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Multiple-target tracking algorithms generally operate in the local frame of the sensor and
have difficulty with track reallocation when targets move in and out of the sensor field-of-
view. This poses a problem when an unmanned aerial vehicle (UAV) is tracking multiple
ground targets on a road network larger than its field-of-view. To address this problem, we
propose a Rao-Blackwellized Particle Filter (RBPF) to maintain individual target tracks and
to perform probabilistic data association when the targets are constrained to a road
network. This is particularly useful when a target leaves and then re-enters the UAV’s field-
of-view. The RBPF is structured as a particle filter of particle filters. The top level filter
handles data association and each of its particles maintains a bank of particle filters to
handle target tracking. The tracking particle filters incorporate both positive and negative
information when ameasurement is received.We implement two path planning controllers,
receding horizon and deep reinforcement learning, and compare their ability to improve the
certainty for multiple target location estimates. The controllers prioritize paths that reduce
each target’s entropy. In addition, we develop an algorithm that computes the upper
bound on the filter’s performance, thus facilitating an estimate of the number of UAVs
needed to achieve a desired performance threshold.
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1 INTRODUCTION

Multiple-target tracking has a wide array of applications ranging from air traffic control (Li and Bar-
Shalom (1993)) to following shoppers in a store (Liu et al. (2007)). Many approaches exist to track
moving objects, vehicles, and pedestrians. Algorithms of particular interest include Multiple
Hypothesis Tracking (MHT) (Reid (1979)), Probability Hypothesis Density (PHD) filters (Clark
et al. (2007)), Recursive RANSAC (R-RANSAC) (Niedfeldt and Beard (2014)), and their variants.
Most applications of these algorithms constrain the area of interest to the field-of-view of the sensor
deployed. Targets that move out of the field-of-view are usually forgotten and considered a new
target when seen again. Other research, where the area of regard is larger than the field-of-view of a
UAV’s sensor, sometimes pose the situation as a search problem, as in (Allik (2017)) and (Wong et al.
(2005)).

Another common strategy is to use cooperating UAVs to increase coverage beyond the single
sensors field-of-view (e.g. (Yuan et al. (2018)), (Wolek et al. (2020)), and (Haoran et al. (2020))).
While this approach is advantageous and has generated many novel control and estimation
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approaches, there is a lack of specification on how additional
UAVs will affect the tracking capabilities. This work provides that
connection between the number of UAVs operating in a region
with the resulting tracking fidelity. In this way trade-offs between
the costs of deploying additional UAVs may be evaluated against
the required tracking performance.

Target tracking may also be improved by considering features
in the operational environmental. It was shown in (Cheng and
Singh (2007)) and (Booth et al. (2020)) that incorporating road
network information, improves the tracking capabilities. In (Ding
et al. (2017)) additional domain knowledge (e.g. traffic rules and
effects of neighboring vehicles) was combined with a moving
horizon estimator and multiple hypothesis tracker to further
improve performance. These approaches require that the
domain information be known a priori. However, as was
shown in (Moon and Peterson (2018)), incorporating road
network information is possible using open source products
such as OpenStreetMap (Haklay and Weber (2008)).

Another powerful technique, employed by (Allik (2017)) and
(Ahmed et al. (2017)), is to incorporate negative information.
Traditional localization would only update the target location
belief if it were viewed. However, if the target is not detected
within the UAV’s field-of-view, this still gives some information
about its location. As an illustration, consider the case where a
target could be in one of two possible locations. Searching one
location will reveal that the target is indeed there or must be at the
other location. This negative information update proves valuable
when a UAV cannot follow all of the targets all of the time.

There has been extensive research aimed at improving the
quality of target tracks. This research includes, optimizing sensor-
to-target viewing geometries (He et al. (2020); Peterson (2017)),
improving the quality of the sensed data (Oktay et al. (2018)), and
providing control techniques to reduce the error between planned
and realized UAV paths (Farrell et al. (2019)). These specific
techniques fall outside the scope of this work. However, they
could be layered on top of this research to further enhance the
UAV’s tracking performance.

In this paper, we consider the task of performing surveillance
on multiple targets with a single UAV in a rural, hilly area. The
operators want to have a good understanding on where the targets
visit over a long time span, but the terrain or distance between
roads makes it difficult to observe the targets without flying over
the roadway, even with a gimballed camera. An even more
difficult environment would be an urban canyon, where an
altitude-constrained UAV could only see along corridors.

We develop a method for incorporating roadmap information
as well as a negative update to track multiple vehicles in an area
larger than the UAV’s sensing field-of-view in the presence of
clutter and missed detections. The road map information
provides a constraint on the allowable vehicle paths, this
restricts the UAV’s search space and enables the UAV to re-
discover vehicles when there is temporal sparsity between vehicle
sightings. The negative updates ensure that the absence of vehicle
sightings gets incorporated into the estimated target position. We
assume it is important to label and properly distinguish between
targets. However, we assume that sensors are not capable of
classifying them (e.g. if the radar cross sections are similar or if

using a camera, the number of pixels on target is too low for
differentiating targets). We use simulations and hardware
experiments to show that our target tracking approach is
successful despite these challenging restrictions.

In addition, this paper develops a novel method for
maintaining target certainty by the tracker. In particular, we
identify the particle filter’s average-entropy lower-bound using
the size and complexity of the map, the number of targets tracked,
and the number of active UAVs. The lower bound on entropy is
inversely proportional to the upper bound on the target location
certainty. By knowing the upper bound on the target location
certainty for a given number of UAVs, we can predict the number
of UAVs needed to achieve a defined performance threshold for
any given scenario. To the best of our knowledge no other work
has developed an approach to address this issue.

The Rao-Blackwellized particle filter (RBPF) and the receding
horizon path planner were previously described in (Bidstrup et al.
(2019)). The current paper expands on those results, providing
novel contributions that include 1) the application of the RBPF
with negative update information to tracking multiple targets
along road networks, 2) a theorem for computing the particle
filter’s lower bound of the average entropy, and 3) path planning
algorithms, including a new neural net path planner trained with
deep reinforcement learning (deep-RL), 4) extensive simulation
and hardware experiments of end-to-end framework.

The UAV motion is controlled utilizing the road network
constraint and the particle filter, which provides probability
density information about the predicted target location.
Numerical simulations demonstrate the comparable
effectiveness between different controllers and show that the
controllers improve target estimate certainty when compared
to a random search pattern. Hardware results completed in a
motion capture room show the efficacy of an end-to-end solution.

The remainder of the paper is organized as follows: Section 2
describes a particle filter for tracking a single target. Section 3
extends the method to multiple targets with unknown data
association by creating a high level particle filter where each
particle is a single-target particle filter as described in Section 2.
The receding horizon controller (RHC) and deep-RL controller
presented in Section 4 leverage the particle filter output. Section
5 derives an algorithm to compute the lower bound on the
average-entropy of the overall scheme. Results comparing the
two controllers to a random search pattern are presented in
Section 6. Hardware results showing the RHC integrated with the
particle filter are presented in Section 7. Finally, conclusions are
given in Section 8.

2 TARGET TRACKING

Consider the problem of tracking a single vehicle driving along a
road network with a UAV flying overhead. We are assuming that
the UAV has a limited field-of-view (FOV) and can only see the
roadway beneath it (e.g. through a downward pointing camera).
This is a reasonable approximation of real-world scenarios such
as operating in an urban canyon, hilly terrain, or over a large
expanse where even a gimbaled camera could not resolve targets
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on distant roads. The solution described in this section is used as a
building block in the complete architecture of tracking multiple
vehicles with unknown data correspondence presented in
Section 3.

