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Abstract: Protein kinases are key enzymes in many signal transduction pathways, and play a
crucial role in cellular proliferation, differentiation, and various cell regulatory processes. However,
aberrant function of kinases has been associated with cancers and many other diseases. Consequently,
competitive inhibition of the ATP binding site of protein kinases has emerged as an effective means of
curing these diseases. Over the past three decades, thousands of protein kinase inhibitors (PKIs) with
varying molecular frames have been developed. Large-scale data mining of the Protein Data Bank
resulted in a database of 2139 non-redundant high-resolution X-ray crystal structures of PKIs bound
to protein kinases. This provided us with a unique opportunity to study molecular determinants
for the molecular recognition of PKIs. A chemoinformatic analysis of 2139 PKIs resulted in findings
that PKIs are “flat” molecules with high aromatic ring counts and low fractions of sp3 carbon. All
but one PKI possessed one or more aromatic rings. More importantly, it was found that the average
weighted hydrogen bond count is inversely proportional to the number of aromatic rings. Based on
this linear relationship, we put forward the exchange rule of hydrogen bonding interactions and
non-bonded π-interactions. Specifically, a loss of binding affinity caused by a decrease in hydrogen
bonding interactions is compensated by a gain in binding affinity acquired by an increase in aromatic
ring-originated non-bonded interactions (i.e., π–π stacking interactions, CH–π interactions, cation–π
interactions, etc.), and vice versa. The very existence of this inverse relationship strongly suggests
that both hydrogen bonding and aromatic ring-originated non-bonded interactions are responsible
for the molecular recognition of PKIs. As an illustration, two representative PKI–kinase complexes
were employed to examine the relative importance of different modes of non-bonded interactions for
the molecular recognition of PKIs. For this purpose, two FDA-approved PKI drugs, ibrutinib and
lenvatinib, were chosen. The binding pockets of both PKIs were thoroughly examined to identify all
non-bonded intermolecular interactions. Subsequently, the strengths of interaction energies between
ibrutinib and its interacting residues in tyrosine kinase BTK were quantified by means of the double
hybrid DFT method B2PLYP. The resulting energetics for the binding of ibrutinib in tyrosine kinase
BTK showed that CH–π interactions and π–π stacking interactions between aromatic rings of the drug
and hydrophobic residues in its binding pocket dominate the binding interactions. Thus, this work
establishes that, in addition to hydrogen bonding, aromatic rings function as important molecular
determinants for the molecular recognition of PKIs. In conclusion, our findings support the following
pharmacophore model for ATP-competitive kinase inhibitors: a small molecule features a scaffold
of one or more aromatic rings which is linked with one or more hydrophilic functional groups.
The former has the structural role of acting as a scaffold and the functional role of participating in
aromatic ring-originated non-bonded interactions with multiple hydrophobic regions in the ATP
binding pocket of kinases. The latter ensure water solubility and form hydrogen bonds with the
hinge region and other hydrophilic residues of the ATP binding pocket.

Keywords: protein kinase inhibitor; aromatic rings; molecular recognition; π–π stacking interactions;
CH–π interactions; rational drug design

Molecules 2021, 26, 1776. https://doi.org/10.3390/molecules26061776 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules26061776
https://doi.org/10.3390/molecules26061776
https://doi.org/10.3390/molecules26061776
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26061776
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26061776?type=check_update&version=1


Molecules 2021, 26, 1776 2 of 18

1. Introduction

Protein kinases are key enzymes in many signal transduction pathways, and play
a crucial role in cellular proliferation, differentiation, and various cell regulatory pro-
cesses [1–5]. It has been estimated that the human genome encodes 538 known protein
kinase genes [6,7], which are nearly 2% of all genes. The common catalytic function of
protein kinases is the covalent phosphorylation of substrate via transfer of the γ-phosphate
of ATP [8,9]. Based on the phosphorylated amino acids of the substrates, the protein kinases
are divided into three groups: serine/threonine kinases if they act on serine or threonine;
tyrosine kinases if they act on tyrosine; and a small number of dual-specificity kinases if
they act on all three [10,11].

Despite their diverse primary structure organizations, the catalytic domains of various
kinases are generally conserved [5]. The kinase catalytic domain consists of two lobes: the
small N-lobe is dominated by an anti-parallel β-sheet, and the large C-lobe is primarily
formed of α-helices. The nucleotide, ATP, binds at the base of the cleft between the two
lobes, positioning the γ-phosphate for transfer to the peptide substrate that binds to the
surface of the large C-lobe.

Due to their pivotal role in signal transduction/cell cycle pathways [5], aberrant
functions of protein kinases were known to cause many common diseases such as cancer,
immunodeficiency, diabetes, atherosclerosis, and psoriasis [8,12–16]. It has been estimated
that over 400 diseases are associated with protein kinases, either directly or indirectly [17].
The inhibition of aberrant protein kinases has the therapeutic potential to cure these
diseases [8,18,19]. Thus, protein kinase inhibitors (PKIs) have emerged as a subject of
great theoretical importance and therapeutic value [20,21]. Based on their binding modes
with targeted protein kinases, small molecule PKIs can be classified into Type 1, 2, and
3 inhibitors [22–25]. A Type 1 inhibitor is defined as a small molecule that binds to the
active conformation of a kinase in the ATP pocket; the Type 2 inhibitor binds to an inactive
(usually DFG-OUT) conformation of a kinase; and the Type 3 inhibitor binds next to the
ATP-binding pocket allosterically and is a non-ATP competitive inhibitor. In this study, the
scope was limited to ATP competitive inhibitors only.

