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OBJECTIVE — Previous studies, largely in northern Europe, have suggested an association
between type 1 diabetes and reduced serum 25-hydroxy(OH) vitamin D levels, a concept we
tested in individuals residing in a solar-rich region (Florida).

RESEARCH DESIGN AND METHODS — Serum samples from 415 individuals resid-
ing in Florida were cross-sectionally analyzed: 153 control subjects, 46 new-onset type 1 diabetic
patients, 110 established type 1 diabetic patients (samples �5 months from diagnosis), and 106
first-degree relatives of the diabetic patients.

RESULTS — In this study, 25-OH vitamin D levels (median, range, interquartile range [IQR])
were similar among control subjects (20.1, below detection [bd]–163.5, 13.0–37.4 ng/ml),
new-onset type 1 diabetic patients (21.2, bd–48.6, 12.2–30.2 ng/ml), established type 1 diabetic
patients (23.2, bd–263.8, 13.8–33.9 ng/ml), and first-degree relatives (22.2, bd–59.9, 12.7–
33.1 ng/ml) (P � 0.87). Mean 25-OH vitamin D levels were less than the optimal World Health
Organization level of 30 ng/ml in all study groups.

CONCLUSIONS — Reduced serum 25-OH vitamin D levels were not specifically associated
with type 1 diabetes. The uniform suboptimal 225-OH vitamin D levels, despite residence in a
zone with abundant sunshine, support additional dietary vitamin D fortification practices.
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The role for environment in the devel-
opment of type 1 diabetes has re-
mained elusive, with multiple

factors purported to modulate risk for this
disease (e.g., viruses, breast-feeding, age
for cereal introduction, and childhood
immunizations) (1,2). Further to this list
is vitamin D levels (3), with previous
studies suggesting type 1 diabetic patients
had lower serum concentrations of this
metabolite than healthy control subjects
(4–6) as well as disease-associated poly-
morphisms in a vitamin D metabolism
gene (7). Although certainly intriguing,
we note the aforementioned studies were
largely undertaken in northern European
countries (4,5), whereas the one study
performed in the U.S. failed to provide
values among healthy control subjects

and, hence, did not identify disease spec-
ificity (6). Therefore, we measured serum
25-hydroxy (OH) vitamin D levels from
type 1 diabetic patients, their first-degree
relatives, and healthy control subjects all
residing in a solar-rich region (Florida).

RESEARCH DESIGN AND
METHODS — Serum from 415 indi-
viduals was obtained from healthy
control subjects (type 1 diabetes auto-
antibody negative, no family history of
type 1 diabetes, median age 22.0 years,
age range 5.0–65.1 years, 84 female, and
153 total), new-onset type 1 diabetic pa-
tients with diabetes �5 months duration
(12.2 years, 5.9–35.0 years, 23 female,
and 46 total), established type 1 diabetic
patients with diabetes �5 months dura-

tion (16.0 years, 5.1–62.6 years, 50 fe-
male, and 110 total), and relatives of
those with type 1 diabetes (21.0 years,
1.0–62.6 years, 54 female, and 106 to-
tal). All samples were collected with in-
formed consent with University of Florida
Institutional Review Board approval. As a
retrospective study of de-identified sam-
ples, no information regarding sun avoid-
ance routines or dietary practices
(including vitamin D fortification) were
available, nor were methods for case
matching permissible.

25-OH vitamin D levels were quanti-
fied in duplicate with a commercial en-
zyme immunosorbent assay kit (ALPCO,
Salem, NH), an analyte shown previously
as stable in storage (8). This assay mea-
sures both D2 and D3 forms of 25-OH
vitamin D. The intra- and interassay coef-
ficients of variation for this assay were
10.7 and 13.2%, respectively. The lower
limit of detection was 2.56 ng/ml. 25-OH
vitamin D deficiency was defined as �20
ng/ml, insufficiency as 21–30 ng/ml, and
sufficiency as �30 ng/ml (9,10).

Analysis of multiple unpaired group
comparisons were achieved using the
nonparametric Kruskal-Wallis with Dunn
posttest to correct for multiple compari-
sons (11). Age and 25-OH vitamin D re-
lationships were analyzed by linear
regression, with two-tailed Fisher exact
test used to compare proportions of sub-
jects deemed insufficient. Power calcula-
tions were performed post hoc with
GraphPad StatMate version 2.00 (Graph-
Pad Software, San Diego, CA; www.
graphpad.com), revealing an 80% power
to detect a 10.5 ng/ml difference in
25-OH vitamin D levels.

RESULTS — 25-OH vitamin D levels
(median, range, interquartile range
[IQR]) were as follows: healthy control
subjects (20.1, below detection [bd]–
163.5, 13.0–37.4 ng/ml), new-onset type
1 diabetic patients (21.2, bd–48.6, 12.2–
30.2 ng/ml), established type 1 diabetic
patients (23.2, bd–263.8, 13.8–33.9 ng/
ml), and first-degree relatives (22.2, bd–
59.9, 12.7–33.1 ng/ml) (Fig. 1A). The
medians were not different among indi-
viduals in these cohorts (P � 0.87). Sub-
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optimal 25-OH vitamin D levels (�30 ng/
ml) were observed in 70.1% of control
subjects, 76.1% of new-onset type 1 dia-
betic patients, 68.5% of established type 1
diabetic patients, and 68.8% of first-
degree relatives; values, although low,
were not significantly different from each
other (P � 0.46).

