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Simple Summary: Circulating cell-free DNA (cfDNA) has attracted a great deal of scientific interest
as a predictive biomarker for the diagnosis and prognosis of hepatocellular carcinoma (HCC). HCC
result in high mortality due to the absence of blood biomarkers for early diagnosis and prognosis.
We established cfDHCC as a new scoring system by applying a machine learning algorithm that
integrates the expression profiles of cfDNA. Based on this, it was possible to accurately predict the
clinico-pathological characteristics of patients with HCC as well as improve their survival.

Abstract: (1) Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-
related death worldwide. Although various serum enzymes have been utilized for the diagnosis
and prognosis of HCC, the currently available biomarkers lack the sensitivity needed to detect HCC
at early stages and accurately predict treatment responses. (2) Methods: We utilized our highly
sensitive cell-free DNA (cfDNA) detection system, in combination with a machine learning algorithm,
to provide a platform for improved diagnosis and prognosis of HCC. (3) Results: cfDNA, specifi-
cally alpha-fetoprotein (AFP) expression in captured cfDNA, demonstrated the highest accuracy for
diagnosing malignancies among the serum/plasma biomarkers used in this study, including AFP,
aspartate aminotransferase, alanine aminotransferase, albumin, alkaline phosphatase, and bilirubin.
The diagnostic/prognostic capability of cfDNA was further improved by establishing a cfDNA
score (cfDHCC), which integrated the total plasma cfDNA levels and cfAFP-DNA expression into a
single score using machine learning algorithms. (4) Conclusion: The cfDHCC score demonstrated
significantly improved accuracy in determining the pathological features of HCC and predicting
patients’ survival outcomes compared to the other biomarkers. The results presented herein reveal
that our cfDNA capture/analysis platform is a promising approach to effectively utilize cfDNA as a
biomarker for the diagnosis and prognosis of HCC.
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1. Introduction

Liver cancer is a significant global health challenge and is the fourth leading cause of
cancer-related deaths worldwide with an estimated incidence of more than 1 million cases
by 2025 [1,2]. It is a remarkably heterogeneous cancer type and has multiple properties, with
variations in etiology, inter-, and intra-phenotypes [3]. Hepatocellular carcinoma (HCC)
is the most common form of liver cancer and accounts for ~90% of all cases [4]. Recent
studies have shown that the molecular pathogenesis of HCC is a dynamic process that
involves the progressive accumulation of several abnormalities and alterations, including
mutations and chromosomal aberrations that drive hepatocarcinogenesis [5]. Although less
than 10% of the abnormalities are mutations, dominant mutational drivers in HCC remain
undruggable [1]. Furthermore, several risk factors have been identified, including chronic
liver disease, cirrhosis, infection with hepatitis B virus (HBV) or C virus (HCV) infection,
alcohol abuse, nonalcoholic fatty liver disease (NAFLD), obesity, diabetes mellitus, tobacco,
and diet [6–8]. Surgical intervention, including resection and liver transplantation, is
currently the most effective therapy for HCC patients, with a 5-year survival incidence
of 70–80%. However, most HCC is detected at advanced stages, and only 20–30% of
patients are eligible for surgical intervention [1,9]. HCC prognosis is based on the tumor
stage, with a progressive decrease in survival from 70% at 5 years for early stage HCC with
therapeutic intervention, compared to a median survival of ~1–1.5 years for advanced-stage
HCC [1]. Therefore, it is critical to identify HCC at early stages to enable the use of curative
treatments and improve overall survival outcomes [2].

Tissue biopsies are the current gold standard for diagnosing HCC; however, they pro-
vide a limited snapshot of tumors and vary in sensitivity due to difficulties in identifying
lesions, distinguishing HCC from dysplastic nodules, are difficult to obtain, and histologic
diagnosis for small nodules (≤1 cm) is challenging [1,10,11]. HCC is one of the few types of
tumors that can be diagnosed based on non-invasive criteria, including computed tomogra-
phy (CT) scans, ultrasonography (US) screening, and dynamic-contrast-enhanced magnetic
resonance imaging (MRI) [12]. Nevertheless, these techniques often result in inconclusive or
false-negative diagnoses [10,13]. Therefore, current HCC diagnosis guidelines recommend
regular biannual US screening along with serum α-fetoprotein (AFP) screening for patients
who are considered to be at risk for HCC [14]. AFP is a biomarker for HCC, and high AFP
levels (>10 ng/dL) can be indicative of underlying malignant pathology [15]. However,
AFP alone has been shown to lack adequate sensitivity and the specificity required for
effective surveillance and diagnosis of HCC. For instance, serum AFP levels are elevated
in HCC patients and in those with liver diseases, including cirrhosis, chronic liver failure,
and hepatitis [16]. Other serum liver enzymes such as aspartate aminotransferase (AST),
alanine aminotransferase (ALT), albumin, alkaline phosphatase (ALP), and bilirubin have
been investigated as potential biomarkers for HCC; however, the diagnostic and prognostic
capabilities of these serum biomarkers remain unclear.

