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Abstract

We apply matrix completion methods for haplotype assembly from NGS reads to develop

the new HapSVT, HapNuc, and HapOPT algorithms. This is performed by applying a math-

ematical model to convert the reads to an incomplete matrix and estimating unknown com-

ponents. This process is followed by quantizing and decoding the completed matrix in order

to estimate haplotypes. These algorithms are compared to the state-of-the-art algorithms

using simulated data as well as the real fosmid data. It is shown that the SNP missing rate

and the haplotype block length of the proposed HapOPT are better than those of HapCUT2

with comparable accuracy in terms of reconstruction rate and switch error rate. A program

implementing the proposed algorithms in MATLAB is freely available at https://github.com/

smajidian/HapMC.

Introduction

The Single Nucleotide Polymorphism (SNP) is a kind of genetic variation with a frequency

greater than 1% in population. In diploid organisms, genomes are organized into pairs of chro-

mosomes, a paternal and a maternal copy. The sequence of SNPs on each copy of a pair of

chromosomes is called a haplotype. A genotype is the conflation of two haplotypes on the

homologous chromosomes. An SNP is called homozygous, if a pair of alleles at this locus is

made up of two identical nucleotides, and is heterozygous, otherwise.

From the evolutionary point of view, the SNP happens as a consequence of mutation. How-

ever, since the mutation rate is low, several mutations of a locus rarely occur. Thus, it is usual

to assume that the majority of SNPs are bi-allelic, meaning that each SNP can be chosen from

just two of the four possible nucleotides, i.e., A, T, C, and G [1]. Accordingly, in this work we

similarly use this assumption. The haplotype is widely used in the Genome Wide Association

Studies (GWAS), clinical genetics, linkage analysis, drug-design, and personalized medicine

[2].

To extract a haplotype, one may use the following three approaches where the last two

approaches are mathematical:

1. Applying high-cost experimental and expensive methods for every single individual which

is of course not desirable [2].
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2. Haplotype phasing wherein the haplotypes are inferred from the genotypes of multiple indi-

viduals. As such, a method based on the maximum parsimony assumption [3] and statisti-

cal methods like SHAPEIT, developed based on the Hidden Markov Model [1, 4] may be

mentioned. Note that using this approach, the haplotype of an individual can not be found

separately and also is challenged by the low-frequency and also de novo variants [2].

3. Estimating haplotypes from Next Generation Sequencing (NGS) reads i.e. nucleotide

sequence of fragments. Using this approach, known as the haplotype assembly, haplotyping

of a single individual becomes feasible. In this regard, HapCUT2 [5], HapTree [6], and

HapSAT [7] are three famous methods developed based on probabilistic models. These

methods are sensitive to the selected model and thus fragile to the model error.

A recent method for haplotype assembly is AltHap [8] which has shown accurate results

compared to H-PoP [9], SCGD [10], and HapTree [6]. The H-PoP is a heuristic algorithm

originated from the Balanced Optimal Partition (BOP) optimization model which benefits

from the Minimum Error Correction (MEC) as well as the maximum fragments cut

approaches [11]. The SDhaP [12] is also another heuristic method based on correlation cluster-

ing and non-convex optimization which does not guarantee reaching the global optimum.

The innovation of this article is threefold. First, the haplotype assembly is mathematically

formulated based on matrix completion methods. Secondly, three new algorithms called the

Haplotype assembly based on Singular Value Thresholding (HapSVT), Haplotype assembly

based on Nuclear norm minimization (HapNuc), and Haplotype assembly based on OPT-

SPACE (HapOPT) are proposed. Next, in the section of Results, these algorithms are com-

pared to some benchmark methods in terms of the reconstruction rate and the switch error

rate.

Model of haplotypes

To exploit the NGS reads as the raw data, a computational modeling is needed. For this pur-

pose, similar to [10], we first convert the sequence of nucleotides which can be either reads or

haplotypes into a sequence of numbers. The SNP nucleotides are converted to 1 and −1 for the

wild and rare alleles, respectively. As an example, Table 1 depicts the alleles of the β2AR gene

[3] for which the maternal and paternal haplotypes of an individual are shown by hm and hp,
respectively. The corresponding codewords based on the above modeling are presented in the

last column.

Next, assuming that each read has been aligned to the reference genome, the non-SNP sites

of each read are omitted. Then, the reads are coded using the procedure described in Table 1,

and are completed by adding zeros for the length of l as shown for 10 aligned reads in Table 2.