In 2001, the first protein kinase inhibitor drug, imatinib, was approved by the FDA
for the treatment of chronic myeloid leukemia in the United States [26]. In the subse-
quent “sprouting decades of kinase inhibitors”, thousands of kinase inhibitors had been
developed. As of 23 December 2020, a total of 62 FDA-approved small molecule kinase
inhibitors are on the market [27]. Furthermore, over 200 kinase-targeting drugs are in
different phases of clinical trials worldwide [28], and many kinase-specific inhibitors are
in the preclinical stage of drug development [29]. Nevertheless, many challenges remain
in kinase inhibitor drug discovery, including overcoming drug resistance, and obtaining
target selectivity to reduce off-target-mediated toxicity [18,29–32]. In order to address the
issue of drug selectivity, one needs to understand the molecular determinants responsible
for the molecular recognition of PKIs in their respective targeted protein kinases [33]. The
latter is what we aim to do in this work. Fortunately, the large number of available X-ray
crystallographic structures of protein kinases with bound PKIs in the Protein Data Bank
(PDB) make it possible to conduct a systematic study of protein kinase inhibitors [34].

As a first step, a large-scale data mining of the PDB [34] was performed using Pfam [35]
accession numbers associated with all known kinases (see Section 4), which resulted in a
database of 2139 unique PKIs bound with their target protein kinases at a high resolution
(2.5 Å or better). Then, a chemoinformatic analysis of all 2139 PKIs was performed, utilizing
a selective set of molecular descriptors [36] as listed in Table 1. The analysis was intended
to address the question of drug-likeness of PKIs.
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Table 1. List of studied molecular descriptors.

Name Description

MW Molecular weight

nHDon Number of donor atoms for hydrogen bond (HB)

nHAcc Number of acceptor atoms for HB

SA Total surface area

TPSA Topological polar surface area

nSK Number of non-H atoms

nsp3 Number of sp3 hybridized carbon atoms

RBN Number of rotatable bonds

ARR Aromatic ratio

cLogP Calculated partition coefficient between octanol and water

nAR Number of aromatic rings

Fsp3 Fraction of sp3 carbon atoms

Several molecular descriptors, including molecular weight, number of donor atoms for
hydrogen bonds, number of acceptor atoms for hydrogen bonds, cLogP, number of rotatable
bonds and topological polar surface area, were chosen for our study because of their
association with established roles for “drug likeness” from the perspective of bioavailability,
i.e., Lipinski’s rule-of-five [37] and Veber’s rule [38]. Other molecular descriptors such as
the number of aromatic rings, aromatic ratio, and fraction of sp3 carbon atoms, along with
hydrogen bond counts, are considered to be important from the perspective of drug–protein
binding affinity. As in all ligand–protein complexes, the molecular recognition between
PKIs and their target protein kinases are achieved by non-bonded interactions [39,40].
Traditionally, consideration of non-bonded interactions included mainly hydrogen bonding
and salt bridge interactions. However, increasingly, evidence suggests that π-moiety
involved interactions, such as π–π stacking interactions [41] CH–π interactions [42], cation–
π interactions [43], XH–π interactions (XH = NH, OH, SH), are equally important non-
bonded interaction forces [42,44–49]. For easy reference, hereinafter, all these π-moiety
involved interactions collectively will be named non-bonded π-interactions.

As detailed in the Results section, the chemoinformatic analysis resulted in findings
that point to a potential role of aromatic rings in the molecular recognition of PKIs in
their target protein kinases. As an illustration, in the second half of this paper, two
representative PKI–protein complexes were employed to examine the relative importance
of different modes of non-bonded interactions for the molecular recognition of PKIs in
protein kinases. For this purpose, ibrutinib (an FDA-approved PKI drug) bound tyrosine–
protein kinase BTK [50], and lenvatinib (also an FDA-approved PKI drug) bound vascular
endothelial growth factor receptor 2 [51] were selected. The binding pockets of both
PKIs were thoroughly examined to identify non-bonded interactions, such as hydrogen
bonding, salt bridge interactions, π–π stacking interactions, CH–π interactions, cation–π
interactions, and XH–π interactions (XH = NH, OH, SH). Subsequently, the strengths of
intermolecular interaction energies between ibrutinib and its surrounding protein residues
were quantified by means of the double hybrid DFT method B2PLYP [52]. The latter was
identified in a benchmark study by one of the authors as the best performing DFT method
for the calculation of non-bonded interactions in terms of both accuracy and computational
efficiency in comparison with the highly accurate CCSD(T) method [53].
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2. Results
2.1. Data Mining of PKIs

Large-scale data mining of the PDB [34] was performed (see Section 4) using Pfam [35]
accession numbers PF00069, PF07714, PF00454, PF00794 and PF12330. The first two protein
families were associated with conventional tyrosine protein kinases, serine/threonine
protein kinases, and dual-specificity protein kinases [7], and account for a large majority
of PDB entries collected here. The last three protein families are atypical protein kinases.
When both redundant entries and low resolution (>2.5 Å) structures were filtered out, a
total of 2139 unique PKIs bound to their associated protein kinases were obtained, which
are listed in Table S1 in the Supplementary Material. Table S1 contains the following entries:
Ligand name (i.e., name of PKI), Ligand ID, Name of protein kinase, PDB accession number,
and Resolution for the X-ray crystal structure (in Å).

2.2. Chemoinformatic Analysis of PKIs
2.2.1. Molecular Descriptors

For all 2139 PKIs listed in Table S1, molecular descriptors were calculated by DataWar-
rior 4.7 [54] and Dragon 6 [55], as described in the Section 4. Figure 1 shows the distribution
of the calculated molecular descriptors in the form of histograms. Results of the statisti-
cal analysis of all calculated descriptors, including minimum, medium, maximum, and
average values, are tabulated in Table 2.
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Molecules 2021, 26, 1776 5 of 18

Table 2. Values of molecular descriptors.

