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Abstract
Purpose The proliferation-associated biomarker Ki67 has potential utility in breast cancer, including aiding decisions based 
on prognosis, but has unacceptable inter- and intralaboratory variability. The aim of this study was to compare the prognostic 
potential for Ki67 hot spot scoring and global scoring using different digital image analysis (DIA) platforms.
Methods An ER+/HER2− breast cancer cohort (n = 139) with whole slide images of sequential sections stained for hema-
toxylin–eosin, pancytokeratin and Ki67, was analyzed using two DIA platforms. For hot spot analysis virtual dual staining 
was applied, aligning pancytokeratin and Ki67 images and 22 hot spot algorithms with different features were designed. For 
global Ki67 scoring an automated QuPath algorithm was applied on Ki67-stained whole slide images. Clinicopathological 
data included overall survival (OS) and recurrence-free survival (RFS) along with PAM50 molecular subtypes.
Results We show significant variations in Ki67 hot spot scoring depending on number of included tumor cells, hot spot size, 
shape and location. The higher the number of scored tumor cells, the higher the reproducibility of Ki67 proliferation values. 
Hot spot scoring had greater prognostic potential for RFS in high versus low Ki67 subgroups (hazard ratio (HR) 6.88, CI 
2.07–22.87, p = 0.002), compared to global scoring (HR 3.13, CI 1.41–6.96, p = 0.005). Regarding OS, global scoring (HR 
7.46, CI 2.46–22.58, p < 0.001) was slightly better than hot spot scoring (HR 6.93, CI 1.61–29.91, p = 0.009). In adjusted 
multivariate analysis, only global scoring was an independent prognostic marker for both RFS and OS. In addition, global 
Ki67-based surrogate subtypes reached higher concordance with PAM50 molecular subtype for luminal A and B tumors 
(66.3% concordance rate, κ = 0.345), than using hot spot scoring (55.8% concordance rate, κ = 0.250).
Conclusions We conclude that the automated global Ki67 scoring is feasible and shows clinical validity, which, however, 
needs to be confirmed in a larger cohort before clinical implementation.
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Introduction

Tumor proliferation is one of the hallmarks of cancer. The 
proliferation-associated nuclear protein Ki67 is expressed 
in all phases of the cell cycles except for  G0 [1]. In many 
countries, immunohistochemistry-based assessment of Ki67 
is part of the routine biomarker evaluation of breast cancers 
along with estrogen receptor (ER), progesterone receptor 
(PR) and human epidermal growth factor receptor 2 (HER2). 
Ki67 has been used for over two decades as a prognostic 
biomarker in early breast cancer [2–4], and tumor prolif-
eration may be used to guide clinical decisions concerning 
chemotherapy [5].

Breast cancer is a heterogeneous disease and can be 
classified into the intrinsic molecular subtypes: luminal 
A, luminal B, HER2-enriched and basal-like [6]. These 
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intrinsic subtypes as first described by Sorlie and Perou 
hold both predictive and prognostic information [7, 8]. 
The majority of luminal tumors are hormone receptor 
(HR)-positive and account for 70% of all breast cancer 
cases. Luminal A tumors have low proliferation and good 
prognosis with high sensitivity to endocrine therapy [9, 
10], whereas luminal B tumors are highly proliferative 
and are less sensitive to endocrine therapy with a poorer 
prognosis [11, 12]. The HER2-enriched subtypes are 
aggressive tumors with poor prognosis; however, they are 
effectively targeted by anti-HER2 therapy with improved 
prognosis [13]. The majority of the basal-like subtype 
have a triple-negative phenotype. However, molecular 
profiling of breast cancer is expensive and not routinely 
available in breast pathology, and instead, immunohisto-
chemical assessment of ER, PR, HER2 and Ki67 is used 
for surrogate subtype classification of the intrinsic molec-
ular subtypes [5, 9, 14, 15]. Among HR+/HER2− tumors, 
Ki67 is important to distinguish luminal A-like and lumi-
nal B-like tumors and thereby the need for added chemo-
therapy [16, 17].

Intra- and interlaboratory variability of Ki67 assessment 
is known to hinder its reproducibility [18, 19]. International 
recommendations for Ki67 are controversial, due to lack of 
standardization, and as a consequence, laboratory-specific 
cut-off values have been recommended [5]. Despite efforts 
over the past years to establish robust recommendations, 
there is no international consensus regarding Ki67 cut-offs 
and the most appropriate method for Ki67 scoring [15, 20, 
21]. International guidelines state that 1000 tumor cells 
should be counted, with an absolute minimum of 500 cells 
[5, 20]. In contrast, the national Swedish guidelines have 
concluded that 200 tumor cells should be counted in a hot 
spot region [22].

Digital image analysis (DIA) has been suggested as 
a method to improve reproducibility of Ki67, which has 
been demonstrated in several studies [23–25]. It was pre-
viously shown that DIA of Ki67 outperforms manual 
assessment and specifically the ability of DIA of Ki67 
in hot spots to distinguish between luminal A- and B-like 
disease [26, 27]. The International Ki67 in Breast Cancer 
Working Group (IKWG) suggests automated average Ki67 
scoring methods based on reproducibility, but states that 
the methods require further standardization and clinical 
validation [24].