As seen in this example, for the 1st row, we get {-1 1 1 0 0 0 0 0 0 0} with 3 sites of ±1 and 7

sites of zeros.

Without loss of generality, by representing the codewords of Table 2 by the vectors ri, i =

1, . . ., N, we form the read matrix R, where N is the number of reads. In fact, R is an incom-

plete matrix with the rank of 2 which consists of the maternal and paternal haplotypes in its

Table 1. Haplotypes of β2AR genes and their corresponding codewords.

Nucleotides Codewords

Alleles G/A C/A G/A C/G T/C T/C T/C G/A C/G G/A {1/-1,1/-1,. . .}

hm A C G G C C C G G G {-1,1, 1,-1,-1,-1,-1, 1,-1,1}

hp G C A C T T T A C G { 1,1,-1, 1, 1, 1, 1,-1, 1,1}

https://doi.org/10.1371/journal.pone.0214455.t001
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rows. At this stage, we may utilize matrix completion methods to complete this low rank

matrix. To do so, by estimating the zero entries of R, we obtain the completed matrix H which

has the same dimension as R, i.e., N × l where l is the haplotype length. According to Table 2,

these matrices are given by (1) and (2).

R ¼

� 1 1 1 0 0 0 0 0 0 0

0 0 1 � 1 � 1 � 1 0 0 0 0

0 0 1 � 1 0 0 0 0 � 1 1

1 1 � 1 1 1 1 0 0 0 0

0 0 � 1 0 0 1 1 � 1 1 1

1 1 0 0 1 1 0 0 0 0

� 1 1 0 0 � 1 0 0 0 0 1

� 1 1 0 0 � 1 � 1 � 1 0 0 0

1 0 0 1 0 0 1 � 1 1 0

0 0 � 1 1 0 0 0 0 1 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð1Þ

H ¼

� 1 1 1 � 1 � 1 � 1 � 1 1 � 1 1

� 1 1 1 � 1 � 1 � 1 � 1 1 � 1 1

� 1 1 1 � 1 � 1 � 1 � 1 1 � 1 1

1 1 � 1 1 1 1 1 � 1 1 1

1 1 � 1 1 1 1 1 � 1 1 1

1 1 � 1 1 1 1 1 � 1 1 1

� 1 1 1 � 1 � 1 � 1 � 1 1 � 1 1

� 1 1 1 � 1 � 1 � 1 � 1 1 � 1 1

1 1 � 1 1 1 1 1 � 1 1 1

1 1 � 1 1 1 1 1 � 1 1 1

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð2Þ

Table 2. Example of aligned reads for β2AR genes and the considered codewords.

Reads Nucleotides Codewords

1 A C G -1 1 1 0 0 0 0 0 0 0

2 G G C C 0 0 1 -1 -1 -1 0 0 0 0

3 G G G G 0 0 1 -1 0 0 0 0 -1 1

4 G C A C T T 1 1 -1 1 1 1 0 0 0 0

5 A C T A C G 0 0 -1 0 0 1 1 -1 1 1

6 G C T T 1 1 0 0 1 1 0 0 0 0

7 C C G -1 1 0 0 -1 0 0 0 0 1

8 A C C C C -1 1 0 0 -1 -1 -1 0 0 0

9 G C T A C 1 0 0 1 0 0 1 -1 1 0

10 A C C G 0 0 -1 1 0 0 0 0 1 1

https://doi.org/10.1371/journal.pone.0214455.t002
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From H, one can observe that only two of its rows are different and thus the desired haplo-

types are given by

hm ¼ ½ � 1 1 1 � 1 � 1 � 1 � 1 1 � 1 1 �; ð3Þ

hp ¼ ½ 1 1 � 1 1 1 1 1 � 1 1 1 �: ð4Þ

These vectors can then be decoded to the sequence of nucleotides using the first row of

Table 1. To the best of our knowledge, no algorithm has been reported to distinguish between

the maternal and paternal haplotypes and therefore hp and hm may be interchanged with each

other.

It should be noted that the above example is an error-free case to clarify the procedure of

data modeling which can be trivially solved. For the erroneous case; which is the subject of our

work, R is an incomplete version of H + N where N shows the noise matrix [8].

