contrast agent. The imaging parameters for axial 
liver acquisition with volume acceleration (LAVA) 
flex parameters were as follows: repetition time (TR),  
3.7 ms; echo time (TE), 1.7 ms; slice thickness, 4 mm; 
and matrix, 256×256. Meanwhile, the parameters for 
coronal single-shot fast spin echo (SSFSE) T2-weighted 
imaging (T2WI) (assisted localization) were as follows: 
TR, 3,000 ms; TE, 66.7 ms; slice thickness, 5 mm; 
interslice gap, 1 mm; and matrix, 288×288.

The aforementioned sequences were obtained via 
breath-holding techniques. T2WI was implemented 
with respiration-triggered scanning under the following 
parameters: TR, 3,300–5,000 ms (respiration related); 
TE, 67.3 ms, slice thickness, 4 mm; interslice gap, 1 mm; 
and matrix, 320×320. Adjustments in the field of view for 
conventional MR scanning sequences were contingent upon 
the dimensions of the respective study participant.

The contrast agent used for enhancement was Gd-EOB-
DTPA. The procedure for dynamic imaging with contrast 
involved using the 3D-LAVA fat-suppression sequence 
under the following parameters: TE, 2.2; TR, 4.5 ms; layer 
thickness, 3.0 mm; and matrix 320×192. Moreover, delayed 
scanning was performed at 15–20 s, 35–40 s, 60 s, 180 s, 
and 90–120 min after the injection of contrast agent to 
obtain early arterial, late arterial, portal venous, delayed, 
and hepatobiliary phase (HBP) images, respectively. The 
scanning range extended from the apex of diaphragm to the 
lower margin of right lobe of the liver.

All injections were administered through the forearm 
vein using a high-pressure injector, with a contrast dose of 
0.1 mmol/kg and an injection rate of 2 mL/s. Postcontrast 
injection, 30 mL of saline was administered at the same rate 
for lavage.

Radiomics analysis

Image acquisition and region of interest (ROI) 
segmentation
Two radiologists with 5 years of clinical experience 
independently evaluated the MRI images. Radiomics 
analyses of all eligible T2WI and diffusion-weighted 
imaging (DWI), along with arterial phase (AP), venous 
phase (VP), delayed phase (DP), and HBP images and the 
image database management were performed using the 
United Image Intelligent Research Platform System v. 1.0 
(Shanghai Lianying Intelligent Medical Technology Co., 
Ltd., Shanghai, China) (15).

The ROIs were manually outlined along the contours 
of the lesions on the enhanced-scan HBP images and 
replicated onto each serial image to ensure that the size 
and location of the ROIs matched between the images. 
The reviewer only knew that the patient had HCC but was 
blinded to all other information, including the patient’s 
medical history, laboratory results, and pathology findings.

Interobserver agreement was assessed after the initial 
independent image analyses. In cases of differences in 
assessment, the two reviewers discussed among themselves 
and reached a final consensus. When multiple nodules were 
observed, only the largest nodule was analyzed. Pathology 
image matching was performed based on the size and 
location of the lesion to ensure that the tested specimen 
correlated with the lesion evaluated on an MRI. Finally, 
we selected the group characteristics with an intraclass 
correlation coefficient (ICC) value >0.75 among all the 
reviewers for follow-up.

Radiomics feature extraction and modeling
First, the original images of lesions from all patients’ MRI 
sequences (T2WI, DWI, AP, VP, DP, and HBP) were 
resampled using the maximum–minimum truncation 
algorithm to minimize the dimensional differences in the 
image data. The radiomics features of ROIs labeled by each 
MRI sequence, including first-order, texture, and higher-
order features, were then extracted. The texture and higher-
order features included the gray-level run-length matrix 
(GLRLM), gray-level co-occurrence matrix (GLCM), gray-
level size zone matrix (GLSZM), and neighboring gray-
tone difference matrix (NGTDM) wavelet transforms, as 
well as Laplacian sharpening.

In the process of using fivefold cross-validation for 
feature selection, the extracted features were normalized 
using the z-score method to reduce the dimensional 
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differences between the different features. To prevent 
overfitting, we conducted an additional round of feature 
selection. Initially, we retained features with a P value 
<0.05 according to Pearson correlation coefficient analysis. 
Subsequently, we performed a deredundant screening using 
least absolute shrinkage and selection operator (LASSO) 
analysis, retaining those features that occurred more 
than twice in five folds. The radiomics score (rad-score) 
was calculated based on the selected features and their 
corresponding coefficients using the following formula: rad-
score = constant + feature × coefficient.