2.1 Single-Target Particle Filter
The UAV encodes its belief of the target location using a particle
filter. Also known as Sequential Monte Carlo, the particle filter is
a nonparametric implementation of the Bayes filter
(Arulampalam et al. (2002)). In contrast to a Kalman filter,
the particle filter easily describes multimodal distributions,
cleanly handles nonlinear motion and measurement models,
and allows for mixed continuous-discrete state representations.
These features are especially helpful in our scenario, where a
target vehicle could be any distance along (continuous) any one of
a number of roads (discrete) after passing through an
intersection. Figure 1 illustrates this scenario where the UAV
has not seen the target for some time, and multiple good
hypotheses exist.

Let x denote the state of the target, which includes the current
position, as defined by its current edge and position along that
edge, as well as the speed it is travelling. We encode the initial
belief of the state as a probability density function (pdf) p(x0) and
draw the initial set of particles X 0from this distribution,

X 0 ∼ p(x0). (1)

Each particle is denoted as xn
k where the superscript n denotes the

nth particle and the subscript k denotes time index. The set of
particles at time k is denoted as X k � {xn

k | n � 1 . . .N}. Particles
contain all the information present in the target state, but also
have a belief value representing the certainty that a particle
represents an actual target. In this paper we chose a uniform
distribution for p(x0), implying no prior knowledge about where
the target may initially be in the search area. Prediction is
performed by sampling from the proposed distribution as

xn
k ∼ p(xk | xn

k−1). (2)

When a measurement yk is received, each particle is assigned
an importance factor as the ratio of the target distribution to the
proposed distribution

wn
k �

p(xn
k | y1: k)

p(xn
k | y1: k−1), (3)

Where y1:k � {y1, . . ., yk} is the set of measurements. By applying
Bayes’ rule to the numerator and factoring, we see that the
importance factor, or weight, is proportional to the likelihood
of the current measurement, given the particle’s current state:

wn
k ∝p(yk | xn

k). (4)

With the added constraint that all weights must sum to one, the
proportionality is sufficient to calculate each particle’s weight. At
each time instant, the particles are resampled with probability
proportional to their weights, and their weights are reset to the
initial value p0 � 1

N
We employ two techniques to better fit the posterior

distribution p(xk | y1:k). First is the low variance resampling
technique described in (Thrun et al. (2006)). While resampling
is necessary it can remove good particles and lead to particle
deprivation. Low variance resampling helps mitigate this issue.
Another technique is to resample only as often as is beneficial,
known as selective resampling (Grisetti et al. (2005)). The idea
behind selective resampling is that if the particles were sampled
from the true posterior, they would all have equal importance.
The deviation from the true posterior can then be estimated by
calculating the number of effective particles, a metric given by
(Liu (1996)) as

Neff � 1∑N
n�1(wn)2. (5)

Selective Resampling provides a way to determine when
resampling is necessary. For example, the particles could be
resampled when Neff drops below the threshold 2N

3 To
calculate Neff, a particle must keep track of its importance
factor through each measurement update until resampling
occurs, i.e.,

wn
k � ηww

n
k−1p(yk | xn

k), (6)

Where ηw is a normalizing factor for the particle weights. In
practice, these two techniques greatly reduce the chance that good
particles are lost during resampling.

2.2 Road Constraint
Let F(x) denote the field-of-view of the camera in the inertial
frame when the UAV is at state x. Any time a target is outside the
UAV’s field-of-view, its state can only be estimated using
prediction. If the target could move unconstrained on the
ground plane, the estimate would quickly disperse and become
unusable. Constraining the target to a road network allows the
UAV to accurately predict the possible places the target could go,
even when it has not been seen for some time (see Figure 1).

We model the road network constraint as a directed graph

FIGURE 1 | The single-target particle filter maintains a finite number of
hypotheses, even after the vehicle has traveled some distance since being
seen. Particles are plotted as transparent dots to indicate density. The blue
diamond shows true target position, the star shows the UAV position,
and the dashed circle delineates the UAV’s field-of-view.
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G � (N , E), (7)

Where edges E represent road segments, and nodes N represent
intersections or corners with known Cartesian coordinates. In the
remainder of this paper we will not distinguish between the graph
and its embedding in R2, i.e., n ∈ N will represent a point in R2

representing the inertial north-east coordinates of the node, and
e ∈ E represents an inertially defined line inR2 with length len(e).
Each particle encodes its current edge e and how far along the
edge it has traveled, denoted by path parameter s. Therefore the
nth particle is given by,

xn � (en, sn), en ∈ E, sn ∈ R. (8)

We use the notation G(xn) to denote the real-world 2D Cartesian
location associated with particle xn.

2.3 Target Motion Model
The dynamic model of the target motion defines the proposed
distribution shown in Eq. 2. While virtually any dynamic model
works with this architecture, this paper uses a constant velocity
model with random perturbations. The particle’s position sn is
propagated along the road as

_sn � ven0 + ], (9)

Where ven0 is some nominal velocity for the road segment en, (e.g.,
a posted speed limit of 15 m/s) and ] ∼ N (0, σ2]) is additive
Gaussian white noise with standard deviation σ].

When a particle reaches an intersection (i.e., the end of an
edge), in other words, if sn > ‖en‖, then en is randomly assigned
with equal probability to one of the edges leaving that node,
excluding the edge that returns to the previous node (i.e., no
U-turns).

2.4 Measurement Model
When a sensor measurement is detected, the measurement
likelihood model is a mixture of a Gaussian distribution
corresponding to a true measurement coming from a target
that is in the camera field-of-view F and a uniform
distribution corresponding to a false alarm, specifically,

p(yk | xn
k) � (1 − PFA) 1

2πστ
exp − 1

2στ
‖G(xn

k) − yk‖2( ) + PFA

AR
,

(10)

Where PFA is the probability of false alarm, στ is the standard
deviation of the measurement noise, and AR is the 2D area
spanned by the road network.

2.5 Negative Update
The lack of a sensor measurement is also information that can be
used to update the target likelihood map because it indicates that
the target is either not in the sensor field-of-view F or the
detection was missed by some probability of false-negative
PFN. In this case, the negative measurement model is a
mixture of two uniform distributions, The negative
measurement model is then a mixture of two uniform
distributions,

p(zk | xn
k) �

1 − PFN

AF

, G(xn
k) ∈ F

PFN

AR − AF

, Otherwise

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (11)

Where AF is the area of the UAV’s field-of-view. When using a
camera fixed with respect to the UAV body frame, F and
consequently AF, become a function of the UAV altitude and
attitude. For the purposes of this paper, we assume a
constant PFN.

3 DATA ASSOCIATION

Section 2 describes tracking a single target in the presence of
clutter and missed detections. In this section, we extend the filter
to track multiple vehicles. Subsection 3.1 describes the tracking
problem with perfect target identification, we then extend that in
Subsection 3.2 to stochastically handle unknown data
correspondence.

3.1 Known Data Correspondence
Extending single-target tracking to multiple targets would be
trivial if sensor measurements could give perfect data
correspondence. That is if the sensor reported both the
location and ID of the target. We assume that each target’s
motion is independent of other targets, implying that the joint
distribution can be factored as

p(X 1: M
k | y1: k) �∏M

m�1
p(Xm

k | y1: k), (12)

WhereM is the number of targets to be tracked, and Xmis the set
of particles estimating the location of themth target. In the case of
perfect data correspondence the UAV simply maintains a
separate particle filter for each target. As a positive
measurement is received, it would only be applied to the
corresponding target. Negative measurements would be
applied to the entire bank of trackers.