Proposed methods

We present three new algorithms for haplotype assembly whose general block diagram is illus-

trated in Fig 1. The goal is to estimate hp and hm from the noisy reads. The first two blocks

have been explained before. In the third block, we receive an incomplete matrix R with a few

known entries where the set of indices of known entries is given by O [10]. Then, we intend to

estimate the unknown entries based on rank assumption. Mathematically, this is modeled by

the following optimization problem:

min
H

X

ði;jÞ2O
ðHij � RijÞ

2 subject to rankðHÞ ¼ 2: ð5Þ

It is worth mentioning that here we have not only considered the case of all-heterozygous vari-

ants, but also included the case of both heterozygous and homozygous variants. This can be

realized as a point of this work in comparison to some other methods that are restricted to het-

erozygous variants. In the all-heterozygous case, the two haplotypes will be the negative of

each other, i.e., hp = −hm and thus the rank of H will be one (See (5)).

To solve (5), the nuclear norm minimization, Singular Value Thresholding (SVT), and

OPTSPACE methods have already been reported [13], based on which we introduce three new

algorithms called the HapSVT, HapNuc, and HapOPT.

Haplotype assembly based on Singular Value Thresholding (HapSVT)

To explain the proposed HapSVT algorithm, we first introduce the SVT which is based on Sin-

gular Value Decomposition (SVD) [14] defined for the read matrix R as

R ¼ USVH; S ¼ diagðsiÞ i ¼ 1; :::; r ð6Þ

where H denotes the hermitian operator, and U and V have orthonormal columns with the

dimension of N × r and l × r, respectively. By applying the singular value shrinkage operator

Fig 1. Block diagram of the proposed algorithms.

https://doi.org/10.1371/journal.pone.0214455.g001
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Dτ(�) to R, we obtain

DtðRÞ ¼ UDtðSÞV
H; ð7Þ

where

DtðSÞ ¼ diagðmaxfsi � t; 0gÞ: ð8Þ

It is worth noting that Dτ(R) is the optimal value of the optimization problem

min
Z

1

2
kR � Zk2

F þtkZk�; ð9Þ

where k�kF is the Frobenius norm and k�k� shows the nuclear norm as the summation of singu-

lar values.

To perform the matrix completion part as shown in Fig 1, we recursively use the SVT in

two steps. In the first step, starting with the initial matrix Y0 = R, the singular value shrinkage

operator is used as

Xk ¼ DtðY
k� 1Þ: ð10Þ

Then, in the second step, the difference between the projected matrix Xk and the initial

matrix is compensated for the known entries using

Yk ¼ Yk� 1 þ dPOðR � XkÞ; ð11Þ

for k = 1, 2, . . ., where POð�Þ is an operator which keeps the entries of the matrix corresponding

toO unchanged, and sets the other entries to zero. The iterations continue until the condition

kPOðX
k � RÞkF < �kRkF is satisfied and the last Xk is reported as the completed matrix H.

To extract hp and hm, we compute the reduced row echelon form of H and by using the first

two pivot positions, two independent rows of H are obtained. Then, in order to acquire the

paternal and maternal haplotypes the entries are quantized to 1 and −1. The procedures of the

HapSVT algorithm is depicted in Algorithm 1.

Algorithm 1: Haplotype assembly using SVT (HapSVT).
input: N aligned reads
output: Haplotypes hm, hp
/� Read Matrix Preparation �/

1 Convert the sequences of nucleotides (reads) to the sequences of
numbers.

2 Add zeros to each read to construct ris with the length of l.
3 Construct the read matrix R (N × l).
/� Matrix Completion (SVT) �/

4 Initialize Y0 = R, k = 0, i = 1.
5 while kPOðX

k � RÞkF < �kRkF do
6 k = k + 1
7 Xk = Dτ(Y

k−1)
8 Yk ¼ Yk� 1 þ dPOðR � XkÞ

9 end
10 H = Xk

/� Reduced Row Echelon Form (RREF) Calculation �/
11 [Hr, p] = RREF(HT)
/� Haplotype Extraction �/

12 Hq = 2 � (H > 0) − 1
13 hp = Hq(p(1),:)
14 hm = Hq(p(2),:)
15 Convert the entries of hm and hp to the nucleotides.

NGS based haplotype assembly using matrix completion
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Haplotype assembly based on Nuclear norm minimization (HapNuc)

A popular method for matrix completion is based on relaxing the non-convex rank function

to a convex function. Since the number of nonzero singular values determines the rank of a

matrix, an approximation of the rank function is defined by the summation of singular values,

known as the nuclear norm [15]. In this way, the optimization problem is cast as

min
H
kH k� subject to kPOðH � RÞkF < �: ð12Þ

This problem can be solved easily using the CVX, a MATLAB based package [16]. It has

been shown that the nuclear norm minimization has strong mathematical guarantees to

achieve the optimal solution [15, 17, 18]. To develop the new HapNuc algorithm, we substitute

the SVT part of Algorithm 1 by nuclear norm minimization.