A precise definition of a hot spot for Ki67 scoring is lack-
ing in international guidelines, as well as recommendation 
for which assessment method to use [5, 15, 28]. The aim of 
this study was to compare the prognostic potential for Ki67 
hot spot scoring and global scoring using different DIA plat-
forms among ER+/HER2− breast cancers.

Materials and methods

Breast cancer study cohort

This retrospective study comprised a previously published 
cohort of patients diagnosed with invasive breast carci-
noma at the Karolinska University Hospital, Sweden dur-
ing 2002–2009 and the Stockholm South General Hospital, 
Sweden during 2012 [26, 27, 29, 30]. From this cohort, a 
total of 217 tumors were available for DIA (Supplementary 
Fig. S1). Clinicopathological data including up to 15 years 
of follow-up outcome data was retrieved from the pathol-
ogy laboratory information system and the medical record 
system. Recurrence-free survival (RFS) was defined as no 
breast cancer recurrence at end of follow-up. Overall sur-
vival (OS) was defined as no death from any cause at end 
of follow-up. The “Reporting recommendations for tumor 
marker prognostic studies (REMARK)” were followed [31].

Immunohistochemistry

Tissue serial sections were retrieved from formalin-fixed 
paraffin-embedded tumors at the accredited clinical labora-
tory of the Department of Pathology, Karolinska University 
Laboratory, Sweden. The sections were serially stained with 
a rabbit monoclonal anti-Ki67 antibody (clone 30-9) by Ven-
tana and a mouse monoclonal anti-CKMNF116 antibody 
by Agilent Dako, according to manufacturer’s protocol, as 
described previously [27].

Ki67 cut‑offs and surrogate subtype classification

For assessment of Ki67 scoring methods and prognos-
tic potential only ER+/HER2− luminal A-like and B-like 
tumors were included in the analysis. We adopted the St 
Gallen 2013 consensus recommendations for immunohis-
tochemistry (IHC)-based surrogate subtype classification 
with a < 20% cut-off for low Ki67 [5]. Luminal A-like was 
defined as ER+/HER2− with PR ≥ 20% and low Ki67. 
Consequently, luminal B-like (non-HER2) was defined as 
ER+/HER2− with PR < 20% or high Ki67, as previously 
described by Robertson et al. [32]. HER2+ tumors were 
excluded since therapy choices for this tumor group is not 
primarily determined by proliferation index.

PAM50 gene expression‑based subtypes

For comparisons with molecular intrinsic subtypes avail-
able data on PAM50 gene expression-based subtypes were 
used. RNA extraction for gene expression analysis had been 
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performed on snap-frozen tumor tissue as described pre-
viously [29, 30]. Based on the PAM50 algorithm, tumors 
had been assigned a molecular subtype (luminal A, luminal 
B, HER2-enriched or basal-like). No new gene expression 
analysis was performed for this study.

Digital image analysis platforms

Digitalized whole slide images of tumor sections of 
Ki67 and CKMNF116 had previously been scanned with 
the NanoZoomer 2.0-HT (Hamamatsu Photonics K.K., 
Hamamatsu, Japan) platform at 20x, with a pixel size of 
0.4537 × 0.4537 µm. Automated DIA algorithms for hot spot 
scoring were designed in the Visiopharm Integrator Soft-
ware (VIS) (Visiopharm A/S, Hoersholm, Denmark). For 
global Ki67 scoring the open source software QuPath was 
used [33].

Ki67 hot spot analysis

The Ki67-stained images were aligned with the 
CKMNF116-stained images in VIS using the Tissuealign 
module (Fig. 1). The tumor region detection operates by 
a VirtualDoubleStaining™ method, and accurately detects 
tumor cells (including non-invasive tumor components) 
and excludes non-epithelial cells e. g. proliferating lym-
phocytes and background tissue. Automated detection of 
tumor regions of interest (ROI) was performed using the 
pancytokeratin (PCK) VirtualDoubleStaining™ APP (ID: 

10165) and Ki67 index (%) was estimated using the CE-
IVD approved Ki67 APP (ID: 90004) identifying positive 
and negative tumor cell nuclei within the tumor regions. 
The PCK and Ki67 APP have previously been calibrated to 
the staining protocol and platform used at our department 
[27]. A hot spot was identified by applying the CE-IVD 
approved Hot Spot APP (ID: 20114, ver. 0.2) which is based 
on a heatmap of the density of Ki67-positive nuclei. Ki67 
quantification (%) within the hot spot was performed by 
counting the number of positive nuclei divided by the total 
number of nuclei (Fig. 1). All images were reviewed by a 
pathologist and larger areas of non-invasive tumor within 
the ROIs were removed and all hot spots were confirmed to 
be in invasive ROIs.

Hot spot parameters

We investigated different configurable parameters of the Hot 
Spot APP in VIS. The four identified parameters were the 
drawing radius, shape, positive cells or positive ratio, and 
total number of cells (Table 1). The hot spot was based on 
a heatmap using either the number of Ki67-positive cells 
or the ratio of positive cells in the tumor. The heatmap was 
generated by first creating an empty image at a much lower 
resolution than the virtual slide, with 0’s in all pixels. Then 
for each positive object in the image we added 1 to the heat-
map image in a predefined drawing radius. The higher the 
radius, the more blurred heatmap, and the more round and 
cohesive the hot spot would be. We applied either a 20× or a 

Fig. 1  CKMNF116 (a) and aligned Ki67 (b) immunohistochemistry 
stained tumor slide with automated hot spot detection (pink outline) 
using APP24. Corresponding heatmap illustrating the areas with 

highest Ki67% score (c). Tumor cell detection and hot spot region 
visualized in CKMNF116 (d), Ki67 (e) and heatmap (f). Ki67-posi-
tive cells marked in red and Ki67-negative cells in blue
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40× field of view, which generated a diameter of 1.04 mm or 
0.52 mm, with a radius of 0.52 mm or 0.26 mm, respectively.