Unfortunately, it can be very difficult to visually
differentiate two similar looking vehicles and so perfect
data correspondence is not possible. Instead, we
implement a Rao-Blackwellized Particle Filter (RBPF) to
handle the data association in a manner similar to (Ahmed
et al. (2017)) and (Särkkä et al. (2007)).

3.2 Rao-Blackwellized Particle Filter
Let c1:k be the history of data associations; that is, ck �m indicates
that the measurement at time k corresponds to target m, where
m ∈ 1. . .M andM is the number of targets. If we let ck be a random
variable, then the joint distribution given a certain
measurement is

p(c1: k,X 1: M
k | y1: k) � p(c1: k | X 1: M

k , y1: k)∏M
m�1

p(Xm
k | y1: k).

(13)

Frontiers in Robotics and AI | www.frontiersin.org October 2021 | Volume 8 | Article 7441854

Moore et al. Tracking with Sparse Visual Measurements

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


We can approximate the right-hand side of Eq. 13 using a
Rao-Blackwellized particle filter. In this filter, each particle
maintains its own joint target location distribution described
in Eq. 12, given a certain history of data associations. Collectively,
the particles approximate the distribution over the history of
correspondences.

Typically, the state is factored such that an optimal, closed
form filter is used to reduce the dimensionality of the problem
(Doucet et al. (2000)). Common choices for the closed form filter
are the Kalman filter or the Hidden Markov Model (HMM)
(Ahmed et al. (2017)). We found that we had sufficient
computational power for each particle to maintain a bank of
particle filter trackers as described in Section 2 and therefore
chose not to discretize the problem to fit an HMM. The
computational cost of this formulation is O(HMN), where M
and N are as defined above, and H is the number of history
particles. Our approach has an additional benefit that with a
continuous state space, the road network of interest could be
expanded without increasing the number of discrete states or
reducing the discretization resolution, as would have been
necessary with an HMM. Additionally, we are not bound to a
linear Gaussian model, as with a Kalman filter.

3.3 Data Association Sampling
Assuming that targets are otherwise indistinguishable, data
association must be determined from the estimated state of
the targets. One approach is maximum likelihood (ML)
association, where the best fit is chosen as

ĉk � argmax
m

p(yk | ck � m, ĉ1: k−1,Xm
k , y1: k). (14)

We instead use Data Association Sampling (DAS) (Thrun et al.
(2006)), where data associations are sampled from a categorical
distribution according to their likelihoods as

pck�m∝p(yk | ck � m, ĉ1: k−1,Xm
k , y1: k). (15)

This can be approximated by summing the measurement
likelihood over all particles for a given target and nomalizing
to get

pck�m ≈ η∑N
n�1

p(yk | xm,n
k ), (16)

Where Eq. 10 is used as the summand and xm,n
k is the nth particle

for the mth target at time k. This approach can better retain
multiple data association histories that have similar likelihood
until they can be discriminated using later measurements.

The RBPF allows the UAV to properly associate
measurements to targets, even when they leave and re-enter
the camera field-of-view. However, these estimation techniques
alone are not sufficient to maintain a good estimate of where all
the targets are at any given time. The information from the filter
must be used to feed a path planning algorithm so that the UAV
can position itself to maximize target location certainty. The next
section describes our approach to tracking and following multiple
targets.

4 SINGLE UAV PREDICTIVE PATH
PLANNING

When tracking multiple targets, the UAV should not simply find
and follow one of them, but should spend time monitoring each
target. We propose a path planning algorithm to maximize the
information gain over all targets as the UAV flies above the road
network. In Subsection 4.1 we show how djikstra’s algorithm is
used to determine the overall cost of a given path based on the
length of the path and how many particles are predicted to be
encountered. We use the reward function from Subsection 4.1 to
define an exhaustive receding horizon controller in Subsection
4.2. A neural net trained with Deep-RL is discussed in Subsection
4.3 as an alternative path planner.

4.1 Dijkstra’s Algorithm
Dijkstra’s algorithm finds the shortest path between two locations
in a graph (Skiena (2008)). We apply Dijkstra’s algorithm by
building a spanning tree of the road network, from which the
UAV identifies the shortest path to any desired location. This
paper modifies Djikstra’s algorithm to find a path of a desired
length that will maximize the information gained during flight. A
naïve approach for maximizing information takes the number of
particles on an edge and divides by the length of the edge ‖G(e)‖

FIGURE 2 | Using the naïve value function in Eq. 17, the UAV exclusively
tracks a single target because of the closely packed particles of that target.
Ideally the UAV should weight the target with highest entropy more heavily.
Particles are plotted as transparent dots to indicate density. The
diamonds shows true target positions, the star shows the UAV position, and
the dashed circle delineates the UAV’s field-of-view F One target is
represented in blue while the other is green.
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Ve
k �

1
‖G(e)‖ ∑Mm�1

∑N
n�1

δ(em,n, e), (17)

Where

δ(em,n, e) � 1, if em,n � e
0, otherwise.

{ (18)

The UAV then feeds the edge values Ve
k into a receeding horizon

controller to find the path that maximizes target surveillance.
Using this method presents a severe vulnerability because

targets with low entropy have closely spaced particles. In the
event of a large disparity between the entropy of targets the UAV
will prioritize following the target with the lowest entropy to the
detriment of all other targets. This situation is illustrated in
Figure 2 where all the particles for the blue target are located
on one edge giving it a higher priority over the green target whose
particles are distributed evenly across the road network.

We avoid the above scenario by implementing target
weighting based on the entropy Hm of a target estimate.
Entropy-based weighting allows the UAV to prioritize tracking
high entropy targets without having the entropy of other targets
grow unchecked. The entropy (Shannon (1948)) of particles Xm

k
is given by

Hm
k �∑N

n�1
p(xm,n

k | y1: k)logp(xm,n
k | y1: k). (19)

To get the target weighting, first normalize the entropy via ηu,k
and then apply the sigmoid function

cmk � 1

1 + e−a(ηu,kH
m
k
−0.5), (20)

Where a is a gain defining how strongly target weights get pushed
apart by small differences in entropy. Targets with higher entropy
are given higher weights. The resulting weighted edge value is

Ve
w,k �

1
‖G(e)‖ ∑Mm�1

cmk ∑N
n�1

δ(em,n, e), (21)

Resolving the issue shown in Figure 2 that used Eq. 17. In
Figure 3, using Eq. 21, the UAV pursues the blue target as it has a
greater weight than the green target. Without entropy weighting,
the UAV would return to track the green target, allowing
knowledge of the blue target to dissipate. With entropy
weighting the UAV attempts to maintain equal certainty
across all targets.

We next extend this strategy to receding horizon control by
propagating the particles forward until the time the UAV will be
traversing each edge.

4.2 Exhaustive Receeding Horizon Control
The UAV needs to account for particle movement while path
planning in order to achieve an optimal path. The receding
horizon controller creates a tree structure where each branch
represents a potential path for the UAV. Branch weights are
determined by the weighted edge values Ve

w,k along that branch
path. Particle propagation must be taken into account since the
edge value is a function of time and the UAV does not travel
instantaneously down the path. The tree is built recursively where
a breadth first search is performed down the tree structure while
accounting for particle movement. Each point of exploration of
the breadth first search is referred to as a lookahead step.