Haplotype assembly based on OPTSPACE (HapOPT)

Another method for matrix completion is known as OPTSPACE [19] in which unlike the two

previous methods, we assume that the rank of the desired matrix H is known. The OPTSPACE

consists of the following three steps: a) trimming, b) projection, and c) cleaning, as explained

below.

a) In the trimming step, those columns of R with the degrees larger than 2|O|/l are set to zero

where |�| shows the cardinality of a set and l is the haplotype length. The degree of a column

(or a row) shows the number of its known entries. This step is also performed for the rows

of R with the degrees larger than 2|O|/N where N is the number of reads.

b) The trimmed R obtained from Step (a) is projected to the space of rank r matrices using

PðRÞ ¼
Nl
jOj

UPrðSÞV
H; ð13Þ

where Pr(S) = diag(σ1, . . .σr) and U and V are given by (6).

c) The cleaning step is performed by solving the following optimization problem,

min
X2RN�r ;Y2Rl�r

min
S2Rr�r

X

ði;jÞ2O

ðRij � ðXSY
HÞijÞ

2
; ð14Þ

which contains two minimization parts. The inner part results in a function in terms of X
and Y. To solve the outer minimization part, we use a gradient based recursive method

whose initial matrices are computed from Step (b), i.e., X0 = U and Y0 = V. Then, this recur-

sive method leads to the optimal solution H ¼ XoptSoptY
H
opt. To finalize the third new Hap-

OPT algorithm, we should substitute the SVT part of Algorithm 1 by the above three steps.

Results

Using extensive simulations, we compare the performance of the proposed HapSVT, HapNuc,

and HapOPT algorithms with that of the three recent benchmark algorithms AltHap [8], Hap-

CUT2 [5], and SDhaP [12]. It has already been shown that these algorithms outperform some

other algorithms like RefHap [20], SCGD [10], HapTree [6], and H-PoP [9]. For comparison

purposes, a well-known criterion is the reconstruction rate defined as [21]

rr ¼ 1 �
1

l
min

�

HD ĥm; hm

� �
;HD ĥp; hp

� ��

; ð15Þ
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where ĥp and ĥm are the reconstructed haplotypes which are compared to the known maternal

and paternal haplotypes, hm and hp. Moreover, HDð�; �Þ is the augmented hamming distance

between two vectors which counts the number of non-identical sites using

HDða; bÞ ¼
Xl

j¼1

DðaðjÞ; bðjÞÞ; ð16Þ

where Dð�; �Þ is defined as

Dða; bÞ ¼
0 a ¼ b

1 otherwise:

(

ð17Þ

To consider another criterion for performance evaluation, we make use of the SWitch

Error Rate (SWER), defined as the number of switches divided by the haplotype length [22]. A

switch happens when the parental origin of an allele with respect to that of the previous allele

differs from one parent to another. For example, by considering hp = [1, 1, 1, 1] and hm = [−1,

−1, −1, −1] as the grand truth haplotypes and the estimated haplotypes as ĥp ¼ ½1; 1; � 1; � 1�

and ĥm ¼ ½� 1; � 1; 1; 1�, one switch has been occurred.

Simulated data

First, we use the simulated data [21] generated based on real human haplotypes in the HapMap

project. This dataset; which contains different read matrices with various error rates and cov-

erage values originated from different haplotype lengths, has vastly been used in previous stud-

ies [10, 23, 24]. We choose the longest available haplotype from the dataset with the length of

l = 700. The coverage value of the NGS paired-end reads varies from c = 3 to its greatest value

c = 10. The average number of reads are N = 561, 936, and 1873 for coverage values of c = 3, 5,

and 10, respectively. The number of SNPs covered in each read is a constant value equal to 7.4.

Also, 10% (and 20%) of the entries of the read matrix are contaminated by noise with uniform

distribution. The results are averaged over 100 independent trials of the experiment.