The ratio heatmap takes both Ki67-positive and nega-
tive tumor cells into account, and a threshold can be set to 
indicate the minimum number of cells needed for it to be 
considered a hot spot. This can then be combined with the 
heatmap to only show hot spots with the set minimum num-
ber of cells. Notably, ratio heatmaps can have tendencies to 
show hot spots at the periphery of the tissue: partly putting 
the hot spot on the background area for the criteria to be met.

The two most relevant methods to set up the shape of the 
hot spot was by creating a circular hot spot or a hot spot that 
follows the contours of the heatmap. The circular hot spot 
corresponds to the field of view through a microscope. The 
contour heatmap hot spot also allows the hot spot to more 
closely follow the heatmap, and a smaller drawing radius 
should in general then be used.

The number of cells in the hot spot is influenced by sev-
eral parameters. The heatmap can be limited to only show 
hot spots in areas with a minimum number of cells. As the 
area of the hot spot is fixed, the number of cells will vary 
depending on the tumor density, but a minimum number 
can be guaranteed through heatmap limiting. According to 
current guidelines, we initially set the minimum number of 
cells to either 200 or 1000 cells.

These four defined parameters were combined into 16 
hot spot apps, namely APP01-16. APP01 and APP07 were 
excluded before analysis since the combination of 1000 cells 
and 40× radius was not appropriate here. Furthermore, addi-
tional APP20-27 were created combining either 400, 600, 800 
or 1200 cells, and a total of 22 hot spot apps were created 
(Table 1). Each hot spot app provided a Ki67 score from a 
single hot spot for every tumor case it was run on. Depending 
on the app parameters, the location of the hot spot could vary 
across the tumor area for different apps run on the same tumor. 
Thus, the hot spot location may be either central or peripheral.

Ki67 global scoring

The QuPath (open source software [33]) platform was used 
to build an automated Ki67 scoring algorithm for the general 
Ki67 scoring in breast cancer. As the date of Ki67 staining 
varied within the cohort, we refined the immunohistochemi-
cal and hematoxylin stain estimates for each digitized slide 
(estimate stain vectors command in QuPath). We used water-
shed cell detection [34] to segment the cells in the image 
with the following settings: detection image, optical density 
sum; requested pixel size, 0.5 µm; background radius, 8 µm; 
median filter radius, 0 µm; sigma, 1.5 µm; minimum cell area, 
10 µm2; maximum cell area, 400 µm2; threshold, 0.1; maxi-
mum background intensity, 2. In order to classify detected 
cells into tumor cells, immune cells, stromal cells and others 
(false detections, background), we used random trees as a 
machine learning method [35] (Fig. 2). The features used in 
the classification are described in Supplementary Table S1. 
In order for the algorithm to perform an accurate classifica-
tion, we also added smoothed object features at 25 and 50 µm 
radius to supplement the existing measurements of individual 
cells. The quality control of the algorithm to classify detected 
cells was performed by a pathologist. The analysis was run on 
the entire tumor area on the whole slide defined by a patholo-
gist and output as a global Ki67 score (%).

Table 1  Hot spot app characteristics with the four configurable 
parameters: number of cells in the hot spot, heatmap and drawing 
radius (20× or 40× field of view), heatmap based on positive cells or 
on positive ratio, and hot spot shape (circle or contour heatmap)

Hot spot app Tumor cell 
count

Radius Positive/ratio Shape

APP02 200 40× Pos Circle
APP03 1000 20× Pos Circle
APP04 200 20× Pos Circle
APP05 1000 20× Ratio Circle
APP06 200 20× Ratio Circle
APP08 200 40× Ratio Circle
APP09 1000 20× Pos Contour 

heatmap
APP10 200 20× Pos Contour 

heatmap
APP11 1000 40× Pos Contour 

heatmap
APP12 200 40× Pos Contour 

heatmap
APP13 1000 20× Ratio Contour 

heatmap
APP14 200 20× Ratio Contour 

heatmap
APP15 1000 40× Ratio Contour 

heatmap
APP16 200 40× Ratio Contour 

heatmap
APP20 400 40× Ratio Contour 

heatmap
APP21 600 40× Ratio Contour 

heatmap
APP22 800 40× Ratio Contour 

heatmap
APP23 1200 40× Ratio Contour 

heatmap
APP24 400 40× Pos Contour 

heatmap
APP25 600 40× Pos Contour 

heatmap
APP26 800 40× Pos Contour 

heatmap
APP27 1200 40× Pos Contour 

heatmap
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For global scoring the algorithm was trained only on 
Ki67 immunohistochemical staining and the training was 
performed on 500 cells in an independent training cohort 
of 30 ER+ breast cancer tumors. Regarding global Ki67 
scoring, a ≥ 20% cut-off was used for distinguishing high 
from low proliferation as recommended by the St Gallen 
2013 [5].