Molecular
Descriptor Min Median Max Average Ro5 a Veber b

MW (Da) 94.12 390.29 1057.11 390.76 ± 2.28 85.4% -
nHDon 0 2 16 2.21 ± 0.03 99.2%

83.5% c
nHAcc 1 7 27 6.77 ± 0.05 96.6%
cLogP −5.95 2.58 7.94 2.60 ± 0.03 94.1% -

SA (Å2) 77.39 289.53 761.02 289.47 ± 1.69 - -
TPSA (Å2) 16.61 94.06 457.72 95.64 ± 0.72 - 92.9%

RBN 0 5 32 4.77 ± 0.06 - 96.7%
ARR 0 0.58 1 0.59 ± 0.00 - -
nAR 0 3 8 3.04 ± 0.02 - -
Nsp3 0 6 31 6.38 ± 0.09 - -
nSK 7 28 74 27.81 ± 0.17 - -
Fsp3 0 0.30 1.36 0.31 ± 0.00 - -

a Percentage of molecular descriptors that obey the Lipinski’s rule of five (Ro5); b Percentage of molecular descriptors that obey Veber’s
rule. c Based on combined count of hydrogen bond donors and acceptors.

The molecular descriptors studied here can be classified into two groups:
Group 1—bioavailability group—molecular weight (MW), number of donor atoms

for hydrogen bonds (nHDon), number of acceptor atoms for hydrogen bonds (nHAcc),
calculated partition coefficient between octanol and water (clogP), number of rotatable
bonds (RBN), and topological polar surface area (TPSA).

Group 2—binding affinity group—number of aromatic rings, aromatic ratio, and
fraction of sp3 carbon atoms. In addition, hydrogen bond counts (nHDon and nHAcc) also
belong to this group.

Group 1 molecular descriptors are associated with bioavailability; therefore, estab-
lished rules governing “drug likeness” should be considered. According to Lipinski’s
rule-of-five (Ro5) [37], for better bioavailability, drug candidates with the following bio-
physical properties should be prioritized: molecular weight of less than 500 Da, calculated
logarithm of the octanol−water partition coefficient (clogP) of lower than five, five or fewer
hydrogen bond donors, and 10 or fewer hydrogen bond acceptors. The Veber’s rule [38]
for bioavailability states that a drug candidate should have 10 or fewer rotatable bonds,
fewer than 12 hydrogen bond donors or acceptors in total, and a topological polar surface
area of less than 140 Å2.

The PKIs had an average molecular weight of 390.8 Da. Shown in Figure 1A is the
distribution of molecular weights that follows a Gaussian curve. A total of 1826 PKIs had a
molecular weight less than 500 Da, i.e., 85.4% of PKIs were consistent with Ro5. nHDon
ranges from a minimum of zero to a maximum of 16, with an average value of 2.21. As
shown in Figure 1B, PKIs with two, three, or four hydrogen bond (HB) donors account for
a large majority (over 71%). There were 2122 PKIs which possessed five or fewer hydrogen
bond donors, i.e., 99.2% of PKIs followed the Ro5. nHAcc has a range of 1 to 27, with an
average of 6.77. Additionally, 2066 PKIs had 10 or fewer hydrogen bond acceptors, i.e.,
96.6% of PKIs followed the Ro5. As far as the calculated logarithm of the octanol−water
partition coefficient was concerned, 94.1% (2012) of PKIs were consistent with Ro5, i.e.,
with cLogP less than 5. Overall, the PKIs studied were mostly consistent with the Ro5.

The Veber’s rule was largely followed as well. As the hydrogen bond donor and
acceptor counts were combined, 83.5% (1787) of PKIs satisfied Veber’s rule of possessing
fewer than 12 hydrogen bond donors or acceptors in total. The topological polar surface
area represents the sum of surfaces of all polar atoms in a molecule, which can be used
to predict the absorption and transport properties of drugs. Molecules with a topological
polar surface area that is greater than 140 Å2 give poor performance at permeating cell
membranes. Figure 1E shows the histogram of the polar surface area. The number of
PKIs with a topological polar surface area less than 140 Å2 was 1996, which was about
92.9% of all PKIs studied. The number of rotatable bonds ranged from a minimum of
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zero to a maximum of 32, with an average value of 5. As shown in Figure 1F, RBN
followed a Gaussian distribution. Overall, 2069 (i.e., 96.7%) PKIs possessed 10 or fewer
rotatable bonds.

The situation for aromatic rings is exactly the opposite of the above. At a first glance,
one of the most striking structural features about PKIs is their “flatness”, which was
well captured by three molecular descriptors in Group 2, i.e., nAR, ARR, and Fsp3. It is
remarkable that all but one PKI possessed one or more aromatic rings. The count for the
number of aromatic rings was astonishingly high, with an average of 3.04 and a maximum
as high as eight. PKIs studied here, on average, had an aromatic ratio of 0.59 and a low
sp3 carbon fraction of 0.31, respectively. In comparison, Lovering et al. reported that Fsp3

ranges from 0.36 in the discovery phase to 0.47 for approved drugs for compounds in GVK
BIO database [56]. It is this high aromatic ring count and low fraction of sp3 carbon, i.e.,
flatness, that prompted us to undertake a study of the relationship between aromatic rings
and hydrogen bonds from the perspective of molecular recognition in the next subsection.

2.2.2. Relationship between Aromatic Rings and Hydrogen Bonds

We have classified PKIs based on the number of aromatic rings, which is shown in
Table 3. All but one PKI contained aromatic rings. More than 88.6% of the PKIs fell into two,
three, or four aromatic ring groups. There were 695 PKIs (32.5% overall) which possessed
four or more aromatic rings, which were considered unfavorable for drug development
according to Ritchie and Macdonald, who reported that “more than three aromatic rings in
a molecule correlates with poorer compound developability and, thus, an increased risk
of attrition in development” [57]. From a physicochemical property point of view, high
aromatic content is undesirable because it leads to poor solubility, which was considered a
negative for a compound’s druggability [56]. However, among PKIs studied here, many of
them are approved by FDA as drugs and exhibit extraordinarily high counts of aromatic
rings. Is there something special about protein kinases that make those PKIs work? This is
what we intend to find out here.