Table 3 shows the reconstruction rates for different coverage values and error rates. The

corresponding SWERs are also depicted in Table 4. In this case, HapCUT2 is not examined,

since it needs the Variant Call Format (VCF) file which is not available for this simulated data-

set [21]. As seen in both Tables 3 and 4, the proposed HapOPT algorithm outperforms the oth-

ers in terms of the reconstruction rate as well as the SWER. It is worth reminding that the

SDhaP solves a non-convex optimization problem using a heuristic technique with the gradi-

ent descent algorithm which does not guarantee reaching the global optimum. Furthermore,

as a consequence of increasing the coverage value, a better performance is achieved by a lower

SWER and a higher reconstruction rate.

Table 3. Reconstruction rates for different algorithms on simulated data [21]. The best values are in boldface.

coverage error rate (%) SDhaP AltHap HapOPT(Proposed) HapSVT(Proposed) HapNuc(Proposed)

3 10 97.87 99.04 99.07 98.38 98.32

5 10 99.19 99.66 99.72 97.21 98.82

10 10 99.64 1 1 99.53 99.64

3 20 96.66 97.32 97.38 97.00 97.31

5 20 97.36 98.24 98.43 97.47 97.47

10 20 97.02 99.45 99.25 98.66 98.6

https://doi.org/10.1371/journal.pone.0214455.t003
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Real fosmid data

We evaluate the proposed algorithms on the sequence data of the individual NA12878 fabri-

cated based on a fosmid approach [20]. The coverage of this data set is c = 3 and the average

read length is 40 kb, and hence, is a low-coverage and long-read dataset. For evaluation pur-

poses, we consider the trio-phased haplotype from the GATK resource bundle, as the grand

truth containing 1.3 million heterozygous variants in common with fosmid dataset [22, 25].

This dataset has already been used in several studies [5, 8, 22].

In the simulated dataset used in the last section, each read overlaps at least one another

read, while for the real data these overlaps do not necessarily occur. In this situation, our algo-

rithm incorporates the overlaps for haplotype estimation, and as a result, the output of each

algorithm is some disjoint parts of the whole haplotype, called haplotype blocks. To evaluate a

common length for these blocks, we consider their mean and also the AN50 defined as the

median of blocks lengths in base pairs weighted by a proportion of correctly estimated alleles

[6]. Also, we define the SNP Missing Rate (SMR) for each chromosome as the ratio of the

number of missing SNPs in the estimates and the haplotype length [26]. The results on the real

fosmid data are shown in Table 5. One can see that both HapOPT and AltHap algorithms

achieve lower SNP missing rates in comparison to HapCUT2 and SDhaP. Moreover, HapOPT

and AltHap have a better span in terms of AN50.

To assess the accuracy of different algorithms, the corresponding reconstruction rates [5,

22] are presented in Fig 2. Moreover, we have considered both short and long SWERs [5, 22].

By a long switch, we mean that the parental origin does not change for at least two SNPs and if

two switches occur one after each other, we consider it as a short switch. These two metrics are

reported on real fosmid data in Figs 3 and 4.

From the above results, one can observe that HapOPT outperforms SDhaP and AltHap in

terms of the reconstruction rate as well as long and short SWERs with a reasonable runtime as

reported in Table 6. Note that although, HapCUT2 achieves the best accuracy, still its SNP

missing rate is greater than that of HapOPT. These results on the whole show that HapOPT is

a promising tool for haplotype assembly with the best SNP missing rate and a good accuracy

in terms of reconstruction rate and SWER.

Conclusion

We have exploited matrix completion methods including SVT, nuclear norm minimization,

and OPTSPACE for haplotype estimation. This was led to developing the new HapSVT, Hap-

Nuc, and HapOPT algorithms. Our experimental comparison on simulated data revealed that

HapOPT is more accurate than SDhaP and AltHap in terms of reconstruction rate and switch

error rate. Also, the results on real noisy fosmid data showed that the accuracy of HapOPT is

better than that of SDhaP and AltHap and also is comparable to that of HapCUT2 in terms of

the reconstruction rate and the short and long SWERs. Moreover, it was shown that HapOPT

Table 4. SWERs for different algorithms on simulated data [21]. The best values are in boldface.

coverage error rate (%) SDhaP AltHap HapOPT (Proposed) HapSVT (Proposed) HapNuc (Proposed)

3 10 0.070 0.038 0.027 0.111 0.120

5 10 0.019 0.0058 0.004 0.207 0.049

10 10 0.0018 0 0 0.012 0.003

3 20 0.227 0.247 0.218 0.350 0.345

5 20 0.136 0.123 0.101 0.243 0.266

10 20 0.065 0.0178 0.018 0.080 0.121

https://doi.org/10.1371/journal.pone.0214455.t004
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Table 5. Mean and AN50 of haplotype blocks lengths for different algorithms on real fosmid data.