Currently, a plethora of candidate biomarkers, such as cell-free DNA (cfDNA), ex-
osomes, and circulating tumor cells (CTCs), are being investigated as biomarkers for
the diagnosis and prognosis of different cancers, including HCC [17–27]. Among these
biomarkers, cell-free DNA (cfDNA) has garnered a great deal of scientific and clinical
interest as an indicator of tumor progression and predictor of therapeutic responses due to
its potential significance in determining the molecular properties and genetic alterations
in tumors [28]. Specifically, several studies have affirmed that serum cfDNA levels and
the expression of specific oncogene are highly associated with poor prognosis and the
potential for tumor recurrence [29,30]. However, the utilization of cfDNA as a biomarker
has not yet been realized in the clinic due to the relatively large amount of blood (1–10 mL)
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required for cfDNA detection and the inherent difficulties of cfDNA isolation, collection,
and processing [19]. Therefore, there is an increasing demand for advanced technology
that can detect and capture cfDNA using a small amount of blood. Previously, we devised
a method using polydopamine–silica hybrids (PDA-SiO2) that increases the detection sensi-
tivity of cfDNA by incorporating the molecular interaction between PDA nucleobases and
silica–phosphate backbones [29,31].

Here, using our novel cfDNA capture system, we aimed to investigate the diagnostic
and prognostic potential of cfDNA as a biomarker for HCC (Figure 1A). To validate the
diagnostic capability of cfDNA, we quantified the amount of plasma cfDNA and AFP
expression (cfAFP-DNA)in the captured cfDNA from several cohorts, including patients
with HCC, alcoholic liver hepatitis (LA), or liver cirrhosis (LC). In addition, we examined
the capability of levels of cfDNA to determine the pathological status of a tumor and
estimate the survival outcomes by comparing cfDNA with the concentrations of serum
liver enzymes, including total protein, AFP, AST, ALT, albumin, ALP, and bilirubin. To
provide more reliable clinical information using our system, we used a machine learning
technique [9,31–34] for our bead-based liquid biopsy assay. Specifically, we stratified HCC
patients into subgroups based on the plasma cfDNA levels and cfAFP-DNA expression
using k-means clustering and established an integrated cfDNA score for HCC patients
(cfDHCC) using principal component analysis (PCA). We validated the diagnostic and
prognostic capability of the integrated cfDHCC score. The results showed that cfDNA is a
promising biomarker for HCC, and the utilization of our highly sensitive cfDNA capture
system, in combination with a machine learning algorithm, can potentially provide an
improved platform for the diagnosis and prognosis of HCC.
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Figure 1. Enhanced detection of cfDNA for its use as a biomarker for the diagnosis and prognosis
of HCC. (A) A schematic diagram illustrating the cfDNA detection and analysis methods using
PDA-SiO2 beads. (B) The copy numbers of plasma cfAFP-DNA isolated from human plasma samples
using either PDA-SiO2 beads (black) or QIAamp DNA mini-kit (gray).

2. Materials and Methods
2.1. Materials

Sodium alginate, calcium chloride (CaCl2), silica solution (LUDOX1 AM colloidal
silica, 30 wt. % in H2O), 2-(3,4-Dihydroxyphenyl)ethylamine hydrochloride (dopamine hy-
drochloride), 1-(3-Dimethylaminopropyl)-3-EthylcarbodiimideHydrochloride (EDC), and N-
Hydroxy- Succinimide (NHS) were all obtained from Sigma–Aldrich (St. Louis, MO, USA).
The blood samples and clinical data were provided by the National University Hospital
biobank of Gyeongsang, Chungnam, Kangwon, Jeonbuk, and Chungbuk, a member of
the Korea Biobank Network. Proteinase K, AW1 wash buffer, SYBR Green Master Mix
(2× Rotor-Gene SYBR Green PCR Master Mix), and nuclease-free water were purchased
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from Qiagen Inc. (Valencia, CA, USA). Ethyl alcohol was purchased from Samchun Inc.
(Pyeongtaek, Gyeonggi-do, Korea). A High Sensitivity DNA Kit was purchased from
Agilent Technologies (Santa Clara, CA, USA). All other chemicals used in this study were
obtained from Sigma-Aldrich and used without further purification unless otherwise noted.

2.2. Human Study Design and Population

This retrospective cohort study was conducted in Chungnam National University
Hospital in South Korea. Participants were divided into four groups based on their under-
lying clinicopathology: 152 patients diagnosed with HCC, 43 patients with LC, 24 patients
with LA, and 30 healthy donors (HD). Note that HCC was diagnosed either by histopatho-
logical analysis of the biopsy specimen and/or radiological evaluations by medical doc-
tors. A total of 91 patients (60%) were biopsy-proven. The present study was approved
through an institutional review board (IRB) of Chungnam National University Hospital
(CNUH-2019–04-052), and all participants completed an informed consent process before
any experiments.