In each lookahead step, a branch is created for each edge
leaving the current node. The edge value, Eq. 21, is added to that
branch, and the particles on that edge are removed from further
consideration along that path. All remaining particles are
propagated forward by the amount of time it takes the UAV
to traverse that edge. This process repeats for each lookahead step
until the maximum number of lookaheads are performed. The
branch with the highest value is found, and the UAV traverses the
first edge of that path before repeating the procedure to calculate
the next edge to traverse.

The computational cost of this algorithm is O(MNdL), where
M is the number of targets,N is the number of particles per target,
d is maximum number of edges leaving a node, and L is the
number of lookahead steps. This path planning technique was
shown in simulation to be effective in choosing good paths.

4.3 Deep-RL
We also implemented a path planner that uses a neural net
trained using deep reinforcement learning. The neural net offers
an on-line computational advantage over other path planners
since the execution of the neural net is O(1) after training. While
this is an ideal computational cost, the trade off comes because
the neural net must be trained which, depending on design, map
size and number of targets, can take an unacceptably long time. In

FIGURE 3 | Using edge values weighted by target entropy, the UAV
prioritizes the blue particles over the green since the entropy of blue is larger
than that of green.
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addition, tuning the training parameters can be a non-trivial
process.

In this paper the neural net is trained using a proximal policy
optimization (PPO) (Schulman et al. (2017)). PPO works by
taking the loss gradient and uses first order optimizers to
maintain a gradient descent thereby optimizing the objective
of the net. The top layer of the neural net matches the size of the
feature space with each subsequent layer taking roughly two
thirds the size until the bottom layer, which is the size of the
action space. In order to train the neural net, we translate the state
of the map, UAV positions, and particle data into a numerical
layout that is readable by the net. This is the feature space.

The feature space has five distinct sets of information. First in
the state space are the positions of the Q UAVs, Aq

x,y in x, y
coordinates where q ∈ [1, Q]. Combined with the map layout, the
neural net is able to learn which actions in the action space are
valid for each UAV’s location.

The particle distribution is the next part of the state space,
given by

Xm
1: B � Xm

1 , . . . ,Xm
B[ ]. (22)

The map is separated into B equal sized bins of 10 m. The number
of particles from target m in b � 1 is Xm

1 . In this way the path
planner knows which actions would be best to minimize the
entropy for each individual target.

To know which target’s entropy we need to minimize we then
append a list of each target’s entropy weighting cmk , i.e.

c1: Mk � c1k, . . . , c
M
k[ ], (23)

allowing the neural net to focus on targets with greater entropy.
Finally, the map layout is included as the list of nodes

N 1: C
x,y � N 1

x,N 1
y, . . . ,N C

x ,N C
y[ ]. (24)

This provides the map’s x, y coordinates when combined with
their connecting edges,

E1: f � E1, . . . , Ef[ ]. (25)

Combining these five sets of information, the feature space is
defined as the one dimensional vector,

Fnet � [A1
x,y . . .A

Q
x,y,X 1

1: B . . .XM
1: B, c

1: M
k ,N 1: C

x,y , E1: f]. (26)

Using an entropy-based reward function R � exp(cmax − ck), we
trained the net to reasonable performance levels within a short
span. The training cycles after the initial rise only yielded
incrementally better results, as seen in Figure 4. There are
many different variables that go into the speed and accuracy
with which a neural net can be trained. Future work would
involve optimizing the neural net’s parameters to prevent it from
plateauing after 80 epochs. Ideally, it would maintain its steep
learning curve until it maximizes the reward function.

Using this method the neural net is trained to work on a
specific map with a set number of targets. However, with recent
advances done in transfer learning (Banerjee and Stone (2007)) it

FIGURE 4 | This figure depicts the neural net’s reward function, or the inverted loss function over the training time. Within the first 80 epochs the neural net has
reached an average reward of 80 U on random simulations. At this point it is outperforming a random path planner but the results are not competitive. Since the learning
has hit a plateau, it takes 500 more epochs to bridge the gap to the point where it is performing at the level shown in Figure 11.
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may be possible to train a neural net capable of working in various
scenarios and road network configurations. Transfer learning
uses the knowledge gained in solving one problem when learning
how to solve another problem. Rather than training on all
possible maps simultaneously we would train the neural net
on a single map and use the principles of transfer learning to
augment the current neural net to work for multiple maps.

5 LOWER BOUND FOR AVERAGE
ENTROPY OF RBPF

In this section we develop theoretical results and a computable
algorithm to find the lower bound of the average entropy of the
Rao-Blackwellized Particle Filter (RBPF). Throughout this
section we use Q to denote the number of UAVs, δt to denote
the time step duration, and T to denote the average time it takes a
single UAV to take a round trip in the road network, i.e., the
average time it takes a UAV to return to its current location, while
traversing the network.

Our results depend on a number of assumptions that we
outline below.
Assumption 1. The velocities of the targets and the UAVs at each
time step are drawn from a Gaussian distribution with
constant mean.
Assumption 2. The round-trip path is the ideal layout for the
multi-agent path planner.
Assumption 3. Each target vehicle uses an independent stochastic
path planner.
Assumption 4. Targets are equally likely to be at any point on the
road network.

In the scenarios considered, the targets have a uniform
likelihood of starting at any location in the map. They
maintain a constant velocity and use independent stochastic
path planners which result in a uniform likelihood of the
targets being at any location on the road network.
Assumption 5. The average distance between any two graph nodes
S is equal to the average distance between any two points on the
graph multiplied by a scale factor αS.

The distance between any two points on the graph can be
found in one of two ways. If the points are on the same edge then
the distance is the Euclidean distance between the points.
Otherwise the distance is the minimum distance between the
nodes adjacent to the two points plus the distance from the points
to the adjacent nodes. Because targets are equally likely to be at
any location on the map, averaging these two scenarios results in
a distance that is closely related to the average distance between
nodes. However as the exact relationship between the average
distance between points on a graph and the average distance
between modes is dependent on individual map configuration it
must be determined on a map by map basis.

We verified Assumption 5 using Monte Carlo simulations.
With 1000 Monte Carlo runs per map over 144 maps that varied
from 100 to 3600m2 in size and found that the error between the
Dijkstra’s average and the distance between two points was less
than two percent of the given map size showing that for a wide

variety of maps the scale factor α between S and any two points on
the graph is relatively close to one.
Assumption 6. Particle filter resampling occurs at each timestep.
The particle filter receives one positive update per sighting and no
negative updates.

Negative updates affect the entropy of the filter any time the
UAV is in the proximity of particles, but the target is not yet in
sight. While we can determine what the average round-trip time
is, the round-trip path varies making it difficult to account for
how negative updates will affect the particle filter on average.
Assumption 7. Mode merging does not occur.

A mode is comprised of particles that are in close proximity
and have similar velocities. A detailed description of the evolution
of modes is provided in Subsection 5.3.