Table 3. Distribution and the average value of the weighted hydrogen bond count (WHBC) for each
class of protein kinase inhibitor (PKI).

Number of Aromatic Rings Number of PKIs Percentage (%) Average of WHBC

0 1 0.05 0.474 ± 0
1 117 5.47 0.381 ± 0.013
2 507 23.70 0.369 ± 0.005
3 819 38.29 0.326 ± 0.003
4 570 26.65 0.296 ± 0.003

5 and more 125 5.84 0.293 ± 0.004

Hydrogen bonding is widely accepted as one of the important contributors to ligand
binding in proteins. To weigh the relative contribution of hydrogen bonding to binding
affinity in a manner that is independent of the size of the molecule, we derived a molecular
descriptor named weighted hydrogen bond count (WHBC). WHBC was obtained by
dividing the combined hydrogen donor and acceptor counts with the total number of
non-hydrogen atoms: (nHDon + nHAcc)/nSK. For each aromatic ring size, the detailed
distributions of WHBC are displayed as histograms in Figure 2A–E. The histograms were
then fit to Gaussian-shaped distribution functions and plotted in Figure 2F. It shows a
clear shift to lower numbers of weighted hydrogen bond counts as the number of aromatic
rings increase.



Molecules 2021, 26, 1776 7 of 18Molecules 2021, 26, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 2. Histograms of the weighted hydrogen bond count (WHBC) for different classes of PKIs. 
(A) PKIs containing zero and one aromatic ring; (B) PKIs containing two aromatic rings; (C) PKIs 
containing three aromatic rings; (D) PKIs containing four aromatic rings; and (E) PKIs containing 
five and more aromatic rings. (F) Normal distribution of WHBC for different classes of PKIs.  

For each aromatic ring size, the average value of WHBC was calculated and is listed 
in the last column of Table 3. In Figure 3, the average of WHBC is plotted versus the num-
ber of aromatic rings. It shows a linear relationship between the two: the average weighted 
hydrogen bond count is inversely proportional to the number of aromatic rings. As the 
number of aromatic rings increases, WHBC decreases linearly. Based on this linear rela-
tionship, we propose the exchange rule of hydrogen bonding interactions and non-
bonded π-interactions. As the count of hydrogen bonds decreases, the PKI’s capacity of 
forming hydrogen bonds decreases. The latter resulted in a direct loss of binding energy. 
This loss of binding energy is compensated by the increased contribution of non-bonded 
π-interactions (i.e., π–π stacking interactions, CH–π interactions, cation–π interactions, 
and XH–π interactions (XH = NH, SH, OH)), which comes from the increase in number of 
aromatic rings. The very existence of this inverse relationship strongly suggests that both 
hydrogen bonding and non-bonded π-interactions are responsible for the molecular 
recognition of PKIs in their target kinases. Moreover, in addition to hydrogen bonding, 
the aforementioned non-bonded π-interactions may play an energetically important role 
in binding of PKIs to their respective target protein kinases. 

Figure 2. Histograms of the weighted hydrogen bond count (WHBC) for different classes of PKIs. (A) PKIs containing
zero and one aromatic ring; (B) PKIs containing two aromatic rings; (C) PKIs containing three aromatic rings; (D) PKIs
containing four aromatic rings; and (E) PKIs containing five and more aromatic rings. (F) Normal distribution of WHBC for
different classes of PKIs.

For each aromatic ring size, the average value of WHBC was calculated and is listed
in the last column of Table 3. In Figure 3, the average of WHBC is plotted versus the
number of aromatic rings. It shows a linear relationship between the two: the average
weighted hydrogen bond count is inversely proportional to the number of aromatic rings.
As the number of aromatic rings increases, WHBC decreases linearly. Based on this linear
relationship, we propose the exchange rule of hydrogen bonding interactions and non-
bonded π-interactions. As the count of hydrogen bonds decreases, the PKI’s capacity of
forming hydrogen bonds decreases. The latter resulted in a direct loss of binding energy.
This loss of binding energy is compensated by the increased contribution of non-bonded
π-interactions (i.e., π–π stacking interactions, CH–π interactions, cation–π interactions,
and XH–π interactions (XH = NH, SH, OH)), which comes from the increase in number
of aromatic rings. The very existence of this inverse relationship strongly suggests that
both hydrogen bonding and non-bonded π-interactions are responsible for the molecular
recognition of PKIs in their target kinases. Moreover, in addition to hydrogen bonding, the
aforementioned non-bonded π-interactions may play an energetically important role in
binding of PKIs to their respective target protein kinases.
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2.3. Aromatic Rings as Determinants for Molecular Recognition of PKIs

In this subsection, modes of non-bonded intermolecular interactions and binding
energetics for representative PKIs are studied.

2.3.1. Modes of Non-Bonded Intermolecular Interactions

Modes of non-bonded intermolecular interactions for PKIs bound with their target
proteins (as listed in Table S1) were examined systematically based on their X-ray crystal
structures. The objective was to decipher the relative importance of different modes of
non-bonded intermolecular interactions for the molecular recognition of PKIs in protein
kinases. Due to space limitation, we have chosen two PKIs, ibrutinib and lenvatinib,
as an illustration. Ibrutinib and lenvatinib are FDA-approved PKI drugs targeting the
tyrosine–protein kinase BTK and vascular endothelial growth factor receptor 2, respectively.

On the basis of the 1.11 Å resolution X-ray crystal structure (PDB ID: 5P9I [50]), the
binding pocket of ibrutinib in tyrosine–protein kinase BTK was thoroughly examined to
identify non-bonded interactions, including hydrogen bonding, salt bridge interactions,
π–π stacking interactions, cation–π interactions, CH–π interactions and XH–π interactions
(XH = NH, OH, SH). The same was done for the binding pocket of lenvatinib in the vascular
endothelial growth factor receptor 2 based on the 1.57 Å resolution X-ray crystal structure
(PDB ID: 3WZD [51]).