2.3. Human Data Collection

The blood sample and clinical information were provided by the National University
Hospital biobank of Kangwon and Chungbuk, and Chungnam, a member of the Korea
Biobank Network. The Biobank Study’s ethical approval was previously granted by the
IRB. The biobank sample was also defined using the codes for International Classification
of Diseases (ICD).

The basic demographic data collected included the participants’ age and sex. Ad-
ditional health check-up data included height (cm), weight (kg), body mass index (BMI)
(kg/m2), and blood pressure (mmHg) measurements. The participants were also provided
with a self-report questionnaire during the check-up, asking about the presence of diabetes
(yes or no), alcohol status (drinks or does not drink), smoking status (current smoker or
does not smoke), and presence of HBV (positive or negative). During the check-up, 5 mL
of whole blood was drawn from each participant. Approximately 200 µL of plasma was
processed and stored accordingly. Clinical information, including histopathological stage,
histology type, cell differentiation, cancer-associated marker expression, and serum antigen
levels, were determined based on the physical exam, computed tomography (CT) scan,
biopsy, immunohistochemistry (IHC), and/or blood tests from the blood bank.

2.4. PDA-SiO2 Beads’ Preparation for cfDNA Capture

A sodium alginate solution (5% w/v) was dropped into a 100 mM CaCl2 aqueous
solution and incubated for 1 h at room temperature to form alginate beads. After incubation,
the beads were gently washed with deionized water (DW) three times and stored in DW
before use. The carboxylic groups on the surface of the alginate beads were activated with
5 mM of EDC/NHS for 1 h at room temperature and then reacted with 5 mM of dopamine
hydrochloride for 12 h. The pH of the dopamine hydrochloride solution was controlled by
adding 0.1% hydrochloric acid (HCl) to maintain pH of ~7.0 using Tris–HCl buffer. The
beads were then washed with DW and incubated in 1 mL of silica solution for 1 h before
being used for DNA analysis.

2.5. cfDNA Capture

Blood plasma was collected from 3 to 5 mL human blood samples after blood aliquot
was centrifuged at 2990 rpm for 10 min. The plasma was pre-treated with proteinase K
in a 10:1 volume ratio (200 µL: 20 µL) for 3 h at 37 ◦C. The samples were mixed with
200 µL of lysis buffer and incubated for 10 min at 37 ◦C, followed by additional mixing
with 200 µL of 95% ethyl alcohol. The PDA–silica-coated beads were then dipped into
the pre-treated samples with 20 µL of CaCl2 solution. The DNA fragments were reacted
with the PDA–silica hybrids for 10 min under gentle agitation. The beads were then
washed with 350 µL of AW1 buffer (Qiagen, Hilden, Germany) and stored in 50 µL of
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RNase/DNase free water. The plasma cfDNA fragments were measured using the Agilent
Bioanalyzer 2100 instrument and High Sensitivity DNA Kit, a microfluidics-based platform,
to determine the mean size for each defined smear region of plasma cfDNA and display
electropherogram for each sample. The concentration of cfDNA was determined to range
between 100 and 500 bp (Supplementary Figure S1). The details can be found in our
previous publications [29,31].

2.6. Real-Time Quantitative Polymerase Chain Reaction (qPCR)

qPCR (RG6200, Corbett Research, Sydney, Australia) was performed in triplicate using
SYBR Green Master Mix (2× Rotor-Gene SYBR Green PCR Master Mix, Qiagen) at a final
volume of 25 µL. The PCR cycling condition was as follows: 95 ◦C for 5 min with 40 cycles,
95 ◦C for 5 s, and 60 ◦C for 10 s. cfAFP-DNA was obtained by comparing AFP with the
reference gene, RRP30 (2−∆Ct). Ct values above 40 were excluded from the data analysis.
The primer sequences utilized included: an AFP forward primer (5′- AAA TGC GTT TCT
CGT TGC -3′), AFP reverse primer (5′- GCC ACA CGG CCA ATA GTT TGT -3′), RPP30
forward primer (5′- GAT TTG GAC CTG CGA GCG 3′), and RPP30 reverse primer (5′ GCG
GCT GTC TCC ACA AGT -3′).

Droplet digital polymerase chain reaction (ddPCR; QX200, Bio-Rad, Hercules, CA, USA)
was used in this study (for validation of AFP signal from the cell culture supernatant), and
each assay mixture was performed in 20 µL reaction volumes. The mixture consisted of up
to 30 ng of extracted DNA (1 µL), 2X EvaGreen ddPCR Supermix (10 µL), all individual
primers (1 µL), and distilled water (7 µL). The ddPCR assay mixture was loaded into a
disposable droplet generator cartridge, and 70 µL of droplet generation oil was loaded
into each of the eight oil wells. The cartridge was then placed inside the QX200 droplet
generator, and the droplets were transferred to a 96-well PCR plate. The plate was heat-
sealed with foil and placed in a conventional thermal cycler (Bio-Rad, T100). We partitioned
each reaction mixture into approximately 12,000–20,000 droplets with a droplet generator
and then cycled them under the following conditions: 95 ◦C for 5 min (1 cycle); 95 ◦C for
30 s, and 55 ◦C for 1 min (40 cycles); 4 ◦C for 5 min; 90 ◦C for 5 min (1 cycle); and 4 ◦C hold.
Cycled droplets were read individually with the QX200 droplet-reader (Bio-Rad).