We used logistic regression (LR) classifiers to develop 
predictive models for individual sequences and joint 
sequences. The joint sequences included contrast-
enhanced MRI (CE-MRI) (AP + VP + DP + HBP) and 
multiparametric MRI (mpMRI) (T2WI + DWI + AP + 
VP + DP + HBP). We evaluated the model’s performance 
using data from the test set of the cross-validation. Finally, 
we constructed nomograms based on rad-score and clinical 
predictors and externally validated the nomograms using 
data from the TCIA (n=20).

Statistical analysis

We used SPSS software version 26.0 (IBM Corp., Armonk, 
NY, USA) and R software version 3.6.3 (www.rproject.
org; The R Foundation for Statistical Computing) for all 
statistical analyses and visualizations in this study. The 
Kolmogorov-Smirnov test was used to test the normality 
of the data, and the Levene method was used for the chi-
square test. We used the ICC for evaluating the interrater 
consistency among all reviewers. We retained radiomic 
features with ICC values >0.75 for subsequent analysis and 
processing.

The independent samples t-test or Mann-Whitney test 
was used for comparisons of continuous variables, while 
the Pearson χ² test or Fisher exact probability method 
was used to compare categorical variables. Univariate and 
multivariate LR analyses were conducted to evaluate clinical 
factors that showed significant differences (P<0.05) in 
correlation with GPC3. 

Using receiver operating characteristic (ROC) curves, 
we evaluated the effectiveness of the radiomics model in 
distinguishing GPC3 expression in HCC. In addition, we 
used calibration curves and decision curves to assess the 
accuracy of the models and computed Brier scores for each 
model. For statistical analyses, differences were considered 
statistically significant at a P value of <0.05. The overall 

methodological flowchart is shown in Figure 2.

Results 

Baseline patient information

Tables 1 and 2 summarize the basic clinical characteristics of 
123 patients with HCC in HBU and 20 patients with HCC 
in the TCIA/TCGA database. The group of patients with 
HCC and high GPC3 expression included a greater portion 
of males and those with cirrhosis than did the GPC3-negative 
group. HCC patients in the HBU center showed significant 
differences in tumor size (P=0.040), MVI status (P=0.001), 
and tumor morphology (P=0.002) between the GPC3 high- 
and low-expression groups (P<0.05). There was a significant 
difference in the tumor size of patients with HCC (P=0.024) 
between the GPC3 high- and low-expression groups from 
the TCIA (P<0.05).

The results of the univariate and multivariate LR 
analyses are shown in Tables 3 and 4. Using univariate LR 
analysis, we initially screened all clinical characteristics 
and found that differences in tumor size [hazard ratio 
(HR) =1.170, 95% confidence interval (CI): 1.002–1.367; 
P=0.047], morphology (HR =4.402; 95% CI: 1.617–11.988; 
P=0.004), and MVI (HR =0.168; 95% CI: 0.054–0.527; 
P=0.002) were statistically significant (P<0.05). All factors 
were further analyzed using multivariable forward stepwise 
LR, which revealed that the independent risk factors for 
predictive modeling were morphology (HR =3.619; 95% 
CI: 1.285–10.189; P=0.015) and MVI (HR =0.201; 95% CI: 
0.063–0.642; P=0.007).

Feature selection and establishment of the MRI imaging 
histology model

We conducted a consistency test on the extracted tumor 
features and identified 16,377 sequences for each of the 
histological features that exhibited good consistency (ICC 
>0.75). After screening, in each sequence model of T2WI, 
DWI, AP, VP, DP, and HBP, we retained 13, 11, 10, 10, 5, 
and 5 nonzero coefficient features, respectively. In addition, 
we retained 5 and 10 nonzero coefficient features in the 
CE-MRI and mpMRI models, respectively (Figure 3).