Figure 4 shows the modes of intermolecular interactions between ibrutinib and its
interacting residues in tyrosine kinase BTK. For clarity, Figure 4A displays only the three-
dimensional structure of residues involved in π–π stacking interactions and CH–π inter-
actions with ibrutinib. Figure 4B is a schematic intermolecular interaction map between
ibrutinib and its interacting residues, with all modes of intermolecular interactions in-
cluded. As can be seen from the figure, ibrutinib is interacting with its target protein
BTK via hydrogen bonding, π–π stacking interactions, and CH–π, NH–π, and cation–π
interactions. There are two hydrogen bonds between ibrutinib and Met477 and Lys481,
with distances of 2.99 Å and 2.82 Å, respectively. Both are formed between the backbone of
the protein and the PKI drug. Tyr476 is well positioned for π–π stacking interactions with



Molecules 2021, 26, 1776 9 of 18

ibrutinib. Phe540 can form π–π stacking interactions via the phenyl ring and NH–π interac-
tion through the main chain amide hydrogen with the drug. There are numerous CH–π
interactions between ibrutinib and its surrounding residues, including Met477, Val416,
Val458, Ile472, Leu528, Ala428 and Leu542. As shown in Figure 4B, Lys430 interacts with
ibrutinib via three types of non-bonded intermolecular interactions: the ε-amino group
is well positioned for cation–π interactions; the main chain amide hydrogen can form a
NH–π interaction; and three methylene groups can have multiple CH–π interactions with
the drug [58].
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Figure 5 shows modes of non-bonded intermolecular interactions between lenvatinib
and its interacting residues in vascular endothelial growth factor receptor 2 [51]. For
clarity, Figure 5a displays only the three-dimensional structure of residues involved in
π–π stacking interactions and CH–π interactions with lenvatinib. Figure 5b is a schematic
intermolecular interaction map between lenvatinib and its interacting residues, with all
modes of intermolecular interactions included. As can be seen from the figure, lenvatinib
is interacting with its target protein via hydrogen bonding, π–π stacking interactions, and
CH–π, NH–π, and SH–π interactions. Two hydrogen bonds exist: the side chain carboxyl
oxygen of Glu885 accepts a hydrogen bond from lenvatinib with a distance of 2.86 Å; the
main chain amide group of Cys919 forms another hydrogen bond to lenvatinib with a
distance of 2.92 Å. Phe918 is well positioned for π–π stacking interactions with lenvatinib.
There are numerous CH–π interactions between lenvatinib and its surrounding residues,
including Gly841, Val848, Leu840, Val916 and Leu1035. As shown in Figure 5b, both Cys919
and Cys1045 form SH–π interactions via the thiol side chain and CH–π interactions through
the methylene group with lenvatinib.



Molecules 2021, 26, 1776 10 of 18

Molecules 2021, 26, x FOR PEER REVIEW 10 of 18 
 

 

there are numerous non-bonded π-interactions, including π–π stacking interactions, CH–
π interactions, cation–π interactions, and XH–π interactions (XH = NH, OH, SH). 

 
 

(a) (b) 

Figure 5. Modes of intermolecular interactions between lenvatinib and its interacting residues in vascular endothelial 
growth factor receptor 2. (a) Structure of residues (in licorice representation, with the a-carbon displayed as a sphere) that 
are involved in π–π stacking interactions and CH–π interactions with lenvatinib (Ligand ID: LEV) based on the 1.57 Å 
resolution X-ray crystal structure (PDB ID: 3WZD [51]). Dashed lines indicate the closest interatomic distance (color code: 
π–π stacking interactions in red, CH–π interactions in white). The structure was generated with the program VMD [59]. 
(b) A schematic intermolecular interaction map between lenvatinib and its interacting residues, with dashed lines indicat-
ing interatomic distances in Å. 

2.3.2. Strengths of Non-Bonded Intermolecular Interactions 
The strengths of non-bonded intermolecular interactions between PKIs and their tar-

get protein kinases were quantified by means of quantum mechanics. Hereby, the result-
ing energetics for the binding of ibrutinib in tyrosine kinase BTK is presented. The 
strengths of intermolecular interaction energies between ibrutinib and its surrounding 
protein residues were quantified in a pair-wise manner by means of the double hybrid 
DFT method B2PLYP/def2-QZVP (see Section 4 for details). The resulting pair-wise inter-
molecular interaction energies between ibrutinib and surrounding residues are detailed 
in Table 4 and summarized on the basis of interaction modes in Table 5. 

Table 4. Intermolecular interaction energies between ibrutinib and its interacting residues from tyrosine kinase BTK. 

Residue Interaction Mode 
ࢍ࢚ࡱ∆   (kcal/mol) 

  ࢎࢋࡰࡱ∆
(kcal/mol) 

  ࢇ ࢚ࡱ∆
(kcal/mol) 

Met477 H-bond, CH–π −4.1 3.8 −0.3 
Lys481 H-bond −3.6 3.3 −0.3 
Tyr476 π–π, CH–π −4.0 2.5 −1.5 
Phe540 π–π, NH–π −2.8 0.4 −2.4 
Lys430 cation–π, NH–π, CH–π −12.8 5.4 −7.3 
Val416 CH–π −3.0 0.1 −2.9 
Ala428 CH–π −1.5 -0.1 −1.6 
Val458 CH–π −1.2 -0.1 −1.3 
Ile472 CH–π −1.4 0.0 −1.4 

Leu528 CH–π −3.9 1.2 −2.7 
Leu542 CH–π −1.4 0.0 −1.4 

  

Figure 5. Modes of intermolecular interactions between lenvatinib and its interacting residues in vascular endothelial
growth factor receptor 2. (a) Structure of residues (in licorice representation, with the a-carbon displayed as a sphere) that
are involved in π–π stacking interactions and CH–π interactions with lenvatinib (Ligand ID: LEV) based on the 1.57 Å
resolution X-ray crystal structure (PDB ID: 3WZD [51]). Dashed lines indicate the closest interatomic distance (color code:
π–π stacking interactions in red, CH–π interactions in white). The structure was generated with the program VMD [59].
(b) A schematic intermolecular interaction map between lenvatinib and its interacting residues, with dashed lines indicating
interatomic distances in Å.