We now provide a theorem that defines the lower bound on
the average entropy. This theorem uses the degree type D of a
mode in the entropy calculation. The degree type is the D percent
of the particle filter contained in that mode. For example, when a
mode of degree D � 100% exists, every particle in the filter is in
that mode.
Theorem 1. Suppose that Q is the number of UAVs, that T is the
average time it takes a UAV to traverse a loop in the map, and that
δt is the time step duration

The lower bound for average entropy of a RBPF governed by
Assumptions 1–7 is

BL � 1
TQ
∑TQ

k�0
E[Hk] (27)

Where

TQ � T

Qδt
(28)

Is the average minimum number of timesteps to visit a target
(average minimum round-trip time T divided by the number of
UAVs Q), δt is the timestep duration, and

E[Hk] � −∑
D

∑H
h�0

Pd,kφk[bh]log Dφk[bh]( ) (29)

Is the expected entropy, where φk[b
h] is the probability of a target

existing in a discrete section bh of the map, D is the degree type, and
PD is the probability of a mode of degree type D existing.

The proof depends on five lemmas which are presented in the
subsequent subsections. Lemma 1 identifies the average
minimum round-trip time T to visit all targets on the map.
The variance growth of the RBPF is defined in Lemma 2 and the
average variance after a positive update is defined in Lemma 3.
The relationship between variance and entropy in a single mode is
in Lemma 4. And the probability PD of a mode of degree type D
existing is given in Lemma 5.

5.1 Minimum Time to All Targets
In this section we provide a formula for calculating the average
minimum-time to visit all the targets on the road network. Let
G � (N , E) be a graph representing the road network, and let Sij
be the minimum distance path between nodes ni ∈ N and
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nj ∈ N , and let len(Sij) be the length of Sij. Let D be the diameter
of the graph, and let Si denote the set of minimum paths that
contain exactly i edges, and let S � ∪ D

i�1Si be the set of all
minimum length paths between nodes. We have the
following lemma.
Lemma 1. Let M be the number of targets, and assume that
Assumptions 1, 4, and 5 hold. Then the average distance between
targets on a round-trip path is given by

Savg(M) � Spoint
M

M − 1
( ) ∑M−1

m�1

sin π
M( )

sin πm
M( ), (30)

Where Spoint is the average distance between any two points on the
graph, given byAssumption 5 as the average distance between nodes,
and the average minimum round-trip time to visit all targets is

Tave(M) � Savg(M)
Va

, (31)

Where Va is the airspeed of the UAV.
Proof.
By Assumption 4 and 5 each target is on average Spoint meters

apart when travelling along the road network. The minimal
path that visits M targets that are Spoint meters apart is given
by a regular polygon with a target located at each vertex. The
distance between vertices is equally likely to be Spoint. Since
the diagonals and the edges of a regular polygon are not
equidistant this results in a set of equally likely polygons of
varying sizes, as shown in Figure 5. The perimeters of this set
of polygons are averaged together to estimate the average
round-trip distance.

For an isosceles triangle with equal sides of length r, base of
length D and apex angle θ, we have D � 2r sin(θ/2). Therefore
perimeter length of a regular polygon withM sides and radius r is

S(r,M) � 2Mr sin
π

M
( ).

When nodes of the polygon are separated by m sides, the angle
separating the nodes is 2πm/M. When the distance between those
nodes is Spoint, then the radius is

rm � Spoint

2 sin πm
M( ),

And the perimeter of the associated polygon is

S(rm,M) � MSpoint
sin π

M( )
sin πm

M( ).
Averaging over all polygons m � 1, . . ., M − 1 gives Eq. 30. The
average time duration of a round trip across all targets is then
given by the average distance divided by the UAV’s airspeed as
shown in Eq. 31. QED.

Figure 5 illustrates the set of possible polygons when there are
five targets. Since any two targets are an average distance of S
apart, the lines between two vertices (d1, d2, d3, and d4) remain a
set distance, but the side lengths Sm for m � 1, . . ., 4 change.

We note that all quantities in this section are readily
computable. Given a road network, Dijkstra’s algorithm can be
used to find the minimum length path between every two nodes.
These can be averaged to find Snode. The number of edges and the
average length of each edge are easily computed, and therefore
Spoint can be computed. Save(M) therefore follows from knowing
the number of targets M.

5.2 Single Mode Entropy
In this subsection we provide a formula for calculating the
particle filter’s entropy when there is only one mode. The
entropy of a mode at time k can be calculated from its
variance. This is because entropy in the particle filter is based
off the particle filter density, which is directly related to the
variance when there is only one mode. Because the measurement
model uses Gaussian noise on the velocity, the modes in the
particle filter are also Gaussian. Entropy is determined from the
particle’s density, represented by the positional variance σ2p,k. The
mode’s position in the graph is irrelevant.

Until a mode encounters an intersection causing it to split into
multiple modes its behaviour and variance are the same as would
occur in a Kalman Filter. To predict σ2p at time k we need to know
how the mode’s variance grows over time and what the variance
will be after a positive measurement update. In this section, the
variance right after incorporating a positive measurement update
will be referred to as the minimum variance.

We give the calculation for the single mode entropy by first
describing the variance growth of the RBPF between updates
(Lemma 2), then computing the average variance after a positive
update (Lemma 3), and finally providing the relationship between
variance and entropy in a single mode (Lemma 4).
Lemma 2. Given Assumptions 1 and 6, the growth of the positional
variance between sightings for a single mode is

σ2
p,k � σ2

p,k0
+ σ2

vδ
2
t(k − k0), (32)

Where k0 is the time of the last sighting and δt is the timestep, and
k ≥ k0 + 1.

Proof.
The behaviour of a single mode between updates matches that

of a Kalman filter. Therefore, we use the Kalman filter’s time
propagation equation to predict a mode’s variance growth. At
time k0 the Kalman filter’s co-variance matrix is

Pk0 � σ2p,k0 0
0 σ2v

( ). (33)

FIGURE5 | In the case of five equally-spaced targets the shortest round-
trip distance is a regular polygon. These four polygons represent all possible
polygon sizes. Taking the side length Savg gives us the average distance
between targets on the minimum round-trip path shown in Eq. 30.
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Under Assumption 1, the state transition matrix for a constant-
velocity target is

F � 1 δt
0 1

( ). (34)

Propagating the covariance using Pℓ+1 � FPℓF
u for one time step

gives

Ppre−resample
k0+1 � σ2

p,k0
+ δ2t σ

2
v δtσ

2
v

δtσ
2
v σ2v

( ). (35)

However, resampling according to Assumption 6 removes the
cross-covariance between position and velocity resulting in

Pk0+1 � σ2p,k0 + δ2t σ
2
v 0

0 σ2v
( ), (36)

Implying Eq. 32 after k − k0 samples. QED.
In the next lemma we incorporate measurement updates to

calculate the average minimum variance for a mode. The average
duration between measurement updates is the average minimum
round-trip time computed in Eq. 31.

Because the particles are constrained to the road network they
are effectively constrained to 1-D space. The UAV measures the
target’s position along the road segment, making the
measurement covariance R a scalar.
Lemma 3. Given Assumptions 1, 4, and 6, the average minimum
variance σ2p0

for a single mode is

σ2p0 �
Tave(M)δtσ2v

2
( ) ��������������

1 + 4R
Tave(M)δtσ2v

√
− 1⎡⎣ ⎤⎦. (37)

Proof.
The minimum variance occurs after a positive update and is a

function of both the variance of the mode prior to the update and
the measurement covariance. The relationship between the
variance before and after an update can be expressed in the
information update equation from the information filter as
(Brown and Hwang (1997))

(P+
k )−1 � (P−

k )−1 +HuR−1H, (38)

Where H � (1, 0) is the observation model. From Eq. 32, the (1,
1)-element of Eq. 38 in steady state is given by

1
σ2p0

� 1
σ2
p0
+ Tave(M)δtσ2

v

+ 1
R
.