SDhaP HapCUT2 AltHap HapOPT (Proposed)

Chr. SMR Mean AN50 (kb) SMR Mean AN50 (kb) SMR Mean AN50 (kb) SMR Mean AN50(kb)

1 6.2 71.5 254 6.7 71.1 229 6.2 72.7 234 6.2 72.7 234

2 6.9 68.6 241 8.3 68.3 219 6.9 69.7 223 6.9 69.7 223

3 8.1 69.7 218 8.6 69.3 195 8.0 70.6 204 8.0 70.6 204

4 10.0 63.4 192 10.4 63.1 172 9.9 64.6 177 9.9 64.6 177

5 8.2 69.5 219 8.8 69.0 206 8.2 70.3 210 8.2 70.3 210

6 7.3 82.4 243 7.9 81.9 224 7.3 84.0 236 7.3 84.0 236

7 7.2 69.7 222 7.6 69.5 207 7.1 71.0 212 7.1 71.0 212

8 7.8 75.6 229 8.3 75.2 207 7.7 76.8 220 7.7 76.8 220

9 7.0 79.6 249 7.5 79.2 230 6.9 80.9 235 6.9 80.9 235

10 6.8 83.9 238 7.3 83.4 217 6.7 84.9 220 6.7 84.9 220

11 7.1 77.1 234 7.5 76.8 225 7.0 78.3 228 7.0 78.3 228

12 6.4 73.4 262 7.3 73.0 241 6.7 74.1 249 6.7 74.1 249

13 10.2 69.1 203 10.7 68.7 186 10.1 70.3 191 10.1 70.3 191

14 6.5 77.5 259 7.0 77.1 238 6.3 78.4 246 6.3 78.4 246

15 6.0 73.7 251 6.4 73.2 228 5.9 74.1 234 5.9 74.1 234

16 3.8 96.6 345 4.2 96.2 317 3.7 97.9 327 3.7 97.9 327

17 3.9 70.8 323 4.5 70.4 305 3.9 71.5 310 3.9 71.5 310

18 7.1 75.3 228 7.6 74.9 216 7.0 76.0 223 7.0 76.0 223

19 3.1 90.8 374 3.5 90.4 345 3.0 93.8 360 3.0 93.8 360

20 4.3 92.4 314 4.8 92.0 297 4.2 93.7 304 4.2 93.7 304

21 6.6 81.1 252 7.0 80.8 242 6.4 82.4 242 6.4 82.4 242

22 2.7 123.7 445 3.2 123.2 425 2.6 123.9 426 2.6 123.9 426

https://doi.org/10.1371/journal.pone.0214455.t005

Fig 2. Reconstruction rate of HapOPT, HapCUT2, AltHap, and SDhaP on real fosmid data.

https://doi.org/10.1371/journal.pone.0214455.g002
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Fig 3. Short SWER of HapOPT, HapCUT2, AltHap, and SDhaP on real fosmid data.

https://doi.org/10.1371/journal.pone.0214455.g003

Fig 4. Long SWER of HapOPT, HapCUT2, AltHap, and SDhaP on real fosmid data.

https://doi.org/10.1371/journal.pone.0214455.g004

Table 6. Runtime of HapOPT, HapCUT2, AltHap, and SDhaP on real fosmid data.

SDhaP AltHap HapCUT2 HapOPT (Proposed)

Runtime (Minutes) 5 10 18 355

https://doi.org/10.1371/journal.pone.0214455.t006
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outperforms the recently addressed algorithms, HapCUT2 and SDhaP, in terms of the mean,

SNP missing rate, and AN50 of the haplotype block length. Furthermore, the proposed algo-

rithm is not restricted to the heterozygous assumption, as commonly considered in peer algo-

rithms. On the whole, we can conclude that using the proposed HapOPT, the haplotype is

reconstructed more completely and continuously with acceptable accuracy. Also, the proposed

optimization problem is capable of estimating haplotypes for different ploidy levels. Our

research direction for future is to work on polyploids.
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