In both cases, multiple modes of non-bonded interactions are involved in binding
of PKIs with their binding pockets in the target proteins. In addition to hydrogen bonds,
there are numerous non-bonded π-interactions, including π–π stacking interactions, CH–π
interactions, cation–π interactions, and XH–π interactions (XH = NH, OH, SH).

2.3.2. Strengths of Non-Bonded Intermolecular Interactions

The strengths of non-bonded intermolecular interactions between PKIs and their
target protein kinases were quantified by means of quantum mechanics. Hereby, the re-
sulting energetics for the binding of ibrutinib in tyrosine kinase BTK is presented. The
strengths of intermolecular interaction energies between ibrutinib and its surrounding
protein residues were quantified in a pair-wise manner by means of the double hybrid
DFT method B2PLYP/def2-QZVP (see Section 4 for details). The resulting pair-wise inter-
molecular interaction energies between ibrutinib and surrounding residues are detailed in
Table 4 and summarized on the basis of interaction modes in Table 5.

Table 4. Intermolecular interaction energies between ibrutinib and its interacting residues from
tyrosine kinase BTK.

Residue Interaction Mode ∆Eg
int(kcal/mol) ∆EDeh(kcal/mol) ∆E aq

int(kcal/mol)

Met477 H-bond, CH–π −4.1 3.8 −0.3
Lys481 H-bond −3.6 3.3 −0.3
Tyr476 π–π, CH–π −4.0 2.5 −1.5
Phe540 π–π, NH–π −2.8 0.4 −2.4

Lys430 cation–π, NH–π,
CH–π −12.8 5.4 −7.3

Val416 CH–π −3.0 0.1 −2.9
Ala428 CH–π −1.5 -0.1 −1.6
Val458 CH–π −1.2 -0.1 −1.3
Ile472 CH–π −1.4 0.0 −1.4

Leu528 CH–π −3.9 1.2 −2.7
Leu542 CH–π −1.4 0.0 −1.4
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Table 5. Contributions of the different modes of intermolecular interactions to the binding affinity
between ibrutinib and its interacting residues in tyrosine kinase BTK.

Table Residue Interaction
Mode ∆E aq

int(kcal/mol)
Combined

Energy
(kcal/mol)

Hydrogen
Bonding

Met477 H-bond, CH–π −0.3 −0.6Lys481 H-bond −0.3

non-bonded
π-interactions

Tyr476 π–π, CH–π −1.5

−22.5

Phe540 π–π, NH–π −2.4

Lys430 cation–π, NH–π,
CH–π −7.3

Val416 CH–π −2.9
Ala428 CH–π −1.6
Val458 CH–π −1.3
Ile472 CH–π −1.4

Leu528 CH–π −2.7
Leu542 CH–π −1.4

Table 4 lists the pair-wise intermolecular interaction energies between the entire ligand
ibrutinib and each individual residue (first column) in its binding pocket. The second
column shows the modes of intermolecular interactions as depicted in Figure 4B. The last
column lists the aqueous phase interaction energy (∆E aq

int ), which is obtained by adding
the gas phase energy (∆Eg

int , third column) and the energy of dehydration (∆EDeh, fourth
column). Two general observations can be made here. First of all, as expected, the gas phase
interaction energies for hydrogen bonding are strong; however, the high energetic cost of
dehydration significantly offset the gas phase interaction strength. Secondly, dispersion
force dominated CH–π interactions and π–π stacking interactions are relatively weak in the
gas phase, although there is not much energetic cost of dehydration for the hydrophobic
moieties. As a result, substantial interaction strengths remain in the aqueous phase for
both CH–π interactions and π–π stacking interactions.

In Table 5, aqueous phase intermolecular interaction energies are combined based
on modes of non-bonded interactions. It can be seen that CH–π interactions between
aromatic rings of the drug and the aliphatic residues in its binding pocket and π–π stacking
interactions between aromatic rings of the drug and the aromatic residues dominate
the binding interactions between ibrutinib and tyrosine–protein kinase BTK. Cation–π
interactions and NH–π interactions also make a contribution to binding. Altogether, non-
bonded π-interactions (π–π stacking interactions, CH–π interactions, cation–π interactions,
and NH–π interactions) contributed a total of −22.5 kcal/mol to the binding affinity. In
contrast, two hydrogen bonds have a combined interaction energy of −0.6 kcal/mol.
Although data shown here are only for one PKI–protein complex, the observation is
consistent with a similar analysis of other FDA-approved PKI drugs with known drug–
protein structures in Table S1 (data not shown). This quantitively affirms the dominant role
played by the aromatic rings in the binding of PKIs to protein kinases.

3. Discussions

In this work, a high resolution non-redundant database of 2139 PKIs bound to their
respective protein kinases was established through large-scale data mining of the PDB.
Our choice of the PDB as a source of PKIs was largely driven by the need to analyze
modes of non-bonded intermolecular interactions using three dimensional structures of
PKI bound protein kinases. Furthermore, the database will be of general interest to a
wide spectrum of kinase researchers working on structure-based kinase drug design and
profiling analysis. The 2.5 Å resolution X-ray diffraction cut-off acts as a natural barrier
to filter out PKIs with weak binding affinity, because the formation of a well-ordered
ligand–protein co-crystal requires sufficiently high binding affinity [60]. The PKIs collected
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from PDB represent inhibitors in various phases of drug design, ranging from the discovery
phase to clinical approval.