Statistical analysis

Normal distribution was tested by Kolmogorov–Smirnov 
test of normality, and non-parametric methods were used 
for significance testing. The intraclass correlation coef-
ficient was used to test reproducibility using log-trans-
formed Ki67 values. The agreement between Ki67 values 
by DIA hot spot and DIA global scoring was assessed 
in a Bland–Altman plot. The Kaplan–Meier method was 
used for survival analysis of OS and RFS, and compared 
using log-rank test. The Cox proportional hazard model 
for univariate and multivariate analysis was used for anal-
ysis of prognostic potential. McNemar test for categorical 
paired variables and Cohen’s κ test for scoring and sub-
type agreement were used. The statistical analysis was 
performed using IBM SPSS Statistics version 25 (IBM 
Corporation, Armonk, NY, USA). p values < 0.05 were 
considered significant. Power analysis was calculated and 
was set to ≥ 0.80.

Results

Of the 217 tumors available for DIA, a total of 48 cases 
were excluded after strict criteria and pathologist review 
(Supplementary Fig. S1). The excluded cases were either 
due to no invasive tumor in slide (n = 2), poor immunohis-
tochemical staining (n = 4), misalignment (n = 2), hot spot 
detected in artifacts (n = 16) or in ductal carcinoma in situ 
components (n = 11), or other errors in analysis (n = 13). 
Only cases with successful DIA scores for all 22 apps 
were included for further analysis (n = 169). Among these 
cases, 139 were identified as ER+/HER2-, thus classified 
as luminal A-like or luminal B-like (HER2-) tumors and 
included in all further analysis (Table 2). The median fol-
low-up time for RFS was 8.7 years (range 0.3–14.7 years) 
and 9.1 years for OS (range 2.1–14.8 years). The median 
Ki67 score by DIA hot spot apps ranged from 21.6 to 
35.7%. The median Ki67 score by manual and DIA global 
scoring was 20.0% and 15.9%, respectively (Fig. 3).

Automated Ki67 scoring

Applying different hot spot apps on the same tumor 
whole slide image shows variations in heatmap pattern 
and region of detected hot spot as illustrated in Fig. 4. 
The distribution of number of cells scored for each app 

Fig. 2  Automated Ki67 scoring algorithm in QuPath illustrated by a 
Ki67 immunohistochemistry stained tumor slide (a–c) with the cell 
classifier (d–f) for global Ki67 scoring. Ki67-positive tumor cells 

marked in red, Ki67-negative tumor cells in blue, immune cells in 
purple, stromal cells in green and other cells in yellow (d–f)
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included is shown in Fig. 5 and Supplementary Fig. S2. 
The extreme outliers APP03 (median 2366 cells, range 
76–5965 cells) and APP04 (median 2366 cells, range 
588–5965 cells) were excluded since the range of number 
of cells far exceeded the set included cell count of 1000 
and 200 cells, respectively. APP02 was also excluded due 
to cell count far exceeding the defined 200 cells (median 
715 cells, range 199–1629 cells). After exclusion, 19 dif-
ferent apps remained for analysis.

The intraclass correlation coefficient among apps with 
low cell counts around 200 cells (APP06, 08, 10, 12, 14, 
16) was 0.858 [confidence interval (CI) 0.768–0.918]. 
For apps with 400–800 cells (APP20, 21, 22, 24, 25, 
26), the intraclass correlation coefficient was 0.956 (CI 
0.919–0.973), and 0.959 (CI 0.935–0.973) among apps 
with high cell counts, around 1000 cells (APP05, 09, 13, 
23, 27). Consequently, the higher the scored cell counts, 
the greater the reproducibility of Ki67 values. The median 
tumor cell counts with DIA global scoring in QuPath was 
97,940 cells (range 9550–1,055,427 cells). A Bland–Alt-
man plot for comparison of the agreement of Ki67 values 

Table 2  Patient and tumor characteristics

No. %

Total no. of tumors 139 100
Patient mean age at diagnosis (years) 59 –
Histological subtype
 Ductal/no special type 112 80.6
 Lobular 16 11.5
 Other 11 7.9

Nottingham histological grade
 Grade 1 21 15.1
 Grade 2 72 51.8
 Grade 3 44 31.7
 Unclassified 2 1.4

Tumor size (mm) and pT*
 ≤ 20, pT1 55 39.6

  > 20 and ≤ 50, pT2 76 54.7
  > 50, pT3 8 5.8
No. of positive lymph nodes and pN*
 0, pN0 76 54.7
 1–3, pN1 45 32.4
 4–9, pN2 13 9.4
 ≥ 10, pN3 5 3.6

Estrogen receptor (%)
 ≥ 1 and < 10 0 0.0
 ≥ 10 132 95.0
 Positive by other method 7 5.0

Progesterone receptor (%)
  < 20 36 25.9
 ≥ 20 99 71.2

Positive by other method 4 2.9
Ki67 (%)
  < 20 59 42.4
 ≥ 20 70 50.4
 Unknown numerical value 10 7.2

IHC-based surrogate subtype
 Luminal A-like 47 33.8
 Luminal B-like (HER2−) 82 59.0
 LumA/LumB unknown Ki67 value 10 7.2

PAM50 intrinsic subtype
 Luminal A 79 56.8
 Luminal B 30 21.6
 HER2-enriched 1 0.7
 Basal-like 1 0.7
 Unclassified 28 20.1