The performance metrics for preoperatively predicting 
HCC GPC3 expression in the training and test groups 
of each sequence model are outlined in Tables 5 and 6. 
Among the single-sequence MRI-based radiomics models, 
the AP sequence prediction model demonstrated superior 

http://www.rproject.org
http://www.rproject.org
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Figure 2 Flowchart of the overall study. (A) Acquisition of multisequence MRI images and outline of the volume of interest. (B) Types 
of features extracted and the use of filters. (C) Selection of the extracted features. (D) Creation of the radiomics nomogram model and 
model evaluation. ROI, region of interest; 3D, three-dimensional; LASSO, least absolute shrinkage and selection operator; MRI, magnetic 
resonance imaging.

performance, with an area under the curve (AUC) of 0.812 
(95% CI: 0.623–1) in the test cohort and a sensitivity, 
specificity, and accuracy of over 70%. In addition, the 
combined MRI multiple sequences model demonstrated the 
most promising performance in predicting GPC3 expression 
in patients with HCC, with AUCs of 0.911 (95% CI: 
0.844–0.978) and 0.979 (95% CI: 0.931–1) in the training 
set and test set, respectively. It also exhibited a sensitivity of 
0.947, a specificity of 0.800, and an accuracy of 0.917 in the 
test set.

Construction of GPC3 predictive nomograms

We constructed a predictive nomogram model by 
integrating tumor morphology, MVI, and mpMRI model 
rad-score scores (Figure 4). We found that the nomogram 
model demonstrated superior diagnostic accuracy in 
predicting GPC3 expression when compared to the other 
sequence models. The model achieved AUCs of 0.985 
(95% CI: 0.959–1) and 0.989 (95% CI: 0.958–1) for the 
training and test sets, respectively. Additionally, it yielded 

a sensitivity, specificity, and accuracy of 0.944, 0.800, and 
0.913, respectively, for the test set. The external validation 
AUC was 0.826. The calibration curves indicated that 
the nomogram demonstrated good agreement between 
predicted and observed GPC3 expression, with a strong 
fit between the predicted and actual curves (Brier score 
=0.029). The decision curve analysis (DCA) indicated that 
nomograms could yield a significant net gain when the 
threshold probability ranged from 10% to 95% (Figure 5).  
This suggests that the nomograms can be potentially 
used to enhance clinical outcomes by personalizing the 
prediction of GPC3 expression.

Discussion

The significance of this study lies in its contribution to the 
research on the noninvasive assessment of GPC3 expression 
in patients with HCC. We developed a machine learning-
based MRI radiomics model for the preoperative prediction 
of GPC3 expression in patients with HCC. Additionally, we 
created nomograms that yielded favorable outcomes. We 
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Table 1 Clinical features of patients with HCC

Clinical features

HBU

P valueGPC3 high 
(n=98)

GPC3 low 
(n=25)

Age (years), median ± SD 58.5±12.1 59.6±9.5 0.688

Gender, n (%) 　 　 0.450

Male 80 (81.6) 22 (88.0) 　

Female 18 (18.4) 3 (12.0) 　

AFP, n (%), ng/mL 　 　 0.308

≤400 64 (65.3) 19 (76.0) 　

>400  34 (34.7) 6 (24.0) 　

Cirrhosis, n (%) 　 　 0.288

Yes 66 (67.3) 14 (56.0) 　

No 32 (32.7) 11 (44.0) 　

BCLC classification, n (%) 　 　 0.202

0 23 (23.5) 6 (24.0) 　

A 42 (42.9) 15 (60.0) 　

B 21 (21.4) 4 (16.0) 　

C 12 (12.2) 0 (0.0) 　

Tumor size (cm), median ± SD 6.1±4.0 4.3±2.6 0.040

MVI, n (%) 　 　 0.001

Positive 52 (53.1) 4 (84.0) 　

Negative 46 (46.9) 21 (16.0) 　

Morphology, n (%) 　 　 0.002

Regular 41 (41.8) 19 (76.0) 　

Irregular 57 (58.2) 6 (24.0) 　

Boundary, n (%) 　 　 0.088

Clear 52 (53.1) 18 (72.0) 　

Unclear 46 (46.9) 7 (28.0) 　

HCC, hepatocellular carcinoma; HBU, Affiliated Hospital of 
Hebei University; GPC3, glypican-3; SD, standard deviation; 
AFP, α-fetoprotein; BCLC, Barcelona Clinic Liver Cancer; MVI, 
microvascular invasion.

found that tumor morphology and MVI were independent 
factors associated with GPC3 expression. We also used LR 
modeling to construct radiomics models and nomograms 
for different MRI sequences, aiming to evaluate the models’ 
predictive performance. The nomogram, which integrated 
clinical factors and radiomics of multisequence MRI images, 

demonstrated an optimal diagnostic efficacy of 0.989 (95% 
CI: 0.958–1) in the test set, with a sensitivity of 0.944, a 
specificity of 0.800, and an accuracy of 0.913. The AUC in 
the independent external validation cohort was 0.826.

