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Serological rapid diagnostic tests (RDTs) are widely used across
pathologies, often providing users a simple, binary result (positive
or negative) in as little as 5 to 20 min. Since the beginning of the
COVID-19 pandemic, new RDTs for identifying SARS-CoV-2 have
rapidly proliferated. However, these seemingly easy-to-read tests
can be highly subjective, and interpretations of the visible “bands”
of color that appear (or not) in a test window may vary between
users, test models, and brands. We developed and evaluated the
accuracy/performance of a smartphone application (xRCovid) that
uses machine learning to classify SARS-CoV-2 serological RDT re-
sults and reduce reading ambiguities. Across 11 COVID-19 RDT
models, the app yielded 99.3% precision compared to reading by
eye. Using the app replaces the uncertainty from visual RDT inter-
pretation with a smaller uncertainty of the image classifier,
thereby increasing confidence of clinicians and laboratory
staff when using RDTs, and creating opportunities for patient
self-testing.
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The ability to rapidly test for infectious disease is vital in most
outbreaks. Rapid diagnostic tests (RDTs) or lateral flow

immunoassays (LFIA) (1) are widely used to test for conditions
as varied as pregnancy, malaria, legionella (antigen detection in
urine), antibiotic resistance, SARS, H5N1 flu, and more recently,
SARS-CoV-2 (2–4). These RDTs consist of a strip, coated with a
specific antigen, upon which human fluid (blood, plasma, urine,
or mucus) and a reagent buffer are placed. A “band” of color
(indicating positive, negative, or invalid results) appears in 5 to
20 min (5). RDTs are simple to use and relatively cheap. Some
are used as self-tests that do not require the assistance of medical
personnel to draw venous blood. During the COVID-19 pandemic,
RDTs have been used outside of health facilities in ambulatory or
even “drive-through” testing centers. They allow large populations to
be tested with minimal training and gather critical data to guide
authorities as they navigate pandemic shutdown and reopening pro-
cedures [see, for example, the World Health Organization’s recom-
mendations for malaria RDTs (6)].
As of June 2020, more than 176 SARS-CoV-2 serological

RDTs had been developed (7–9). However, despite their sim-
plicity, interpreting RDT test results is not always straightfor-
ward. Low antibody levels can produce results (bands) that are
not clearly distinguished, tempting users to falsely read a test as
negative and making interpretation highly subjective.
To improve SARS-CoV-2 RDT interpretation and diagnosis,

we developed a smartphone application (xRCovid app) to in-
terpret RDT results using an artificial neural network (ANN)
(10). The ANN analyzes SARS-CoV-2 RDT test results by
standardizing readings, identifying conformity between results,
and enabling traceability to ultimately provide a clearer diagnosis
(11, 12). The app’s diagnostic yield and overall performance
were developed and evaluated across 11 available SARS-Cov-2
serological RDTs.

Results and Discussion
Although more than a hundred RDTs are available on the
market after 6 mo of the COVID-19 pandemic, recent publica-
tions have shown that their analytical performance varies greatly
(8). All can identify the presence SARS-CoV2 antibodies, but
the intensity of the band (and thus its ease of interpretation) is
entirely dependent on the level of antibody present in the sam-
ple. The xRCovid smartphone application addressed this chal-
lenge by combining the high-resolution imaging capabilities of a
smartphone camera with ANN image treatment to determine,
read, and interpret RDT results. The xRCovid app’s simple in-
terface displays a clear positive/negative outcome and provides
information depending on the result (i.e., care-seeking guidance
for positive results, precautionary measures for negative). Future
iterations may eventually provide results directly to a managing
physician. The whole analysis is performed on the device, and
full privacy for the diagnostic result is guaranteed.
Two hundred and fifty sera from 159 PCR-confirmed