2.7. Statistical Analysis

The concentrations of peripheral blood biomarkers, including cfDNA, AFP, AST, ALT,
total protein (TP), albumin, platelet, ALP, and total bilirubin (TB) were compared based
on a Student’s t-test or Mann–Whitney U test, depending on the normality of the sample
distribution. The clinical capabilities of these biomarkers were further assessed by con-
structing a receiver operating characteristic (ROC) curve. The prognostic value of cfDNA
was validated using Kaplan–Meier plots and a Cox regression model for overall survival
(OS) and disease-free survival. A value of p < 0.05 was regarded as statistically significant.
All statistical analyses were carried out with SPSS Statistics 26 (SPSS, Chicago, IL, USA).

3. Results and Discussion
3.1. Capture of cfDNA and AFP DNA for Analysis Using a New Bead-Based System

In a previous study, we developed a highly sensitive cfDNA capture system using PDA-
SiO2-coated beads and demonstrated its diagnostic accuracy and clinical potential [29,31].
PDA catechol groups effectively adsorb DNA bases through metal coordination in the
presence of polyvalent metal ions, particularly Ca2+. Additional π-π stacking and hydrogen
bonding may further enhance DNA adsorption [35]. We applied this system for the
diagnosis and prognosis of HCC by assessing the AFP expression from the captured cfDNA
(cfAFP-DNA). The detection of cfAFP-DNA was also assessed using plasma samples
obtained from three HCC patients. Our bead-based assay captured 1.69-fold (p = 0.123)
more cfDNA copies than commercial kits (Figure 1B). Although the difference relative to
commercial kits was not statistically significant at the 5% level, more cfAFP-DNA copies
were detected from samples processed with PDA-SiO2-coated beads compared to those
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from the commercially available QIAamp DNA mini-kits for all three patients’ samples.
Taken together, the results from this study and our previously published analyses support
the high cfDNA detection sensitivity of our bead-based assay [29,31].

3.2. Baseline Clinical Characteristics

The baseline characteristics of 249 patients, of which 152, 43, 24, and 30 patients
were diagnosed with HCC, LC, LA, and HD, respectively, were determined based on
their underlying clinicopathology at the time of check-up (Supplementary Table S1). Of
the 152 patients with HCC, 43 had a high risk of poor prognosis based on their tumor’s
multifocality, size, and location, and were treated with trans-arterial chemoembolization
(TACE) before the blood draw (TACE-treated group). Among 109 non-TACE groups at the
point of blood draw, 27 patients were treated with TACE after the blood draw based on
the decision during their follow-up visits. The proportion of males was higher in patients
with HCC, LC, and LA (79.0%, 76.7%, and 79.2%, respectively) and lower in HDs (3.33%).
HBV infection was also found in 57.9% (88/152) and 16.3% (7/43) of patients with HCC
and LC, respectively. A small but statistically significant difference in age between patients
with HCC and the remaining three groups (5–10 years older; p < 0.030) was identified.
Regarding the clinical variables, alcohol use, hypertension, diabetes, and smoking were
more prevalent in the cancer cohort than in non-cancer cohorts; however, no significant
difference was found in BMI among all four groups.