Neoadjuvant treatment
 Endocrine therapy 1 0.72

Adjuvant treatment
 Chemotherapy 54 38.8
 Endocrine therapy 118 84.9
 Radiotherapy 89 64.0
 Anti-HER2 therapy 0 0.0
 Unclassified 18 12.9

Table 2  (continued)

No. %

Outcome
 Patients with recurrence at end follow-up 28 20.1
 5-year recurrence-free survival rate (%) 82.9
 10-year recurrence-free survival rate (%) 57.1
 Patients dead at end follow-up 20 14.4
 5-year overall survival rate (%) 94.3
 10-year overall survival rate (%) 67.7

*Pathologic T stage (pT) for invasive tumor and pathologic N stage 
(pN) for regional lymph nodes according to AJCC Breast Cancer 
Staging 7th Edition (TNM 7)

Fig. 3  Ki67 distribution for luminal-like tumors (n = 139) scored by 
manual hot spot, DIA global or DIA hot spot apps (APP05-27). Box 
plot illustrating median, interquartile range and range. DIA digital 
image analysis, IQR interquartile range
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by hot spot APP24 and DIA global scoring showed sys-
tematic differences between the two methods (p < 0.0001; 
regression slope p < 0.0001, intercept p = 0.0004; Supple-
mentary Fig. S3).

Prognostic potential for hot spot versus global 
scoring

Regarding prognostic potential, the following apps showed 
the highest hazard ratios (HR) for RFS: APP10, 11, 15, 23, 
24 and 26 (Supplementary Table S2). APP24 reached the 
highest prognostic potential among hot spot apps for RFS 
(HR 6.88, CI 2.07–22.87, p = 0.002), compared to global 
Ki67 scoring with a HR of 3.13 (CI 1.41–6.96, p = 0.005) 
(Fig. 6). Cox regression HR for OS and high versus low 
Ki67 was highest with APP27 (HR 8.42, CI 1.95–36.35, 
p = 0.004); however, APP24 (HR 6.93, CI 1.61–29.91, 
p = 0.009) was slightly inferior to global Ki67 scoring (HR 
7.46, CI 2.46–22.58, p < 0.001) (Supplementary Table S2). 
Manual Ki67 hot spot scoring was only significant for 
RFS (HR 2.76, CI 1.16–6.53, p = 0.021) (Supplementary 
Table S2 and Fig. S4).

The prognostic value was further investigated among 
node-negative (pN0) patients and those with 1–3 axil-
lary lymph node metastases (pN1). Survival analysis with 
Kaplan–Meier estimates showed significant difference in 
OS and RFS among pN0 cases with high versus low Ki67 

Fig. 4  Heatmaps from the same tumor showing different Ki67 hot spot areas (pink outline) using APP05 (a), APP20 (b) and APP24 (c). Hot 
spots (pink outline) with Ki67 values for each corresponding app (a–c) are illustrated in d–f, respectively

Fig. 5  Box plot illustrating the distribution of the number of cells 
scored for each hot spot app included. IQR interquartile range
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scored by the global scoring method and in RFS using hot 
spot APP24 (Supplementary Fig. S5, S6). Further, among 
pN0 cases, the HR for RFS was significantly increased in 
high versus low Ki67 cases scored by the global method 
(HR 4.12, CI 1.01–16.74, p = 0.048). No significant dif-
ferences in HR for RFS among pN1 cases or in OS among 
pN0 and pN1 patients was shown by any scoring methods 
(Supplementary Table S3 and Fig. S5, S6). When cases 
were stratified for grade 1 tumors, no increased HR for OS 
(APP24 HR 0.04, p = 0.756; global HR 0.04, p = 0.814) 
was identified and notably all grade 1 cases were free from 
recurrence. We also stratified for mitotic score 1 (n = 62), 

and the HR for RFS was significantly increased in high 
versus low Ki67 cases using DIA hot spot scoring (HR 
5.05, CI 1.26–20.25, p = 0.022), but not with DIA global 
scoring (HR 5.01, CI 0.90–27.95, p = 0.066). Here, there 
was no significant increased risk for death in Ki67 high vs 
low cases using any of the scoring methods (APP24 HR 
6.80, p = 0.97; global HR 3.94, p = 0.263).

Kaplan–Meier analysis for RFS with hot spot Ki67 
scoring reached a power of 0.90 and a power of 0.95 
for OS with global scoring. Global scoring for RFS 
(power < 0.80) and hot spot scoring for OS (power < 0.80) 
was not considered powered enough.

Fig. 6  Kaplan–Meier curves demonstrating associations between 
low versus high Ki67 subgroups and recurrence-free survival (a)  or 
overall survival (b) using global scoring. Kaplan–Meier curves dem-

onstrating associations between low versus high Ki67 subgroups and 
recurrence-free survival (c)  or overall survival (d) using hot spot 
APP24 Ki67 scoring. DIA digital image analysis
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IHC‑based surrogate subtypes versus PAM50 
subtypes

PAM50 intrinsic subtypes were available for 111 tumors out 
of which 79 were luminal A (71.2%), 30 luminal B (27.0%), 
one was basal-like (1.0%) and one was HER2-enriched 
(1.0%; Table 2). For subtype comparisons, only luminal A 
and B tumors were included (n = 109). We used hot spot 
APP24 Ki67 scores and global Ki67 scores for IHC-based 
surrogate subtype classification with a 20% cut-off for Ki67. 
Based on Ki67 values from hot spot APP24, 39 tumors were 
classified as luminal A-like (30.0%) and 93 tumors as lumi-
nal B-like (70.5%). Among 104 tumors with PAM50 subtype 
data and surrogate subtype based on hot spot Ki67 scores, 58 
tumors had concordant subtype (55.8%, κ  = 0.250). When 
global Ki67 values were used, 62 tumors were classified as 
luminal A-like (48.4%) and 66 as luminal B-like (51.6%). 
Here, among 101 tumors with PAM50 subtype and surro-
gate subtype based on global Ki67 scores, 67 tumors hade 
concordant subtype (66.3%, κ  = 0.345).