GPC3 is differentially expressed during the aggressive 
growth of HCC, suggesting that GPC3 may be involved in 
HCC development. Research on the related mechanism 
suggests that GPC3 contributes to HCC progression and 
metastasis by binding to molecules such as growth factors 
and Wnt signaling proteins, stimulating macrophage 
recruitment and epithelial-mesenchymal transition (16). 

Table 2 Clinical features of patients with HCC

Clinical features

TCIA

P valueGPC3 high 
(n=15)

GPC3 low 
(n=5)

Age (years), median ± SD 63.5±10.8 60.6±9.9 0.606

Gender, n (%) 　 　 0.573

Male 11 (73.3) 3 (60.0) 　

Female 4 (26.7) 2 (40.0) 　

Cirrhosis, n (%) 　 　 0.776

Yes 11 (73.3) 4 (80.0) 　

No 4 (26.7) 1 (20.0) 　

BCLC classification, n (%) 　 　 0.577

0 2 (13.3) 0 (0.0) 　

A 7 (46.7) 4 (80.0) 　

B 5 (33.3) 1 (20.0) 　

C 1 (6.7) 0 (0.0) 　

Tumor size (cm), median ± SD 7.1±3.2 3.4±1.2 0.024

MVI, n (%) 　 　 0.091

Positive 12 (80.0) 2 (40.0) 　

Negative 3 (20.0) 3 (60.0) 　

Morphology, n (%) 　 　 0.050

Regular 2 (13.3) 4 (80.0) 　

Irregular 13 (86.7) 1 (20.0) 　

Boundary, n (%) 　 　 0.573

Clear 4 (26.7) 2 (60.0) 　

Unclear 11 (73.3) 3 (40.0) 　

HCC, hepatocellular carcinoma; TCIA, The Cancer Imaging 
Archive; GPC3, glypican-3; SD, standard deviation; BCLC, 
Barcelona Clinic Liver Cancer; MVI, microvascular invasion.
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It has been observed in clinical practice that most patients 
with high GPC3 expression and HCC have a poorer 
prognosis, experiencing higher recurrence rates and lower 
survival rates (17). Radiomics modeling has gradually 

become an important tool for predicting GPC3 expression 
in order to provide early warning or reduce the impact of 
high GPC3 expression in patients with HCC. However, few 
studies on using radiomics to predict GPC3 in patients with 
HCC have been conducted. 

Zhang et al. (18) used a combination of radiomic features 
of Gd-EOB-DTPA in HBP and clinical factors to construct 
nomograms. Zhao et al. (10) used diffusion-weighted 
histogram analysis to assess the clinico-radiological variables 
associated with GPC3 expression. However, these studies 

Table 3 Univariate regression analysis of GPC3 risk factors

Category
Univariate analysis

HR (95% CI) P value

Age (years) 1.650 (0.656–6.116) 0.454

Gender 0.992 (0.955–1.031) 0.992

Tumor size 1.170 (1.002–1.367) 0.047*

Morphology 4.402 (1.617–11.988) 0.004*

Boundary 2.275 (0.872–5.935) 0.093

AFP 0.594 (0.217–1.628) 0.312

MVI 0.168 (0.054–0.527) 0.002*

Cirrhosis 0.617 (0.252–1.511) 0.291

*, indicates a statistical difference (P<0.05). GPC3, glypican-3; 
HR, hazard ratio; CI, confidence interval; AFP, α-fetoprotein; 
MVI, microvascular invasion.

Table 4 Multivariate regression analysis of GPC3 risk factors

Category
Multivariate analysis

HR (95% CI) P value

Morphology 3.619 (1.285–10.189) 0.015**

MVI 0.201 (0.063–0.642) 0.007**

**, indicates variables included in the equation after multivariate 
logistic forward stepwise regression. GPC3, glypican-3; HR, 
hazard ratio; CI, confidence interval; MVI, microvascular 
invasion.
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Figure 3 Radiomic feature extraction and screening. (A) LASSO plots of the screened features, the red line in the middle indicates a 
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Table 5 Performance of different MRI histology models in the training groups