3.3. cfDNA as a Potential Biomarker for the Diagnosis of HCC Tumor

Standard serum tests for liver function in current clinical settings include those for
total protein, AFP, AST, ALT, albumin, ALP, and bilirubin. These tests can provide specific
indicators for liver disease and guide diagnostics, help estimate severity, assess prognosis,
and evaluate therapy [36,37]. Therefore, a tumor profile was created for each partici-
pant with measurements including concentration values for these factors (Figure 2A and
Supplementary Tables S2 and S3). The concentrations of serum AFP, AST, and ALT were
significantly higher among patients with cancer than in the non-cancer cohorts (p < 0.001).
However, serum AST and ALT levels were elevated among patients with HCC, LC, and
LA. Therefore, the difference in concentrations of these serum enzymes was significant
only when comparing them between patients with HCC and healthy donors. Serum
AFP was the only serum enzyme that exhibited a statistically significant difference in
a comparison between patients with cancer and the three non-cancer cohorts. Notably,
the difference in concentration of serum proteins, albumin, ALP, and bilirubin was not
statistically significant when comparing serum enzyme levels between the patients with
HCC and non-cancer cohorts, and a higher concentration of the enzymes was observed
among specific non-cancer cohorts relative to patients with HCC. As a result, AFP was the
only serum enzyme marker that was elevated among patients with HCC. The area under
the curve of the receiving operating characteristic (AUC-ROC) was calculated to be 0.836
(p < 0.001), 0.706 (p < 0.001), and 0.840 (p < 0.001) for AFP to discriminate between patients
with HCC from patients with LC, LA, and healthy donors, respectively (Figure 2B,C and
Supplementary Table S4). Similarly, we validated the potential of cfDNA as a diagnostic
biomarker for HCC. As demonstrated in Figure 2A, plasma cfDNA levels were the high-
est among patients with HCC (median: 0.25 ng/µL), followed by LC (0.18 ng/µL), LA
(0.11 ng/µL), and HDs (0.06 ng/µL), which had a log-rank p-value of <0.001. As a result,
the plasma cfDNA demonstrated a significant diagnostic performance with an AUC-ROC
of 0.713 (p = 0.001), 0.592 (p = 0.066), and 0.805 (p < 0.001) for differentiating HCC in the LC,
LA, and HD groups, respectively. The diagnostic capability of plasma cfDNA was superior
to other serum enzymes except for serum AFP. Therefore, we assessed AFP expression
(cfAFP-DNA) from the captured cfDNA using qPCR. Interestingly, cfAFP-DNA expression
demonstrated a better diagnostic capability than both plasma cfDNA levels and serum AFP
expressions. The AUC-ROCs of cfAFP-DNA to differentiate HCC from LC, LA, and HDs
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were 0.861 (p < 0.001), 0.744 (p < 0.001), and 0.971 (p < 0.001), respectively, and these values
were greater than those of plasma cfDNA and serum AFP (Figure 2B,C).
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cohorts: (A) the expression profiles of serum enzymes, plasma cfDNA, and cfAFP-DNA quantified
from a total of 152 HCC patients and 97 non-cancer cohorts, which include 43 patients diagnosed
with liver cirrhosis (LC), 24 patients diagnosed with alcoholic liver hepatitis (LA), and 30 healthy
donors (HD). (B,C) ROC curves for diagnosing HCC from NC, LC, LA, and HDs using the expression
profiles of serum enzymes, plasma cfDNA, and cfAFP-DNA. (D) Diagnostic performance of serum
enzymes, plasma cfDNA, and cfAFP-DNA for detecting HCC patients.
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To further explore the clinical utility of cfDNA in diagnosing HCC in compari-
son to conventional serum biomarkers, we calculated the sensitivity, specificity, posi-
tive predictive value (PPV), and negative predictive value (NPV) at the threshold, and
gave the highest accuracy with a specificity of ≥0.7 for each biomarker (Figure 2D and
Supplementary Table S5). Notably, cfAFP-DNA outperformed other serum biomarkers
and plasma cfDNA for diagnosing HCC. More specifically, the accuracy of cfAFP-DNA
for detecting HCC vs. LC, LA, and HDs was 0.738, 0.790, and 0.951, respectively, which
was the highest amongst the biomarkers tested in this study. These results demonstrate
the diagnostic potential of cfDNA, specifically cfAFP-DNA, as a reliable biomarker for
detecting HCC.

3.4. cfDNA as a Potential Biomarker for Determining the Pathological Features of HCC Tumors

We investigated the capability of cfDNA to estimate the pathological features of HCC,
such as its stage, lymphovascular invasion (LVI), size, and multifocality (Supplementary
Tables S6 and S7). cfDNA was the only biomarker that could successfully stratify patients
according to their modified International Union Against Cancer (UICC) stage, namely, the
UICC stage ≥ II vs. stage < II (p = 0.009) and UICC stage ≥ III vs. stage < III (p < 0.001). A
high plasma cfDNA concentration was also strongly associated with the presence of LVI
(p = 0.017), along with high concentrations of serum AST (p = 0.018) and ALT (p = 0.002)
(Supplementary Figure S2). Furthermore, cfDNA was a good indicator for estimating
the number of tumors present; the patients with multifocal/multicentric HCCs exhibited
significantly higher cfDNA concentrations than those with solitary tumors (p = 0.042).
Among the enzyme markers evaluated, serum ALP was the only marker that was associated
with the number of tumors present. Further, the amount of cfDNA present in the plasma
was strongly correlated with the size of the largest tumor present in the liver; the patients
with tumor sizes greater than the median exhibited a higher concentration of plasma cfDNA
than those with small tumors (p = 0.034). Serum AFP (p = 0.033), AST (p = 0.008), and ALT
(p = 0.009) concentrations were also found to be highly associated with tumor size. High
cfAFP-DNA expression tended to be associated with a high UICC stage, the presence of
LVI, a large tumor size, and the multifocality of a tumor; however, the results were not
statistically significant.