Patients with luminal B tumors (PAM50 subtype) had 
significantly higher hazard ratios for recurrence (HR 
2.636, CI 1.180–5.892, p = 0.018) and death (HR 4.050, 
CI 1–541–10.647, p = 0.005) as compared to those with 
luminal A tumors (Supplementary Fig. S7). When tumors 
were divided in luminal A-like and luminal B-like using 
hot spot Ki67, Kaplan–Meier estimates showed a significant 
worse RFS (log-rank p = 0.002) and OS (log-rank p = 0.011) 
for patients with luminal B-like tumors (Supplementary 
Fig. S7). The HR was 12.351 for RFS (CI 1.676–91.032, 
p = 0.014) and 8.648 (CI 1.158–64.6, p = 0.035) for OS in 
luminal B-like versus luminal A-like cases, and no further 
conclusions are made due to the broad CI. Applying global 
Ki67 for surrogate subtypes, did not provide any significant 
difference between luminal B-like and luminal A-like cases 
with regard to RFS (HR 1.899, CI 0.834–4.302, p = 0.124). 
On the other hand, there was a significantly increased HR 
for OS (HR 5.947, CI 1.731–20.434, p = 0.005) in luminal 
B-like versus luminal A-like cases (Supplementary Fig. S7).

Multivariate Cox regression analysis

To further investigate the individual prognostic potential of 
hot spot APP24, DIA global and manual hot spot scoring, 
we performed a multivariate Cox regression analysis. The 
categorical covariates tumor size (pT1, pT2, pT3), tumor 
Nottingham histological grade (1, 2, 3), mitotic score (1, 
2, 3) and lymph node status (pN0, pN1 or pN0, pN1, pN2, 
pN3, respectively) were tested in univariate Cox regression 
analyses, out of which only lymph node status including 
pN0/1/2/3 was significantly (p = 0.005) associated to RFS 
(Supplementary Table S4). Regarding the clinically rel-
evant pN0 and pN1 cases, lymph node status was, however, 
not significant in univariate analysis (p = 0.208). A mul-
tivariate Cox proportional hazards regression model was 
fitted to RFS time of the 139 cases. Adjusting the model 
to lymph node status (pN0/1), DIA global scoring (HR 
3.53, CI 1.21–9.54, p = 0.013) and manual hot spot scor-
ing (p = 0.036) remained significantly associated with RFS 
(Table 3). In the multivariate model, the HR for RFS using 
DIA hot spot scoring resulted in an unreliably broad CI (HR 
13.80, CI 1.83–104.05, p = 0.011). Adding lymph node sta-
tus including pN2/3 cases to the multivariate model, all 
scoring methods remained significantly associated with RFS 
(APP24 p = 0.001, global DIA p = 0.004 and manual hot spot 
p = 0.022) (Supplementary Table S5).

Turning to OS, only the categorical covariates tumor 
grade (1, 2, 3) and mitotic score (1, 2, 3) was significantly 
associated with OS in univariate analysis (p < 0.001 and 
p = 0.009, respectively). Regarding the clinically relevant 
pN0 and pN1 cases, lymph node status was not significant 
in univariate analysis (p = 0.114; Supplementary Table S6). 
The multivariate Cox regression model was fitted to OS 
time, adjusting for grade, mitotic score and lymph node sta-
tus (pN0/1). When each of the three Ki67 scoring methods 
was added to the model, only global Ki67 scoring remained 
significant (HR 7.11, CI 1.09–46.46, p = 0.040) in the mul-
tivariate analysis associated to OS (Table 4). The HR for OS 
using DIA global scoring remained significant and with a 

Table 3  Multivariate Cox proportional hazard models for recurrence-free survival

DIA digital image analysis
*p significant at a < 0.05 level
a Pathologic N stage for regional lymph nodes according to AJCC Breast Cancer Staging 7th Edition (TNM 7)

Variables in model Hazard ratio 95% confidence interval p

pN  stagea (pN1 vs pN0) 1.99 0.79–5.03 0.144
Ki67 DIA hot spot APP24 scoring (≥ 20% vs < 20%) 13.80 1.83–104.05 0.011*
pN stage (pN0 vs pN1) 1.54 0.61–3.90 0.361
Ki67 DIA global scoring (≥ 20% vs < 20%) 3.53 1.31–9.54 0.013*
pN stage (pN0 vs pN1) 1.44 0.57–3.65 0.438
Ki67 manual hot spot scoring (≥ 20% vs < 20%) 3.31 1.08–10.11 0.036*
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narrower CI in the model adjusted for only grade and mitotic 
score (HR 5.44, CI 1.15–25.69, p = 0.032).

Categorical Ki67 score comparison

McNemar test for categorical paired variables showed sig-
nificant difference between DIA hot spot APP24 and global 
Ki67 scorings (p < 0.001). The agreement for low and high 
Ki67 grouping using hot spot and global scoring showed a κ 
value of 0.54, referred to as moderate agreement.