Rearranging, we get the quadratic form

σ4p0 + σ2p0Tave(M)δtσ2v − RTave(M)δtσ2v � 0,

Where the positive solution is

σ2p0 �
−Taveδtσ2v +

��������������������
(Taveδtσ2v)2 + 4RTaveδtσ2v

√
2

,

From which we get Eq. 37. QED.
Lemma 4. For the kth mode in the particle filter, the entropy is
lower bounded by

Hk ≥ log2
������
2πeσ2

p0

√
, (39)

Where σ2p0
is given in Eq. (37).

Proof.
By straightforward calculus, the entropy of a Gaussian

distribution f(x) � 1/
����
2πσ2

√
exp(−(x−μ)2

2σ2 ) is computed as

H(f(x)) � −∫∞

x�−∞
f(x)log2f(x) dx � log2

�����
2πeσ2

√
,

Where the entropy is taken over an infinite interval. For a finite
road network, the tails of the distribution are folded back into
the network thereby increasing the uncertainty over the
network implying that entropy increases. Therefore, Eq. 39
is the lower bound on the entropy for each mode, which is
given by a Gaussian distribution with variance in Eq.
37. QED.

From a practical standpoint, the entropy of the particle filter is
computed as

Hk ≈ ∑H
h�0

φk[bh]logφk[bh], (40)

Where the map is discretized into H bins of 1m length
b0: H � [0, 1, 2, . . . , Lmap],, where Lmap is the length of the map,
and φk[b

h] is the probability of a target existing in section
bh of the map.

5.3 Estimated Number of Modes
To estimate a mode’s probability of existence PD for each degree
type D over time, the map is analyzed to understand how long a
single mode will traverse each map’s edge and how many

FIGURE 6 | Map Groupings.
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modes it will split into once it leaves the edge. Each edge may
be considered separately to understand the modes behavior.
However, we will exploit the similarities found in many maps
by grouping edges (or contiguous edges that don’t split into
multiple road segments) if they have the same length and
relate to the rest of the map in an identical fashion. These
groups are termed subdivisions. In the case of the 3 × 3 map,
shown in Figure 3 the map is composed of sixteen directed
edges. The edges can be grouped into three subdivisions as
shown in Figure 6 by the blue, red, and purple colored
arrows. A map’s subdivisions are then converted into the
tree structure shown in Figure 7. The first set of branches
show the probability that a target will be initialized in each
subdivision while the second set of branches show which
subdivisions are accessible from the current subdivision, how
many modes will be spawned upon leaving the subdivision,
and the percent of the current mode that will exist in each
subsequent mode. In the case of a stochastic path planner, the
parent mode will divide into equal portions when splitting
into children modes.

When a mode is initialized it has a degree type D � 100%.
The way it splits into children modes is dependent on the
subdivision it was initialized in. Each subsequent mode’s PD
is dependent on the PD of its immediate parent and the time
it takes for the parent to traverse its subdivision.
Though complex, mode probabilities deterministically
depend on the properties of the subdivision in which it
was initialized.
Lemma 5. Under Assumptions 1, 3, and 7, the probability PD of
each mode of degree type D existing at time k is given by Algorithm
2 listed below.

Algorithm 1 GetModeSplitLevel(sd, Pinit, Tr, D, Ts, Map, k)

Input: the current subdivision sd, Probability of first parent
Pinit ∈ R, the time it takes to traverse the first parent’s subdivision
Tr, the current mode degreeD, the time the current mode came
into existence Ts, the Map in tree format (shown by Figure 7),
and the current time k.
Output: The mode probability for each of the children of the
current mode
PD and the list of child modes organized by degree D added to
the unprocessed modes list U.
1: U ←{}
2: for option ∈ options do
3: Dnext ← D/len(Map[option].neighbors)
4: To ← Map[sd].offsets[option]
5: Td ← Map[option].offsets
6: PD[Dnext] ← PinitDW(k, Tr, Ts + To, Td)
7: unprocessed[Dnext] append
[Pinit, Tr, Ts + To,option
8: end for
9: return PD, U

Algorithm 2 GetModeProbabilities(Dc, Uc, k, Map, TQ)

Input: the list of initial mode degrees Dc, the list of
initial modes
Uc, the current time k, the map in tree format shown in
Figure 7, the maximum number of timesteps TQ.
Output: the probability for each mode degree type PD.
1: for D ∈ Dc do
2: for line ∈ Uc do
3: sd ← line.sd
4: Pinit ← line.prob
5: Tr ← line.range
6: Ts ← line.start
7: ifTs < TQ then
8: ModeProb,Uc ← GetModeSplitLevel(sd,
Pinit, Tr, D, Ts,
Map, k)
9: end if
10: end for
11: end for
12: if Uc ≠ ∅ then
13: Dn ← Uc.keys
14: ModeProb ←
GetModeProbabilities(Dn, Uc, k,Map,TQ)
15: endif
16: return ModeProb

Proof.
When a mode is initialized in a given subdivision at time k0

it has a uniform likelihood of being anywhere in that
subdivision. As a result the earliest that mode can leave
the subdivision is at k0 + 1 (assuming it was initialized at
the end of the subdivision) and the latest is at k0 + Tr, where
Tr is the time it takes a target to traverse the subdivision
(assuming it was initialized at the beginning of the

FIGURE 7 | Branching probabilities. Mode Splitting Analysis for a 3 × 3
map. A 3 × 3map is a grid comprising of nine nodes in a 3 × 3 layout with each
edge equidistant.
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subdivision). After initialization, the progress of a mode is
deterministic. Therefore the linear probability of a mode
encountering its next intersection at time k is

w(k, Ts, Tr) �
0 k<Ts

k − Ts

Tr
Ts ≤ k<Ts + Tr

1 otherwise

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ , (41)

Where Ts is the timestep that themode came into existence and Tr
is the time it takes to traverse the initial subdivision of the mode’s
first parent.

Given Eq. 41 and Assumption 3 we can extrapolate the
probability of existence for the children of a specific mode

W k,Tr, Ts, Td1 , . . . , TdF[ ]( ) � w(k, Ts, Tr) −∑F
f�0

1
F
w(k, Ts + Tdf, Tr) (42)

Where Ts is the time the child modes come into existence and
[Td1, . . . , TdF] are the times it takes each of the F child modes
to traverse their respective subdivisions. The child modes’
probabilities are divided by F since, with Assumption 3,
particles will traverse each edge with equal probability.
Using these parameters, Eq. 42 first predicts the
probability of the child modes coming into existence with
w(k, Ts, Tr). Then it iterates over the F child modes to sum
their probabilities of ceasing to exist. Combining these two
halves of Eq. 42 gives the overall probability of existence at
any time k for the child modes.

Algorithm 1 takes a single mode and calculates the probability
of existence for each of its children Pchild using Eq. 42. The PD for
the mode degree typeD of the children is incremented in line 6 by
combining Pchild with the probability of the first parent Pinit and
normalizing by the mode’s degree. The algorithm then returns the
PD for the modes processed as well as a list of the child modes
appended to the unprocessed modes list.