The chemoinformatic analysis of 2139 PKIs resulted in findings that PKIs are “flat”
molecules with a high aromatic ring count and low fraction of sp3 carbon. This is consistent
with a similar analysis of PKIs in early phase preclinical studies found in ChEMBL and
FDA-approved PKI drugs by Bournez and co-workers [28]. More importantly, it was
found here that the average weighted hydrogen bond count is inversely proportional to the
number of aromatic rings. Based on this linear relationship, we put forward the exchange
rule of hydrogen bonding interactions and non-bonded π-interactions. Specifically, a loss
of binding affinity caused by a decrease in hydrogen bonding interactions is compensated
by a gain in binding affinity acquired by an increase in non-bonded π-interactions, and vice
versa. The very existence of this inverse relationship strongly suggests that both hydrogen
bonding and non-bonded π-interactions are responsible for the molecular recognition
of PKIs in their target kinases. This was supported by: (i) further analysis of modes of
non-bonded intermolecular interactions for PKIs bound with their target proteins; and (ii)
quantification of strengths of non-bonded intermolecular interactions. Thus, this work
establishes that, in addition to hydrogen bonding, aromatic rings function as important
molecular determinants for the molecular recognition of PKIs.

Finally, it is important to place this work in the broad context of the existing knowl-
edge on molecular recognition of PKIs. For this purpose, a brief review on currently
accepted pharmacophores for ATP competitive PKIs is warranted here. Many excellent
published reviews on the subject [22–24] exist; therefore, only salient features will be
highlighted below.

As mentioned in the Introduction section, the conserved catalytic domain of protein
kinases contains the small anti-parallel β-sheet dominated N-lobe and the large α-helical
C-lobe. ATP binds in a deep cleft located between the two lobes. Another important
structural feature is the DFG (Asp–Phe–Gly) motif, which is a highly conserved sequence
located at the beginning of the activation loop. The motif’s Asp residue is responsible for
coordinating a magnesium ion which positions the phosphates of ATP for phosphotransfer.
The Phe residue of the motif packs under the helix C is therefore important for the correct
positioning of this helix. It is important to note that the helix C itself acts as a dynamic
regulatory element for the catalytic function of protein kinases. In the active state of kinases,
the DFG motif adopts a “in” conformation, with the Asp residue properly oriented toward
bound ATP for transferring the γ-phosphate group to the substrate. In the inactive state
of kinases, the DFG motif flips outward to adopt a “out” conformation in which the Phe
residue of the DFG motif moves more than 10 Å from its position in the active kinase
conformation. As a result, the Asp residue no longer coordinates the magnesium at the
catalytic site, rendering the kinase inactive.

The Type 1 PKIs typically bind to the DFG-in active (open) conformation of protein
kinases, mimicking the interactions of the adenine moiety of ATP [61], and forming multiple
hydrogen bonds with the kinase hinge. Based on structural biology studies, the binding
pocket for Type 1 PKIs can be divided into subregions: the hinge region; the adenine
region; the hydrophobic region I; the hydrophobic region II; the ribose pocket; and the
phosphate-binding region [22,23]. Shown in Figure 6 is a general pharmacophore model
for Type 1 PKIs in the ATP binding pocket of protein kinases [24]. Both the ribose pocket
and the phosphate-binding region are hydrophilic in nature. The remaining regions are
generally of hydrophobic character [24]. The adenine region is mostly surrounded by
hydrophobic residues. The hydrophobic region I extends deeply in the direction of the
lone pair of the N7 nitrogen of adenine. The hydrophobic region II corresponds more
to a hydrophobic slot opened to solvent that is not used by ATP. It is worth noting that,
although both hydrophobic regions exist naturally, they are not used by ATP in most
protein kinases.
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In contrast, the Type 2 PKIs bind to the DFG-out inactive (closed) conformation
of protein kinases. They occupy the adenosine pocket and still have contact with the
hinge. The transition from the “DFG-in” to the “DFG-out” conformation exposes a third
hydrophobic pocket adjacent to the ATP pocket, named hydrophobic region III. The latter
is also commonly referred to as an “allosteric site” and is utilized by Type 2 PKIs to lock
the kinase in the inactive conformation [7,22].

With the above background knowledge, we are now positioned to discuss the broad
implications of our findings that, in addition to hydrogen bonding, aromatic rings of PKIs
function as important molecular determinants for inhibitor binding. From the perspective
of aromatic rings, hydrophobic regions I, II and III, plus the adenine region, are the most
relevant. Those four regions are loaded with hydrophobic residues that can participate in
non-bonded π-interactions (i.e., π–π stacking interactions, CH–π interactions, and XH–π
interactions (XH = NH, SH, OH)). The aliphatic residues Gly, Ala, Val, Leu, and Ile in
the four hydrophobic regions can form CH–π interactions with aromatic rings of PKIs.
Additionally, aromatic residues Phe, Tyr and Trp can form π–π stacking interactions with
aromatic rings of PKIs. As shown in the two illustrative cases, even the middle methylene
groups of polar residues and charged residues can participate in CH–π interactions with
aromatic rings. In addition, the side chains of Ser, Thr, Asn, Gln, Cys and Met residues can
form OH–π, NH–π, and SH–π interactions, respectively, with aromatic rings of drugs.

As a general principle, from the perspective of binding energetics, the importance
of CH–π interactions and π–π stacking interactions in molecular recognition must not be
underestimated. As demonstrated in Table 4, although the dispersion forces dominating
CH–π interactions and π–π stacking interactions are relatively weak in the gas phase in
comparison with hydrogen bonding interactions, there is a much lower (or zero) energetic
cost of dehydration involved. As a result, significant interaction strengths remain in the
aqueous phase for both CH–π interactions and π–π stacking interactions.