Although the quantitative cfDNA analysis provided statistically significant results
compared to serum enzymes for identifying individuals at high-risk for HCC, its accuracy
was insufficient for application in clinical practice. Therefore, to improve the capability of
cfDNA to determine the pathological status of HCC, we integrated the expression profiles
of plasma cfDNA and cfAFP-DNA to establish a cfDNA score specific to HCC patients
(cfDHCC) using a series of machine learning techniques, including k-means cluster analysis,
the elbow method, and principal component analysis (PCA) (Supplementary Figure S3).
Patients were clustered into subgroups based on k-means clustering analysis, depending
on their plasma cfDNA concentrations and cfAFP-DNA copy numbers. The cfDHCC score
was established by integrating the expression profiles of plasma cfDNA and cfAFP-DNA
using PCA. The clinical performance of cfDHCC for determining the higher UICC stages,
the existence of LVI, large tumor sizes, and the multifocality of tumors was investigated
and compared with other biomarkers used in this study. The ROC curve analysis indicated
that the cfDHCC score can differentiate patients with HCC based on their tumor UICC stage,
detect multifocal tumors, and estimate tumor sizes with greater accuracy than either plasma
cfDNA or cfAFP-DNA alone. Although the AUC-ROC value of the cfDHCC score was not
more accurate in predicting LVI in comparison to plasma cfDNA, the difference was not
statistically significant (Figure 3A and Supplementary Table S10). A few serum enzymes
exhibited high AUC-ROC values for detecting specific high-risk tumors, but overall, these
enzyme markers demonstrated a low performance in comparison to the cfDHCC score. For
instance, serum ALP exhibited the highest AUC-ROC value (0.696) for detecting multifocal
tumors among the biomarkers used in this study; however, ALP had an AUC-ROC < 0.5
for differentiating patients with late-stage HCC, detecting LVI, and estimating tumor sizes.
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Figure 3. The clinical performance of cfDNA for determining the pathological features of HCC tumors:
(A) ROC curves for determining the UICC stages, existence of LVI, tumor size, and multifocality of a
tumor. (B) Sensitivity, specificity, and accuracy of each biomarker for determining the UICC stages,
existence of LVI, tumor size, and multifocality of a tumor.

The performance of each biomarker for differentiating high-risk tumors was further
validated by setting the median value of each biomarker as the threshold (Figure 3B and
Supplementary Tables S8 and S9). The cfDHCC score showed the highest accuracy among
all the biomarkers of interest in differentiating UICC stages and estimating tumor size. The
cfDHCC score also demonstrated greater accuracy than the expression profiles of the total
cfDNA and the relative amount of cfAFP-DNA for detecting LVI and multifocality. While
serum AST, ALT, and ALP levels were more accurate than the cfDHCC score for detecting
LVI and multifocality, these markers demonstrated poor performance in detecting other
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phenotypes of HCC. These findings demonstrate the clinical potential of the combination
of our new cfDNA detection system and machine-learning-based analysis method and can
be used to predict the survival outcomes and estimate cancer recurrence.

We investigated cfDNA as a potential biomarker for pathological features from the orig-
inal tumor. In 90/152 (59.2%) patients with HCC, we were able to obtain clinic-pathological
information from the primary tumor. The results were examined further by analyzing the
correlation between the levels of cfAFP DNA and the extent of the tumor burden. As shown
in Supplementary Figure S4, the levels of cfAFP DNA and serum AFP showed a positive
correlation with the size of the tumor burden, with a Pearson’s correlation coefficients of
0.191 (p < 0.001) and 0.060 (p = 0.020). In contrast, the results obtained using cfDNA showed
correlation coefficients below 0.004 (p = 0.541), indicating that none of these tests were
representative of the tumor burden. Our study is based on modified UICC staging [38],
which is a system that evaluates the stage of HCC based on imaging data, the number and
size of the tumor, whether it has invaded blood vessels or bile ducts, and whether it has
metastasized to the lymph nodes or distant organs. We used the modified UICC staging
system because most patients with HCC had liver cirrhosis, and liver biopsy is often not easy
to perform due to the risk of bleeding and tumor dissemination. Therefore, in this study, our
results showed a correlation between pathological features and molecular data by limiting
the analysis to a few patients with early-stage HCC who have undergone surgical treatment.
The cfDNA AFP and serum AFP were reflected in the tumor size, as seen in Supplementary
Figure S4. Tumor size showed a diverse positive correlation coefficient. Unfortunately, in
the Edmondson and cirrhosis grades, the correlation and significant p-value of the original
tumor could not be evaluated. Since hepatic fibrosis or liver cirrhosis was diagnosed clini-
cally based on imaging characteristics, blood test results, fibroscan, computed tomography,
or magnetic resonance imaging in non-cancer patients, it is hard to identify a correlation
between pathological characteristics and molecular data. To conclude, because the staging
of patients with HCC was based on modified UICC staging using radiologic T staging,
the correlation between molecular data for cfDNA and pathological information could be
identified only for patients who received surgical treatment.

3.5. cfDNA as a Potential Biomarker for Predicting Survival Outcomes of Patients with HCC

To validate the prognostic potential of the cfDHCC score, we stratified the HCC study
subjects into two subgroups according to the TACE treatment status. TACE is considered a
pre-treatment option for patients with intermediate HCC (BCLC stage B), who have multi-
focal tumors that are difficult to treat directly with hepatectomy and ablation therapy [39].
In our study, out of 152 HCC patients, 43 were pre-treated with TACE before their blood
draw. Among these patients, we found that the TACE-pre-treated patients had a higher
multifocality (~36%) than the non-TACE group (~17%). As multifocal tumors exhibit higher
metastatic potential, heterogeneity, and proliferation rates than unifocal tumors, patients
with multifocal tumors are reported to show a worse prognosis [40]. Due to this high
multifocality, our study also demonstrated a higher overall death rate for the TACE-treated
group (~26%) than the non-TACE group (~7%). Likewise, recurrence of HCC was detected
in ~81% of TACE-treated patients and only in ~49% of non-TACE group patients. These
results showed that the TACE-treated group was more susceptible to poor outcomes in
comparison to the non-TACE group.