Algorithm 2 recursively calculates the probability PD that each
mode degree typeD exists across a given duration. It calculates all
unprocessed modes and inputs the ones that are born before time
TQ into Algorithm 1. The unprocessed modes returned from
Algorithm 1 are appended to the unprocessed mode list. This
recursion repeats until there are no remaining unprocessed
modes within the desired time window. Algorithm 2 ensures
each possible mode is passed into Algorithm 1 and Algorithm 1
calculates the mode’s PD. Therefore, Algorithm 2 provides the
probability of PD for each mode degree type D over a set duration
TQ. QED.

We verified Lemma 5 by comparing it with results from 10,000
Monte Carlo runs on the map in Figure 6. For each Monte Carlo
run a mode of degree tye D � 100% was initialized on a random
location on the map and then allowed to traverse the map,
propagating and splitting for a set time period TQ � 20/δt. The
expected number of modes of degree type D obtained by
averaging the mode count from the Monte Carlo runs was
converted into the probability

PD � E[D]
D

. (43)

The resulting PD matched the results of Algorithm 2. Plotting PD
for all possible degree types yields Figure 8. On large maps with
many intersections there is a possibility that between target
sightings the modes in the particle filter will merge as well as
split over time. Mode merging is a complex subject as it can result
in non-Gaussian structures depending on how the modes line up
with each other as they merge. Mode merging is not analyzed in
this paper but will be considered in future work.

5.4 Theorem for Lower Bound of Average
Entropy
We are now prepared to prove Theorem 1.

Proof of Theorem 1. Lemma 1 gives the round-trip time to
visit each target. Under Assumption 2 the ideal multi-agent path
planner will evenly space the UAVs around the roundtrip path.
The time between target sightings is obtained by taking the
round-trip time given by Eq. 31 and dividing by the number
of active UAVs resulting in Eq. 28.

The entropy of a single mode system is provided by Eq. 40,
from Lemma 4, where φk(b

h) assumes D � 100% to properly
account for the all the particles belonging to that one mode. The
mode degree then determines the percentage of φk(B

h) that is
used to calculate the entropy converting Eq. 40 into

ud,k �∑H
h�0

−dφk[bh]log(dφk[bh]) (44)

For a single mode of degree d.
The expected number of modes of degree type D is

E[D] � PD
1
D
. (45)

Which is the probability that that modes of type D exists divided
by the mode degree. For example, if there is a 100% probability
that modes of type D � 50% exist, then there will be two modes
that each contain half of the particles and E[50%] � 2.

The Expected entropy of a mode degree type D is the expected
number of modes of that degree, multiplied with the entropy of
modes of that degree. Since variance growth is identical across all
modes every mode of a given degree will have identical entropy.
To calculate the expected entropy of the system we sum over the
expected entropy for each mode degree type giving

E[uk] � ∑
d∈D

Pd,k
1
d
∑H
h�0

−dφk[bh]log(dφk[bh]) (46)

Which simplifies into Eq. 29. Lemma 5 provides the probability
PD of each mode type existing. The lower bound for the average
entropy is then the average of Eq. 29 for k � [0, TQ], given by Eq.
27. QED.

This theorem represents the best case scenario using a perfect
multi-agent path planner. In cases with sub-optimal path
planners it is possible that more UAVs would be required to
maintain the desired lower bound of average entropy.

While entropy is a useful metric it is not intuitive. To make
Theorem 1 more intuitive we provide Corollary 1 as a means of
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transforming the lower bound of average entropy into the upper
bound for the average variance in location certainty per target
estimate. The variance in location certainty is the positional
variance σ2p in a single mode. For example if there are five
modes each with a positional variance of 3 m then we know
that the target is in one of five locations with a 3 m variance in
each of the five estimates. This corollary makes the additional
assumption that the number of modes in the particle filter when
at the lower bound of average entropy is known. The positional
variance σ2p, number, and degree of modes are used when
calculating entropy. Because of this, if the exact number and
type of modes is unknown there is a many-to-many relationship
between the entropy and the positional variance in the modes of
the system. However, if the number of modes are known then
there is a one-to-one relationship between entropy and the
positional variance in each mode of the RBPF under
Assumptions 1, 6, and 7\enleadertwodots
Corollary 1.Given assumptions 1, 6, and 7. If the number of modes
of each degree is D, then the upper bound on the average variance
in target location certainty per estimate can be calculated by
solving for σ2p in

BL � ∑
d∈D

∑J
j�0

−1�����
2πσ2

p

√ exp
μ − bj

2σ2p
⎛⎝ ⎞⎠log D exp μ−bj

2σ2p
( )�����

2πσ2
p

√⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠. (47)

FIGURE 8 | Probability of mode existence PD for map 6 over time t � [0, 20] s. The probability of a mode that containsD percent of the particle filter is represented by
the different lines plotted. As time progresses the probabilities of larger modes decrease as they evolve into smaller modes with increasing likelihood.

FIGURE 9 | Simulation tracking two targets on a 3 × 3 city block map.
Here the UAV is drawn toward the blue target because its estimate has higher
entropy as seen by the two particle modes (blue dots).
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Proof.
If the number of modes of each degree type is known then PD � 1

for each degree type in Eq. 29. The upper bound for the location
certainty per target estimate is the positional variance of the RBPF
when the entropy is equal toBL. To get the variance corresponding to
BL, we must numerically solve Eq. 47 for σ2p. QED.

As an example, consider the map shown in Figure 2 with ten
targets. It is possible to determine the lower bound for entropy
based on the number of UAVs deployed. With just one UAV the
lower bound for entropy calculated in Eq. 27 is BL � 2.89. If there
is only onemode present of degree typeD � 1 then we can find the
upper bound on the target location certainty by solving Eq. 47
where D � 1. This shows that the upper bound on the target
location certainty is 19 m. If this mission requires an upper bound
of 16 m, we know that one UAV is insufficient. Setting σ2p � 16 in
Eq. 47 and solving for BL we get the required lower bound on
entropy to meet mission requirements. To get the number of
UAVs required for the mission we solve for Q in Eq. 27. By
rounding up to the nearest integer we find that a minimum of
three UAVs are required to maintain the required average
location certainty in target estimates.

6 SIMULATION RESULTS

In this section, simulation results are provided using the 3 × 3
road network in Figure 9 with two targets (blue and green
diamonds), each travelling at a nominal 10 m per second. The
UAV (red star) flies at 40 m per second (the speed of a small to
medium-sized fixed-wing UAV) and has a fixed, downward
looking sensor whose field-of-view is depicted by the magenta
dashed circle. In the figure, particles are depticted with the
transparent blue or green dots. In the top level of the filter,

ten particles estimate data association histories. Each top level
particle has one tracking PF per target (totalling 20 tracking
filters) and each tracking PF has 500 particles. The target
weighting sigmoid in Eq. 20 uses gain a � 10 and the
measurement sensor noise is R � 5.

Figure 10 shows how the combined entropy of the filter
evolves as the UAV tries to find and follow both targets. In
region A, the UAV has not found either target. The plot shows
some decline in entropy as negative updates are applied and areas
are ruled out. Region B shows the time after the first target has
been found and priority switches to finding the second target. In
Region C, the UAV tries to balance time between following each
target to minimize total entropy. Rapid increases in entropy result
when targets reach an intersection and hypotheses split. Steep
declines in entropy result from positive measurements of the
target and negative measurements ruling out hypotheses.

The simulation was run 1000 times using four different
controllers and the entropy averaged over all the runs. The
controllers compared were the Exhaustive RHC from Section
4.2, deep-RL planner from Section 4.3, an ideal planner with
perfect knowledge of the target locations, and a stochastic planner
that randomly decides paths whenever it encounters
intersections.