Comparison of age with serum
25-OH vitamin D levels indicated that for
all groups combined, r2 � 0.004 and P �
0.22. Comparison of age with serum
25-OH vitamin D levels for individual
groups were for healthy control subjects,

r2 � 0.010 and P � 0.21; new-onset type
1 diabetic patients, r2 � 0.0001 and P �
0.96; established type 1 diabetic patients,
r2 � 0.013 and P � 0.24; and first-degree
relatives, r2 � 0.075 and P � 0.005.
Hence, regression analysis revealed no
trend in 25-OH vitamin D levels as it per-
tained to overall age.

Because sunlight plays a major role in
vitamin D synthesis, we then examined
25-OH vitamin D levels as a function of
the month the sample was drawn as a sur-
rogate marker of ultraviolet (UV) B expo-
sure (Fig. 1C). Comparison of the 25-OH

vitamin D levels among each 3-month
block showed no significant difference
(P � 0.78). Further analysis revealed no
significant differences on a monthly expo-
sure basis when examining control sub-
jects versus new-onset type 1 diabetic
patients, established type 1 diabetic pa-
tients, or first-degree relatives (P � 0.71).

CONCLUSIONS — Our study did
not find significant differences in 25-OH
vitamin D levels among healthy control
subjects, type 1 diabetic patients, and
first-degree relatives of diabetic patients

Figure 1—25-OH vitamin D levels in cohorts based on parameters of disease, age, or estimated solar exposure. For disease status (A), values are
presented as a function of study group with definitions of insufficiency (orange line) and deficiency (red line) provided. With respect to age (B), values
for all study participants independent of cohort are shown with the definitions of insufficiency and deficiency as defined in A along with age correlation
(blue line). C: Estimated average UVB exposure for the entire study population is presented. UVI climatological data were obtained from the National
Weather Service (NWS) and U.S. Environmental Protection Agency (EPA) Web sites (http://www.cpc.ncep.noaa.gov and http://www.epa.gov) to
determine relative UV exposure. Based on data for the previous 5 years, for the proximate city of Jacksonville, Florida, we established the mean UV
exposure for each month: January, 3.215; February, 4.08; March, 5.96; April, 7.68; May, 8.238; June, 8.578; July, 8.976; August, 8.254; September,
6.902; October, 5.11; November, 3.694; and December, 2.79. The numbers correspond to the UVI scale (1–11�) developed by the NWS and EPA and
implemented by the World Health Organization. The samples were grouped according to month drawn and placed into one of four possible 3-month
blocks, each block formed on the basis of similar UVB indexes. The 25-OH vitamin D levels (reported as median, range, IQR) for the November/
December/January group of 112 samples (20.7, bd–263.8, 12.7–33.6 ng/ml) with an average estimated UV exposure of 3.23. The October/February/
March group of 113 samples (20.8, bd–146.8, 12.7–31.5 ng/ml) with an average estimated UV exposure of 5.05. The September/April/May group
of 84 samples (19.3, bd–163.5, 14.0–36.9 ng/ml) with an average estimated UV exposure of 7.61. The June/July/August group of 106 samples (23.9,
bd–82.9, 13.4–35.6 ng/ml) with an average estimated UV exposure of 8.60.
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in samples obtained in a solar-rich region
of the U.S. However, more surprisingly,
we identified that within each group,
there exists a high frequency of vitamin D
insufficiency, even in the sun-rich envi-
ronment of Florida.

For analysis of UV exposure, we
elected to group samples by similarity in
UV index (UVI) (to increase statistical
power). In addition, we performed anal-
ysis in a month-by-month fashion. By ei-
ther method, no differences among the
study groups were observed. Although
we may have introduced an ecological fal-
lacy bias in assigning UVI aggregate data
to individual subjects, other factors such
as sun avoidance practices to inadequate
supplementation may also account for the
low 25-OH vitamin D levels observed in
this cross-sectional study. These biases
may also be present in studies examining
geographical distribution (12). Another
possibility is that at Florida’s latitude, the
duration of sunlight hours per day does
not vary as dramatically as that which oc-
curs closer to the geographical poles,
thereby providing a mechanism to ex-
plain our lack in seasonal variation for
25-OH vitamin D levels.

With respect to race/ethnicity, a vari-
able that has previously been noted to in-
fluence 25-OH vitamin D levels (13), our
study was reflective of the prevalence of
type 1 diabetes among all races, and given
the predominance for this disease in Cau-
casians, it was not of sufficient power to
analyze such a variable. However, the fre-
quency of samples from non-Caucasians
did not differ significantly among the
study groups (data not shown). Indeed,
the issue of sample size is one worth not-
ing. As mentioned previously, the study
herein was of a size larger than those re-
porting a negative association between se-
rum 25-OH vitamin D levels and type 1
diabetes, with our current study (based
on its size) having a 20% chance of report-
ing a statistical type 2 error (false nega-
tive). Hence, future efforts that are larger,
prospective, and take into account analy-
sis of additional factors (e.g., skin type,

vitamin D fortification practices, photo-
protection behaviors, time spent out-
doors, etc.) that may influence serum
25-OH vitamin D would be beneficial.
This, as well as the question addressing
25-OH vitamin D levels in a northern U.S.
state, should be addressed in the future.

Given the amount of UV available to
those residing in Florida and the fortifica-
tion of milk products with vitamin D, the
low serum levels of 25-OH vitamin D that
were found add credence to the recent
recommendation by the American Acad-
emy of Pediatrics to double the amount of
vitamin D supplementation provided to
children (14). Given that our results con-
trast with those of several other efforts (4–
6), additional studies using a prospective
cohort design to further define the role of
vitamin D in the pathogenesis of type 1
diabetes are urgently needed because tri-
als using active forms of this metabolite
for type 1 diabetes prevention are actively
being considered.
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