Due to the high risk of recurrence and death, the predictive capability of the cfDNA
detection and capture system was analyzed among the TACE-treated patients. A higher
cfDHCC score was associated with a poor prognosis in recurrence-free survival (RFS) anal-
ysis of TACE-treated patients (Figure 4A and Supplementary Table S10). The mean RFS
among TACE-treated patients, presented as lower vs. higher than the median cfDHCC
score was 26.5 ± 5.2 vs. 15.9 ± 4.0 months (p = 0.061). Compared to the cfDHCC score, the
differences between the < median, and in the ≥median groups was less significant for the
other biomarkers used in this study, including cfDNA (26.0 ± 5.2 vs. 16.5 ± 4.0 months;
p = 0.153). The cfDHCC score could predict the occurrence of malignant recurrence, in-
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cluding the development of multifocal and marginal HCC recurrences (Figure 4B,C). For
instance, TACE-treated patients with lower- vs. higher-than-the-median cfDHCC score had
RFS with multifocal and marginal recurrences of 54.0± 4.6 vs. 23.2± 5.5 months (p = 0.001)
and 41.1 ± 6.3 vs. 27.4 ± 6.3 months (p = 0.061), respectively, which outperformed the
other biomarkers used in this study (Supplementary Tables S11 and S12). Likewise, the
cfDHCC score was superior to other biomarkers for predicting the overall survival (OS)
of TACE-treated patients with a mean OS of 65.7 ± 4.4 vs. 47.7 ± 5.6 months (p = 0.077)
between the groups having higher- and lower-than-the-median cfDHCC scores (Figure 4D
and Supplementary Table S13).
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Figure 4. The clinical performance of cfDNA for predicting the survival outcomes: Kaplan–
Meier survival analysis for (A) recurrence, (B) marginal recurrence, (C) multifocal recurrence, and
(D) overall survival of TACE-treated patients. Univariate Cox regression analysis of the serum and
plasma biomarkers for (E) TACE-treated and (F) non-treated patients.

Univariate Cox regression analysis further demonstrated the prognostic capability of
the cfDHCC score (Figure 4E and Supplementary Table S14). The hazard ratios (HR) of the
cfDHCC scores (non-categorical model) were 1.569 (p = 0.001), 1.477 (p = 0.066), and 2.443
(p < 0.001) for predicting the recurrence, marginal recurrence, and survival, respectively,
which were superior to the other biomarkers used in this study. The cfDHCC score was also
more capable of predicting multifocal recurrence in comparison to the other biomarkers
(HR = 1.728; p = 0.005) except for total protein (HR = 1.779; p = 0.171), which had a higher
HR but less significance. By setting the median as a cutoff, the binary model of the cfDHCC
score demonstrated the highest predictive capability with the highest statistical significance
for among the four survival analyses with HRs of 1.875 (p = 0.073), 2.471 (p = 0.076),
8.544 (p = 0.005), and 3.123 (p = 0.093) for predicting the recurrence, marginal recurrence,
multifocal recurrence, and survival, respectively.
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Notably, the prognostic capability of cfDHCC score was modestly decreased when we
included 27 patients who received TACE treatment during their follow-up period (after the
blood draw) for the analysis. However, it still had a stronger correlation with OS and RFS
than most of the other biomarkers used in this study. Interestingly, including the cfDHCC
score, none of the biomarkers used in this study demonstrated a clinical significance for
estimating the survival of the non-TACE group, which had a low risk of malignancies and
poor outcomes (Figure 4F and Supplementary Tables S15–S20). For estimating OS and RFS,
the patients with a high cfDHCC score still tended to have a comparably poor prognosis,
although the results are statistically insignificant. However, considering that a comparably
small subset of the non-TACE group died or had HCC recurrence compared to the TACE-
treated group, we hypothesize that there exists potential clinical relevance between survival
outcomes and the expression profiles of different biomarkers. This hypothesis will be tested
in future studies, including a longitudinal study for evaluating various HCC biomarkers,
clinical parameters, and prognostic outcomes with larger patient cohorts.