Figure 11 shows that the different path planners have varying
degrees of success. The exhaustive RHC approaches the ideal

FIGURE 10 | Entropy while simulating the tracking of two targets on a 3
× 3 city block map. In region A, the UAV is searching for targets. In region B,
the UAV has located the first target and is looking for the second. In region C,
the UAV is trying to minimize entropy across both targets.

FIGURE 11 | The ideal scenario and the lower bound are included
for comparison. In the ideal scenario the UAV is always aware of the
actual positions of the targets and flies directly between the two. The
Lower Bound describes the average lower bound for entropy. We
can see that the neural net path planner dropped in entropy faster than
the exhaustive path planner. This is because the neural net learned
efficient search patterns for uniformly distributed particles while the
exhaustive path planner only made efficient decisions after it knew the
general locations of the targets.
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case, the deep-RL planner coming in a close second, and the
random path planner falls far behind. Considering that the
ideal case is the best possible value, the deep-RL result
approximately halves the entropy in the particle filter in
comparison with the random path planner. While when
using the exhaustive RHC path planner, the entropy is cut
to almost 1/3.

The lower bound line is a result of the lower bound entropy
algorithm described in Section 4 that tells us how well the UAVs
would perform under ideal conditions. In ideal conditions
whenever a UAV has to guess as to which location is most
likely to have the target the UAV makes the right choice. As a
result we can see the ideal case quickly converges onto the lower
bound of entropy. All other path planners will minimize the
entropy of the system as best they can, but lacking perfect
knowledge they will come short.

The Exhaustive RHC yields the next best results over time as
can be expected when doing an exhaustive path analysis.
Where this planner falls short is during the initial search
for the targets. When particles are distributed uniformly
over the map the exhaustive path planner is forced to make
random decisions. In comparison, the neural net initially
does better by learning an efficient search pattern. In both
of these cases the UAV has limited information about the
target location and so cannot do as well as the ideal
planner.

The other main limitation of both these path planners is
their inability to scale well. The exhaustive planner’s runtime
execution is O(MNdL) meaning that with a large enough
complex map the exhaustive planner will fail to execute in

real time. Conversely, regardless of map size the neural net is
always O(1). However, the neural net training time scales
poorly with increasing map sizes. One of the ways the
exhaustive planner could be modified to handle large maps
would be to take advantage of simulated annealing (Miao and
Tian (2013)) to reduce the search space required by a
large map.

FIGURE 13 | A photo of our hardware in action. The quadcopter is
hovering above the second target while it is still unaware of the location of the
first target. The targets are small red RC cars running dubins path between the
six markers on the ground.

FIGURE 12 | Snapshot at at 185 s of the target and UAV states during a hardware test. The red asterisk represents the quadcopter. The green and blue diamonds
are the current locations of each of the two vehicles. As can be seen, the green particle cloud is closely aligned with the actual position of its target. And while there are
multiple modes for the blue target representing different estimates, the blue target is closely aligned with one of its modes. The black star and circle represents the
estimate and error margin of a target sighting, which when funneled through our data association algorithm, performs a positive update on the green target.
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Many other path planners, such as jump point search
(Harabor and Grastien (2014)) or Rollout Policy (Tian et al.
(2008)), provide alternative efficient ways to plan through large
environments, each with their own advantages and
disadvantages. It is also possible that modifications to the
neural net could reduce the training time to an acceptable
level for larger maps. As a proof of concept however, this
shows that the Deep-RL planner is a competitive alternative.

7 HARDWARE RESULTS

We used hardware to verify the efficacy of both the RBPF and the
lower entropy bound algorithm. Flight tests were performed in a
motion capture room using the road map shown in Figure 12.
We used a quad-copter equipped with an ocam camera as the
UAV. The onboard computer was a TX2 which handled the
vision processing and the autopilot. The quadcopter used a PID
controller with waypoint following and near constant velocity
was managed by saturating the error in the PID loop at 0.3 m. A
photo of the hardware in flight is included in Figure 13.

Target detection was handled by inputing the camera data into
Visual MTT (Ingersoll (2015)) with RRANSAC (Niedfeldt and
Beard (2014)). Visual MTT used the color detector to identified
the target and R-RANSAC outputed the track information in
camera frame coordinates. Assuming a flat earth model we
transformed the camera frame coordinates into the inertial
frame. The camera feed had a latency of approximately 0.4 s
which needed to be accounted for when doing the transformation
into the inertial frame. By accounting for this latency issue we
were able to maintain an error less than half a meter on average
for our estimate.

The targets are two small RC cars executing Dubins paths
(Beard and McLain (2012)) on a road network with PID control.
Even with the large turn radius of the cars and their inability to
strictly adhere to the road network as well as a large variance in
their speed control, the RBPF accurately estimates the car
movement using the parameters in Table 1. The cars, which

TABLE 1 | Parameters used by the Path Planner and the RBPF to maximize target
certainty given our hardware costraints.

Path planner

δt 2
discount 0.8
Lookahead Max 3
Waypoint Threshold 0.15
RBPF

Target Velocity 0.24
Target σv 0.2
Max Targets 2
R 0.3
PFA 0.1
Pnull 0.25
δt 0.15
Top Level Particles 10
N 1000

FIGURE 14 | The entropy for the two targets as well as the steady state entropy for the hardware test is shown. In region A, the UAV is searching for targets. In
region B, the UAV has located the first target and is looking for the second. In region C, the UAV is trying to minimize entropy across both targets. The steady state
entropy of around 3.206 which is just slightly higher than the lower bound of 3.119 U of entropy. This is expected as on a small map the ERHC planner will work
comparatively to the ideal planner.
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move with near constant velocity, chose random paths when
encountering intersections and used Dubins paths to minimize
their deviations from the road network. The vehicles travelled at
an average speed of 0.24 m/s and the quadcopter maintained an
average speed of approximately 1.25 m/s using the Exhaustive
RHC from Subsection 4.2 with the parameters in Table 1. As
seen by Figure 14 the average entropy was 3.39. On this map the
target certainty was on average, within a variance of 1 m.

8 CONCLUSION

By employing a Rao-Blackwellized Particle Filter, we have
shown that data association can be performed effectively,
even when the target leaves and re-enters the sensor’s field-
of-view. We then proved a theorem for calculating the upper-
bound for average target location certainty based on the
number of UAVs available.

Further, we have shown that a neural net trained using deep
reinforcement learning is capable of learning efficient map
sweeping strategies when target locations are unknown, after
the target locations are known it reliably tracks the targets. After
the initial search, an exhaustive RHC is more efficient at tracking
targets than the neural net. However, it requires significantly
more computations. Both the exhaustive receding horizon
controller and deep-RL controllers significantly improve
tracking performance and target location certainty compared
with a random search pattern.

Future work includes employing a higher fidelity motion
model for the targets, such as that of (Cheng and Singh
(2007)). The RBPF filter could also be augmented to handle
an unknown number of targets similar to the technique used in
(Thrun et al. (2006)) for estimating the number of landmarks in

SLAM. In addition, our deep-RL path planner could be enhanced
by taking advantage of advances in transfer learning that would
allow the neural net to work on multiple maps with a minimal
increase in training time (Banerjee and Stone (2007)). Finally, the
lower bound entropy algorithm could also be augmented to
account for mode merging when looking at long periods
between target sightings. This would allow the algorithm to
handle increasingly complex road networks.
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