Discussion

We compare several different DIA hot spot apps with DIA 
global scoring using virtual dual staining versus traditional 
immunohistochemistry for DIA in a cohort of luminal-like 
tumors. Despite the established prognostic and predictive 
value of Ki67 for patients with HR+/HER2− tumors [4, 36], 
there is a lack of international expert consensus regarding 
assessment methods and standardization for Ki67 evaluation 

[5, 17, 20]. Pre-analytical and analytical aspects along with 
poor interlaboratory scoring reproducibility are some of the 
identified causes of variability in Ki67 assessment, which 
has limited the international adoption in clinical breast can-
cer management [18, 19, 21]. There is increasing evidence 
suggesting that global or average scoring of Ki67 is favora-
ble over hot spot scoring methods, and here Leung et al. 
suggest against the use of manual Ki67 hot spot scoring due 
to poor reproducibility [37, 38]. The IKWG also point to the 
methodological aspects for improvement of Ki67 assessment 
[24, 38]. In a study by Jang et al. manual average and hot 
spot methods for Ki67 scoring among HR+/HER2− tumors 
was compared and both methods showed good predictive 
performances for recurrence; however, the average method 
showed higher reproducibility [39].

The European Society of Medical Oncology Clinical 
Practice Guidelines point out the importance of standardi-
zation of Ki67 scoring. By recommending IHC-based sur-
rogate intrinsic subtype classification of tumors they indi-
rectly imply the use of Ki67 [40]. The St Gallen consensus 
of 2019 supports the use of gene expression signature assays 

Table 4  Multivariate Cox 
proportional hazard models for 
overall survival

DIA digital image analysis
*p significant at a < 0.05 level
a Pathologic N stage for regional lymph nodes according to AJCC Breast Cancer Staging 7th Edition (TNM 
7)

Variables in model Hazard ratio 95% confidence interval p

Grade (1 ref) – – –
 Grade 2 0.92 0.08–10.80 0.949
 Grade 3 10.55 0.39–287.98 0.163

Mitotic score (1 ref) – – –
 Mitotic score 2 0.42 0.04–4.85 0.487
 Mitotic score 3 0.21 0.01–3.64 0.284

pN  stagea (pN1 vs pN0) 2.28 0.73–7.14 0.158
Ki67 DIA hot spot APP24 scoring (≥ 20% vs < 20%) 2.93 0.50–17.35 0.236
Grade (1 ref) – – –
 Grade 2 1.05 0.09–11.62 0.971
 Grade 3 6.25 0.23–171.59 0.278

Mitotic score (1 ref) – – –
 Mitotic score 2 0.30 0.03–3.70 0.348
 Mitotic score 3 0.19 0.01–3.40 0.261

pN  stagea (pN1 vs pN0) 1.87 0.61–5.75 0.277
Ki67 DIA global scoring (≥ 20% vs < 20%) 7.11 1.09–46.46 0.040*
Grade (1 ref) – – –
 Grade 2 1.09 0.10–12.06 0.944
 Grade 3 13.32 0.51–348.73 0.120

Mitotic score (1 ref) – – –
 Mitotic score 2 0.70 0.06–8.23 0.778
 Mitotic score 3 0.50 0.03–9.40 0.645

pN  stagea (pN1 vs pN0) 1.60 0.51–5.01 0.423
Ki67 manual hot spot scoring (≥ 20% vs < 20%) 0.72 0.20–2.65 0.620
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for patients with ER+ tumors with < 3 positive lymph nodes 
to determine the benefit of additional chemotherapy. When 
gene expression signatures are not available, surrogate sub-
typing may be based on a combination of grade, ER/PR and 
Ki67 [41]. The recommendations from the Breast Commit-
tee of the German Gynecological Oncology Group (AGO) 
are in line, and do not provide any specific guidelines for 
Ki67 scoring but mention Ki67 for distinguishing luminal 
B-like tumors [42]. On the contrary, the American Society 
of Clinical Oncology Clinical Practice Guideline concludes 
that there is insufficient evidence to recommend the use 
of Ki67 for choice of adjuvant chemotherapy [43, 44]. As 
proposed by the St Gallen consensus in 2013, laboratory-
specific cut-offs for Ki67 are used in Sweden since 2018 [5]. 
According to Maisonneuve et al. Ki67 is categorized into 
three groups: low, intermediate and high proliferation, where 
PR has importance for dichotomizing the intermediate Ki67 
group into luminal A-like and luminal B-like tumors [16]. 
This has been adopted by the Swedish guidelines and low 
Ki67 is defined as < 15%, intermediate Ki67 as 15–22% and 
high Ki67 ≥ 23% at our institution (Department of Clinical 
Pathology, Karolinska University Laboratory) [22]. Similar 
to the Swedish guidelines, the Danish Breast Cancer Coop-
erative Group recommends Ki67 to be scored in hot spots, 
but also in the invasive tumor fronts and in 5–10% intervals 
[45]. External quality assurance programs (e.g., NordiQC) 
for immunohistochemical assessments and frequent moni-
toring are important measures to continuously improve the 
quality of Ki67 scoring [46]

Computerized image analysis is rapidly emerging and 
has potential to improve biomarker assessment. We have 
previously reported that automated DIA for Ki67 scoring 
outperforms manual scoring, and that DIA hot spot Ki67 
scoring was the superior method for distinguishing luminal 
A-like from B-like tumors [26, 27]. Apart from conventional 
machine learning methods, Saha et al. reported high preci-
sion using a deep learning approach for automated Ki67 hot 
spot scoring on immunohistochemically stained breast tumor 
images compared to manual scoring [47]. The reproduc-
ibility of automated scoring was recently investigated in a 
multicenter study by the IKWG and suggests that automated 
average Ki67 scoring methods hold promise but require 
standardization and clinical validation [24]. Furthermore, 
excellent reproducibility of Ki67 evaluation across different 
DIA platforms, including QuPath, has recently been shown, 
as well as how DIA can be standardized to improve Ki67 
scoring [23].