Training group
Indicator 

AUC (95% CI) ACC SEN SPE

T2WI 0.914 (0.835–0.994) 0.753 0.723 0.875

DWI 0.854 (0.734–0.973) 0.831 0.851 0.750

AP 0.873 (0.761–0.985) 0.779 0.790 0.733

VP 0.952 (0.891–1) 0.931 0.936 0.909

DP 0.986 (0.962–1) 0.964 0.933 0.909

HBP 0.807 (0.672–0.941) 0.815 0.849 0.684

CE-MRI 0.980 (0.942–1) 0.901 0.890 0.944

mpMRI 0.911 (0.844–0.978) 0.809 0.803 0.833

MRI, magnetic resonance imaging; AUC, area under curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity; 
T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; AP, arterial phase; VP, venous phase; DP, delayed phase; HBP, hepatobiliary 
phase; CE-MRI, contrast-enhanced magnetic resonance imaging; mpMRI, multiparametric magnetic resonance imaging.

only considered the predictive value that a single sequential 
feature provided to the model. Single-sequence MRI can 
only reflect the tumor morphology, black-and-white-signal 
contrast, composition, water molecular diffusion, and other 
singleton information, while the potential information 
feedback from the disease is limited and the potential for 
errors considerable. Multisequence MRI can not only 
visualize the morphological characteristics of tumors at 
the macro level but also further evaluate the biological 
development of tumors through MRI and hepatocellular-
specific contrast agents. In this study, we extracted multiple 

sets of parameter data, including shape, first-order, texture, 
and higher-order features, from multisequence MRI. This 
approach allows for a more comprehensive reflection of 
the overall heterogeneity of the tumor, leading to a more 
accurate interpretation of the correlation between tumor 
GPC3 expression and clinico-radiological information (19).

Our results in this study showed that the AP model had 
the highest AUC in a single sequence, suggesting that AP 
images are more effective in reflecting tumor heterogeneity. 
In addition, the combined model demonstrated higher 
predictive performance than did the single-sequence 

Table 6 Performance of the different MRI histology models in the test groups

Test group
Indicator

AUC (95% CI) ACC SEN SPE

T2WI 0.704 (0.507–0.901) 0.629 0.643 0.571

DWI 0.779 (0.581–0.978) 0.762 0.765 0.750

AP 0.812 (0.623–1) 0.750 0.750 0.750

VP 0.778 (0.534–1) 0.733 0.750 0.667

DP 0.792 (0.358–1) 0.857 0.750 0.500

HBP 0.803 (0.600–1) 0.696 0.684 0.750

CE-MRI 0.947 (0.853–1) 0.826 0.842 0.750

mpMRI 0.979 (0.931–1) 0.917 0.947 0.800

MRI, magnetic resonance imaging; AUC, area under curve; CI, confidence interval; ACC, accuracy; SEN, sensitivity; SPE, specificity; 
T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; AP, arterial phase; VP, venous phase; DP, delayed phase; HBP, hepatobiliary 
phase; CE-MRI, contrast-enhanced magnetic resonance imaging; mpMRI, multiparametric magnetic resonance imaging.
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model. The mpMRI model exhibited the best predictive 
performance, highlighting the critical value of multiple 
sequences in providing additional potential information 

about tumor heterogeneity (20-22). 
DWI can noninvasively detect the diffusion of water 

molecules in living tissues. Although it can detect diffusion-
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restricted heterogeneity in tumors, but its imaging 
of radiomics in our study does not show significant 
incremental value in differentiating the expression of GPC3 
in patients with HCC (23). This may be due to the small 
sample size and geographic variations of the related studies, 
warranting validation from multicenter large-scale data. 
Finally, the poor performance of prediction efficiency in 
external verification may be related to the size of sample 
data and the complexity of the model. Considering practical 
factors, future studies can focus on multicenter samples and 
deep learning model construction to improve the prediction 
efficiency and repeatability of the model.

Radiomics  i s  benef ic ia l  for  address ing  tumor 
heterogeneity, as it can enhance traditional qualitative 
diagnosis in conventional imaging by compiling pixel-
level data profiles from disease images. This allows for the 
mapping of the differential information that is imperceptible 
to the human eye (24-26). Most of the features in the 
prediction model that we constructed were processed using 
a local binary mode, with which each voxel was compared 
with its neighboring voxels, and the resulting comparison 
was saved as a binary number for the quantification of 
tumor heterogeneity characteristics.