SARS-CoV-2 patients (collected from 0 to 32 d after onset of
symptoms) were tested with rapid serological tests and human
reading (8). Control sera (n = 254) were retrieved from pre-
COVID periods from patients. All samples were tested using
rapid LFIA from 10 manufacturers (8).
The automated reading technology begins with a focused im-

age of the RDT. A convoluted neural network (CNN), or simple
image classifier, is used to identify the specific RDT being used.
Image treatment is then applied: A planar homography is used to
extract a straightened, cropped image of the RDT, and a second
neural network identifies positivity/negativity (Fig. 1). Using
machine learning, the same network architecture (10) was used
to “train” the app with three different datasets. The first dataset
identified the RDTs by brand name and model (n = 100 images
of each RDT), although this step was omitted when a user opted
to select the RDT from a drop-down menu. The second dataset
trained the network to identify positivity or negativity, irre-
spective of the test brand or model (n = 1,000, 500 images each
of positive and negative samples). A third dataset trained the
ANN to read tests with two windows (and their corresponding
positive or negative results), again regardless of RDT (n = 1,000,
500 images each of positive and negative samples). All models
were trained to 99.5% sensitivity and 99.9% specificity. Data
augmentation was used to improve the convergence of the
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machine learning models: a variation on the luminance
(within ±10%) and the zoom factor (within ±40%). The image
being converted to grayscale and normalized, the ANN is inde-
pendent of color variations. This architecture was chosen for its
greater tolerance to defects than a simpler support vector ma-
chine or straight image treatment. Importantly, all images were
captured using fixed illumination by activating the smartphone
flash during image capture. Using a constant light source avoided
reflection and shadow for RDT windows with slanted edges, and
enabled consistent readings between RDTs. Models were further
used to read a large number of RDTs (n = 3,344) that they had
not been trained for (Table 1). The relatively small number of
false-positive (FP) and false-negative (FN) results allowed re-
searchers to analyze the source of errors on a case-by-case basis.
Ultimately, the automated reading technology’s high sensitiv-

ity and specificity with respect to the human reading baseline

justified the use of simple classifier architecture. Out of 3,344
tested samples, only 18 FNs were observed and were due to low
band contrast (15 out of 18 FNs for IgM and 3 out of 18 FNs for
IgG). FP results (5 of 3,344 tested devices) occurred when
markings (e.g., blood spots) were mistakenly interpreted by the
ANN. Complete sample hemolysis in a test with a poorly func-
tioning barrier also prevented researchers from reading tests
(when an entire window was stained by hemoglobin, partially or
completely covering the band detection area).
The model yields class output probabilities between 0.9 and 1

in all cases, except when the test is not valid. In those cases, the
maximum output probability value was found >0.7 in all cases: It
was therefore decided to take 0.7 as the output probability
threshold for both classes. That enables the app to train only on
positive and negative RDT samples. An invalid RDT was defined as
any result that did not show the control band. In our experience, this
happened if an insufficient amount of buffer was applied (preventing
the analyte from reaching the control band), or when the well was too
small (creating clogs of blood preventing migration).
Using an app to help RDT users better confirm infection

presents some strong advantages: Users learn how to perform
valid tests through demonstration videos or blood sampling
schematics included in the app. The app’s timer function facili-
tates timely reading (usually 7 to 15 min) decreasing the number
of FPs. Results are independent of human error and subjectivity
(up to 20% of one RDT presented faint, difficult-to-interpret
bands; these represent the entirety of the FN samples in our
experiments, where the ANN, despite having been trained on
images with enhanced contrast, is unable to distinguish the bands
from the background). The app displays results unambiguously
(positive, negative, or invalid) without interpretation, translation
errors, or jargon. App location data can direct users to local
health services for medical advice. While the app and method
could, in principle, be used with any generic RDT, it allows only
for quality-controlled and locally authorized RDTs to be read.
Since the devices’ sensitivities and specificities are known, the
likelihood of a patient being positive is known. An added ad-
vantage is that the total number of the positive and negative tests
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Fig. 1. Image treatment (Top) and convoluted neural network (CNN) (Bottom) used. The image treatment extracts the grayscale image, crops it to the region
of interest, normalizes the image, and squeezes it to a smaller dimension for the CNN. The CNN is a simple binary classifier that includes three convolution
layers with max pooling and dropout regularization at 0.25, a dense layer with dropout regularization at 0.5 before the final dense layer.