4. Conclusions

A significant challenge in HCC treatment is the lack of biomarkers that enable clini-
cally reliable diagnosis and prognosis of HCC. Conventional tissue biopsy underrepresents
tumor heterogeneity because the technique provides a snapshot of a small tumor fragment
at a specific time point alone. Alternatively, serum enzymes have offered advantages in
monitoring tumor heterogeneity; however, serum enzymes typically lack the adequate
sensitivity and specificity needed to be utilized as a biomarker for the effective surveillance
and diagnosis of HCC. To overcome these challenges, cfDNA has emerged as a novel
biomarker for HCC. Liquid biopsy based on cfDNA analysis can detect actionable muta-
tions or other molecular alterations, monitor treatment responses in real-time, and guide
drug selection and dosing for HCC with high sensitivity [30]. Specifically, the copy numbers
or expression levels of various HCC-associated oncogenes and suppressors, such as TP53,
TERT, and ARID1A, have been assessed for the early detection and prognosis monitoring
of HCC [41–44]. In this study, we combined our high-sensitive cfDNA detection assay
and a machine-learning-based algorithm to further improve the diagnosis and monitoring
of HCC. Built on our previously developed PDA-SiO2 hybrids for cfDNA detection for
gastric tumors, we applied the detection and capture system in combination with machine
learning to enable an accurate diagnosis and prognosis for HCC. By assessing AFP ex-
pression from captured cfDNA (cfAFP-DNA), we found that both total plasma cfDNA
levels and cfAFP-DNA expression were elevated among patients with HCC. Specifically,
cfAFP-DNA expression was superior at discriminating HCC patients from LC, LA, and
HD cohorts compared to other serum enzymes, including AFP, AST, ALT, albumin, ALP,
and bilirubin. The performance of our cfDNA detection system was further improved by
utilizing a machine learning algorithm for the clinical analysis of HCC, which integrated
the expression profiles of plasma cfDNA and the amount of cfAFP-DNA to establish a
score specific for HCC patients (cfDHCC). cfDHCC demonstrated improved accuracy in
determining patients’ UICC stages, detecting multifocality and LVI, and estimating tumor
sizes compared to either plasma cfDNA or cfAFP-DNA alone. Furthermore, cfDHCC could
predict HCC recurrence and survival outcomes more accurately than individual biomarkers
used in this study. The diagnostic and prognostic capabilities of our new system can be
further improved by leveraging additional HCC-associated biomarkers. Specifically, we are
planning to analyze different types of HCC-associated genes (i.e., TP53, TERT, and ARID1A)
from cfDNA and conduct a larger set of cluster analyses to further improve the clinical
performance of our system. We will assess the diagnostic and prognostic capability of the
biomarkers after the administration of various therapeutic options (i.e., radiofrequency
ablation, chemotherapy, immunotherapy) for HCC patients. Taken together, our system
revealed high diagnostic and prognostic capabilities and can be potentially utilized in the
clinic as a reliable system for identifying HCC in early stages, guiding therapeutic decisions,
and improving overall survival outcomes.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14092061/s1. Figure S1: Representative electropherograms
and gel-like images of cfDNA obtained from HCC. Figure S2: The expression profiles of each
biomarker depending on patients’ pathological features. Figure S3: Elbow plot for determining
the optimal k for k-means clustering. Figure S4: Tumor size showed diverse positive correlation
coefficient. Table S1: Demographic characteristics of the re-cruited cancer patients and non-cancer
cohorts. Table S2: Expression profiles of cfDNA and serum enzymes for the recruited cancer patients
and non-cancer cohorts. Table S3: Liquid biopsy marker level from cfDNA, cfAFP DNA, and serum
AFP for all patients. Table S4: AUC-ROC values for detecting HCC from NC, LC, LA, and HD.
Table S5: Diagnostic performance of serum enzymes, plasma cfDNA, and cfAFP DNA for detecting
HCC patients. Note that the diagnostic performance of each biomarker was determined at the
threshold which results in the highest accuracy with specificity higher than 0.7. Table S6: Clinical
characteristics of recruited HCC patients. Note that the numbers represent the median (IQR) for each
biomarker used in this study. Table S7: AUC-ROC values of the biomarkers for determining the
pathological features of HCC tumors. Table S8: Di-agnostic performance of serum enzymes, plasma
cfDNA, and cfAFP DNA for determining the pathological features of HCC patients (Threshold:
median expression level of each biomarker). Table S9: Odd ratio of serum enzymes, plasma cfDNA,
and cfAFP DNA for determining the pathological features of HCC patients (Threshold: median
expression level of each biomarker). Table S10: Kaplan-Meier survival analysis for RFS of TACE-
treated patients. Table S11: Kaplan-Meier survival analysis for marginal recurrence of TACE-treated
patients. Table S12: Kaplan-Meier survival analysis for multifocal recurrence of TACE-treated patients.
Table S13: Kaplan-Meier survival analysis for OS of TACE-treated patients. Table S14: Univariate
Cox re-gression analysis of the serum and plasma biomarkers for TACE-treated patients. Table S15:
Kaplan-Meier survival analysis for RFS of non-TACE patients. Table S16: Kaplan-Meier survival
analysis for marginal recurrence of non-TACE patients. Table S17: Kaplan-Meier survival analysis
for multifocal recurrence of non-TACE patients. Table S18: Kaplan-Meier survival analysis for OS
of non-TACE patients. Table S19: Univariate Cox regression analysis of the serum and plasma
bi-omarkers for non-TACE patients. Table S20: Univariate Cox regression analysis of the serum and
plasma biomarkers for all patients.
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