In our study, we investigated different configurable 
parameters for defining a digital hot spot region with 
regards to prognostic potential. To date there is no clini-
cally validated recommendations for hot spot definitions 
with automated scoring methods. When our DIA hot spot 
apps were grouped based on total cell counts, we show that 

the reproducibility of Ki67 scores depends on the investi-
gated cell numbers. The larger the number of investigated 
cells, the higher the reproducibility between the apps in the 
group. The median Ki67 value was higher across all DIA hot 
spot apps (21–35%) and manual hot spot scoring (20%) as 
compared to the global DIA Ki67 scoring (15.9%), which is 
in line with previous published data [38].

The prognostic value of Ki67 can be used to distinguish 
patients in low and high Ki67 groups based on outcome. 
Among all the tested digital hot spot apps, our results 
showed that the selected DIA hot spot APP24, which was 
based on 400 cells, 40× field of view and a heatmap shaped 
hot spot, had twice as high hazard ratio for RFS compared to 
DIA global Ki67 scoring in univariate analysis. In this app 
(APP24), the hot spot was based on positive nuclei, which, 
however, does not consider the cell density. A dense area 
might contain a larger number of nuclei, and hence a larger 
number of positive nuclei, and have a lower percentage of 
positive cells than another more sparsely populated region. 
The heatmap shaped hot spot requires a minimum number 
of cells to be included. As the hot spot follows the shape of 
the heatmap it will sometimes include slightly more nuclei 
than the minimum number, but never less. Regarding HR for 
OS in the univariate model, DIA global scoring was superior 
to hot spot scoring, which was also shown among node-
negative cases. Furthermore, adjusted multivariate models 
showed that DIA global scoring had independent prognostic 
value for both RFS and OS, which was not shown for DIA 
hot spot Ki67 scoring.

Molecular subtyping of tumors based on, e.g., the PAM50 
algorithm provides prognostic information, which was also 
confirmed in this study. In our cohort, the concordance 
of DIA Ki67-based subtypes and PAM50 subtypes was 
rather low, thus slightly greater using global Ki67 values 
as opposed to hot spot scores. Using Ki67 values from both 
hot spot and global DIA scoring for IHC-based surrogate 
subtyping in luminal A-like and luminal B-like tumors, only 
the global Ki67 method provided prognostic value for OS.

There are certain limitations to the study. The study 
cohort size is limited, which affected the power especially 
regarding outcome analysis. With the strict inclusion crite-
ria, even cases which failed in only one app were excluded 
from analysis. Despite different platforms and methods for 
Ki67 scoring, we applied the same cut-off of ≥ 20% to define 
high proliferation in both the hot spot and global scoring. 
Some known prognostic clinicopathological factors, such 
as lymph node status was not significant in multivariate 
analysis for OS, most likely due to the rather low number 
of cases in each category. Since lymph node status is one of 
the most powerful prognostic factors in breast cancer, it was 
valuable to add pN0/1 to the multivariate adjusted model for 
both RFS and OS. Moreover, the patient cohort consists of a 
combination of both pre- and postmenopausal patients (age 
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ranged from 28 to 79 years), since this was not a predefined 
inclusion criterion. Prognostic information based on surro-
gate IHC markers are mainly relevant for postmenopausal 
patients, which may be spared chemotherapy for those with 
luminal A-like tumors [48–50]. Regarding clinical utility in 
routine pathology, virtual dual staining with parallel sections 
stained for Ki67 and pancytokeratins is impractical and does 
not add any further value to the diagnostic process. By using 
more specific cytokeratins, e.g., dual staining with CK5 and 
CK18 instead of CKMNF116, thus also providing informa-
tion regarding in situ components, which is often part of 
the routine work-up, the use of virtual dual staining could 
potentially be feasible for Ki67 scoring.

Despite these limitations, to our knowledge, this is the 
first study investigating the effect of different hot spot defini-
tions on both reproducibility and prognostic potential, along 
with comparing the prognostic value of true global scoring, 
using two separate DIA platforms. This study showed simi-
lar prognostic potential using DIA hot spot and global Ki67 
scoring, but only DIA global scoring was independently sig-
nificant in adjusted multivariate analysis for both RFS and 
OS. Overall, we showed robust outcome prediction with DIA 
global Ki67 scoring in this ER+/HER2− cohort. Regard-
ing clinical routine, DIA global Ki67 scoring based on only 
Ki67-stained sections is a more practical method than the 
virtual dual staining method for hot spot scoring. Based on 
our findings we can conclude that automated global Ki67 
scoring is feasible and shows clinical validity. However, 
these findings need to be confirmed in a larger study cohort 
to prove clinical utility leading to clinical implementation.
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