In conclusion, our findings support the following pharmacophore model for ATP-
competitive kinase inhibitors: a small molecule features a scaffold of one or more aromatic
rings that is linked with one or more hydrophilic functional groups. The former has the
structural role of acting as a scaffold and the functional role of participating in non-bonded
π-interactions (i.e., π–π stacking interactions, CH–π interactions, cation–π interactions, and
XH–π interactions (XH = NH, SH, OH)) with hydrophobic regions I, II, and III, and the
adenine region. The latter ensure water solubility and form hydrogen bonds with the hinge
region and other hydrophilic residues of the ATP binding pocket. It is our expectation that
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this pharmacophore has the promise to profoundly impact lead optimization in protein
kinase targeted drug discovery.

4. Theory and Methods
4.1. Data Mining of PKIs

A large-scale data mining of the PDB was carried out to establish a high resolution
non-redundant database of PKIs bound to their respective protein kinases according to the
following protocol:

a. The 28 March 2018 release of the PDB was searched for Pfam [35] accession numbers
PF00069, PF07714, PF00454, PF00794 and PF12330, resulting in a total of 4884 entries
that contained protein kinases;

b. Only high-resolution (2.5 Å or better) X-ray crystal structures of protein kinases
complexed with bound PKIs were retained for further analysis. The reason for
the cut-off is two-fold: (i) to ensure quality of the structures, and (ii) to ensure that
selected PKIs have a sufficiently high binding affinity to kinase because the formation
of a well-ordered ligand-protein co-crystal that is good enough for 2.5 Å resolution
requires a reasonably high binding affinity [60];

c. Multiple protein kinases bound with the same PKI were filtered out to retain one
protein kinase only for each PKI.

4.2. Chemoinformatic Analysis: Molecular Descriptors

Two widely used cheminformatics programs, DataWarrior 4.7 [54] and Dragon 6 [55],
were employed to calculate the following molecular descriptors for all 2139 PKIs: Molecular
weight (MW), Number of donor atoms for HB (nHDon), Number of acceptor atoms for
HB (nHAcc), Number of aromatic rings (nAR), Aromatic ratio (ARR), Number of non-H
atoms (nSK), Number of sp3 hybridized C atoms (Nsp3), Number of rotatable bonds (RBN),
Calculated partition coefficient between octanol and water (cLogP), Total surface area (SA)
and Topological polar surface area (TPSA). The last two molecular descriptors required
input of three-dimensional geometries of PKIs that were gathered from the PDB.

We have also derived several secondary molecular descriptors based on the primary
molecular descriptors. The fraction of sp3 carbon (Fsp3) was obtained by dividing Nsp3 by
the total number of carbon atoms [56]. The weighted hydrogen bond count (WHBC) was
calculated by the formula (nHDon + nHAcc)/nSK.

4.3. Quantum Chemical Calculation of Intermolecular Interaction Energies

The conceptual framework for the protein–protein complex formation in solution is
depicted in the following scheme.

A(aq) + B(aq)
∆Eaq

int−−−→ AB(aq)
∆Gsol

A ↑ ∆Gsol
B ↑ ↑ ∆Gsol

AB
A(g) + B(g) −−−→

∆Eg
int

AB(g)
(1)

This served as a basis for our analysis of the binding affinity of PKIs in protein
kinases. It is worth noting that a similar scheme was used to calculate solution phase
binding affinities for ligand–protein complexes previously [58,62]. Both ligand and proteins
were solvated before complex formation. They both lose part of their solvation shell
upon binding, which incurs an energy cost commonly referred to as dehydration energy.
According to the scheme, the binding energy for complex formation in solution ∆Eaq

int can
be evaluated indirectly by calculating intermolecular interaction energies in the gas phase,
∆Eg

int , followed by a correction for the dehydration energy ∆EDeh:

∆Eaq
int = ∆Eg

int + ∆EDeh (2)
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The gas phase intermolecular interaction energies between the PKI and its surround-
ing residues in protein kinases, ∆Eg

int , were calculated by means of the supermolecular
approach. In the supermolecular approach, the energy of interaction between molecules
A and B is defined as the difference between the energy of the interacting dimer and the
energies of the monomers:

∆Eg
int = Eg

AB−Eg
A − Eg

B (3)

The calculations were carried out using the ORCA 4.0 program [63] by means of the
double-hybrid density functional method B2PLYP [52] using the def2-QZVP basis set [64].
Grimme’s D3BJ dispersion correction [65] was applied for the proper account of dispersion
interactions. For efficiency, B2PLYP was implemented with the resolution of identity (RI)
approximation for the perturbation step and RIJK [66] for the SCF step. In RIJK, appropriate
auxiliary basis sets are used to substitute both Coulomb (J) and exchange integrals as used
in the Kohn–Sham/Fock matrix by auxiliary three-center and two-center electron repulsion
integrals. The choice of the double hybrid density functional method B2PLYP coupled with
the def2-QZVP basis set is based on a systematic benchmark study conducted by one of
the authors [53]. It was found that the double-hybrid RIJK RI-B2PLYP implementation
is the best DFT method for the treatment of non-bonded interactions in terms of both
accuracy and computational efficiency in comparison with the highly accurate CCSD(T)
method [53]. The basis set superposition error (BSSE) was corrected by the Boys and
Bernardi Counterpoise Method [67].

The dehydration energy for the complex formation is defined (see Equation (1)) by

∆EDeh = ∆Gsol
AB − ∆Gsol

A − ∆Gsol
B (4)

where ∆Gsol
i , i = AB, A, B represents the free energies of solvation for the complex AB, and

the monomers A, B, respectively. Due to the prohibitively high cost of explicitly including
solvent molecules in simulating biological systems, a common way to calculate the free
energy of solvation is through continuum models. Here, we adopted the SM5.42R Solvation
Model of Cramer and Truhlar [43], as implemented in the 2008 R1 version of GAMESS [68]
for evaluation of the free energy of solvation.

Supplementary Materials: The following are available online. Table S1: List of 2139 PKIs in associa-
tion with their respective binding protein kinases.
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