We selected 10 imaging and radiomic features associated 
with GPC3 expression. These parameters describe the 
magnitude of voxel variation, adjacent spacing, orientation, 
homogeneous region characteristics, gray-level correlation, 
and grayscale relationship with neighboring pixels in an 
image. They assess textural differences in tumor images 
in terms of the uniformity of gray-level distribution, 
correlation, and complexity (27). Among these, three are 
wavelet features, while the remaining features consist of 
three texture and four first-order features. The screening 
indices were based on the GLSZM and GLRLM features, 
which describe the distance between different pixels 
or voxels within a specified neighborhood and provide 
information about the spatial distribution of consecutive 
pixels of the same gray level.

T h e  H B P _ w a v e l e t _ g l s z m _ w a v e l e t - H L L -
SizeZoneNonUniformityNormalized feature carried the 
highest weight among the selected features. Derived from 
the HBP sequence, it reflects the diagnostic value of the 
HBP sequence features in the expression of GPC3. It 
describes the homogeneous region of GPC3 high expression 
in the HCC lesion site, indicating the heterogeneity of the 
lesion structure. In addition to this, the rad-score derived 
from radiomic features and their correlation coefficients has 
been used as a common measurement tool to improve the 

understanding of the relationship between clinical imaging, 
histological features, and tumor biological behaviors (28). In 
this study, we found that the prediction models constructed 
using clinical factors and the rad-score demonstrated good 
discrimination ability in the training, test cohorts, and 
external validation cohorts. This underscores the utility of 
radiomics imaging in the preoperative assessment of GPC3 
expression in patients with HCC.

Our univariate regression analysis results revealed that 
tumor size and border were significant predictors of GPC3, 
but the multivariate analysis did not reveal any statistical 
significance. This finding was in contrast to previous studies. 
Dong et al. (11) reported that irregular tumor margins are a 
significant indicator of GPC3 and can reflect the biological 
characteristics of malignant tumors invading nontumor 
parenchyma that result in poorly defined tumor boundaries. 
In addition, Liu et al. (29) reported that the sensitivity of 
GPC3 expression and AFP level for diagnosing intrahepatic 
lesions was nearly identical. They also found that these 
indicators were effective in differentiating between HCC, 
cholangiocarcinoma, and cholangiocarcinoma combined 
with HCC in diagnostic models. However, in our study, the 
AFP levels did not show a significant difference, which may 
be attributable to the small sample size of our study.

In the multivariate regression analysis, both MVI 
and tumor morphology were found to be independent 
biomarkers for predicting GPC3. In several studies, irregular 
HCC tumor morphology and MVI were associated with 
early recurrence and a poor prognosis for HCC (30-32). 
In this study, we found that the incidence of HCC-MVI 
was higher in patients with high GPC3 expression than 
in GPC3-negative patients. Additionally, HCC lesions in 
the high-expression patients were often morphologically 
irregular, which may be explained by the higher tumor 
invasiveness of HCC in these patients. This invasiveness 
leads to a tendency to expand into the surrounding normal 
tissues and results in changes in the biological behavior 
and morphology of the tumor (33,34). These results 
support there being an association between GPC3 and 
malignant HCC, suggesting that GPC3 may contribute 
to tumor spread and recurrence by promoting the tumor 
microenvironment.

There are several limitations to our study that should be 
addressed. First, we employed a single-center retrospective 
analysis with a small and geographically diverse sample size, 
and most patients with HCC had a high GPC3 expression, 
which might have biased the results. Second, the data that 
we used for the external validation were primarily from 
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public datasets. It is necessary to confirm whether these 
datasets can account for the occurrence of high GPC3 
expression in HCC in the Chinese population through a 
large-sample, multicenter study. Moreover, there is little 
research on HCC-related radiogenomics, and thus the 
potential relationship between imaging features and tumor 
biological function needs to be verified by a large number 
of relevant studies. Future studies can focus more on the 
construction of multicenter samples and large models based 
on deep learning to improve the predictive efficiency and 
repeatability of models and achieve clinical transformation, 
which an provide accurate judgment of complex new data 
for various diseases.

Conclusions

MRI imaging, radiomics, tumor morphology, and MVI 
can noninvasively predict GPC3 expression in patients 
with HCC. Nomograms that integrate these indicators 
with clinical factors may provide valuable information for 
customizing individualized treatment plans for patients 
diagnosed with HCC before operation.
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