Table 1. Prediction results from the neural network on 3,344
RDTs from 10 brands with respect to human reading

Model TP TN FP FN Sensitivity, % Specificity, %

Alco 5 19 0 0 100.0 100.0
Avioq 207 104 1 5 97.6 99.0
Biolidics 143 190 0 3 97.9 100.0
Biotime 18 7 0 0 100.0 100.0
Biosynex 63 126 0 1 98.4 100.0
NGBiotech Cassette 628 621 1 4 99.4 99.8
NGBiotech All in one 310 538 3 1 99.7 99.4
Nova 199 67 0 4 98.0 100.0
Realy 16 11 0 0 100.0 100.0
Solo Lab 16 9 0 0 100.0 100.0
Vedalab 18 6 0 0 100.0 100.0
Global 1,623 1,698 5 18 98.9 99.7

The true positives (TPs), true negatives (TNs), false positives (FPs), false
negatives (FNs), sensitivity, and specificity are reported per device and for
the whole set.
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is updated in real time, potentially providing an accurate eval-
uation of predictive values of each test. Finally, use of the app by
health authorities using (fully anonymized) location data could
produce live disease maps.

Materials and Methods
Eleven antibody-detecting RDTs were chosen to evaluate the xRCovid app’s
performance. Selected RDTs detected both total antibodies or IgG and IgM
in blood, serum, or plasma and included: 1) Novel Coronavirus (2019-nCOV)
Antibody IgG/IgM (Avioq Bio-tech); 2) BiosynexCOVID-19 BSS (Biosynex
Swiss); 3) Biotime SARS-CoV-2 IgG/IgM Rapid Qualitative Test Kit (Xiamen
Biotime Biotechnology); 4) NG-Test IgG-IgM COVID-19 cassette (NG-Biotech);
5) NG-Test IgG-IgM COVID-19 all-in-one (NG-Biotech); 6) 2019-nCoV IgG/IgM
(Biolidics); 7) 2019-nCOV IgG/IgM Rapid Test Device (Realy Tech); 8) Nova
COVID-19 IgG/IgM Rapid Test (Atlas Link); 9) Alco Digital COVID-19 IgG/IgM
Rapid Test (Safecare Biotech); 10) SARS-CoV-2 IgG/IgM Rapid Test Solo Lab
(Shuhai Encode Medical Engineering); and 11) COVID-19-CHECK-1 (Vedalab).

RDTs were chosen based on supply, availability, expected performance (per
published literature), and informationprovided in commercial brochures. Testswere
performed by trained laboratory technicians at room temperature according to the
manufacturer’s instructions. All tests followed strict biosecurity measures and good
microbiological practices and procedures (13).

To evaluate the xRCovid app performance, about 600 images of 600
SARS-CoV-2 RDTs were captured per hour for a total of 3,344 RDTs, in the
following sequence: After a human reading by at least two analysts, the
xRCovid app read the images in order. A stand was used to center all RDTs
under the camera of an iPhone, elevating the phone to a distance of 98 mm
from the reference plane on which the RDT was positioned (stand drawings
as three-dimensional printable files are found in ref. 14). iPhone XR, XS, and
SE (Apple) were used for all image captures during this field trial of the app.
The images were kept on device and pushed to a cloud server for inde-
pendent evaluation. As such, any image was read at least twice by human
analysts and a third time if there was a mismatch between the first two
readings. Source data used to train the neural network are found in ref. 14.

Data Availability. Images/scripts have been deposited in GitHub (https://
github.com/dmendels-collab/xRcovid) and Zenodo (https://zenodo.org/badge/
latestdoi/312230700). All other study data are included in the article.
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