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Abstract
The COVID-19 pandemic has kept the world in suspense for the past year. In most federal countries such as Germany, locally 
varying conditions demand for state- or county-level decisions to adapt to the disease dynamics. However, this requires a 
deep understanding of the mesoscale outbreak dynamics between microscale agent models and macroscale global models. 
Here, we use a reparameterized SIQRD network model that accounts for local political decisions to predict the spatiotemporal 
evolution of the pandemic in Germany at county resolution. Our optimized model reproduces state-wise cumulative infec-
tions and deaths as reported by the Robert Koch Institute and predicts the development for individual counties at convincing 
accuracy during both waves in spring and fall of 2020. We demonstrate the dominating effect of local infection seeds and 
identify effective measures to attenuate the rapid spread. Our model has great potential to support decision makers on a state 
and community politics level to individually strategize their best way forward during the months to come.
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1  Introduction

The year 2020 was dominated by the historic, global out-
break of the coronavirus disease, COVID-19 (SARS-
CoV-2). With the first official cases being reported in 
December 2019 in Wuhan, China (Lu et al. 2020); cases 
have quickly spread over the entire world, culminating in 
the World Health Organization (WHO, 2020) declaring it a 
global pandemic on March 11, 2020.

Since then, each individual country had to find their own 
way to get the rapid spreading under control, to ‘flatten the 
curve,’ and to avoid a breakdown of the healthcare system. 

Different strategies of shutdown as well as travel and contact 
restrictions have been implemented in different countries 
and states, with more or less evidence for their success (Chi-
nazzi et al. 2020; Maier and Brockmann 2020; Fang et al. 
(2020). While most countries managed to get the first wave 
of rising infections in spring under control, loosened restric-
tions in many European countries over the summer were 
followed by another steep increase and the widely feared 
(Xu and Li 2020), yet well predicted (Cacciapaglia et al. 
2020) second wave in fall and winter. Other countries, such 
as the USA or Brazil, seemed to have moved from the first 
to the second wave more directly. This could be explained 
by the mere size of these countries, where a first wave may 
still propagate through more distant areas, while the sec-
ond wave would already emerge (Cacciapaglia et al. 2020; 
Reiner et al. 2021).

Especially during the earlier phase of the pandemic, 
Germany had been given special attention. Firstly, its 
reported death counts were significantly lower than in 
neighboring countries such as Italy, Spain, or France 
(Johns Hopkins University 2020). This gave rise to the 
question whether Germany could serve as an important 
example for successful strategies to mitigate the impact 
now and during future pandemics. Secondly, its federal 
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structure has led to different responses across its states 
to reduce human contact and prevent further spreading. 
While locally tailored reactions may benefit the people’s 
acceptance in the short run, widespread confusion over 
ever-changing rules and weary discussions to present a 
more united front against the virus may simultaneously 
undermine the effectiveness of the countermeasures, as 
seen specifically during the second wave. Thirdly, the Rob-
ert Koch Institute (RKI) provides locally resolved data on 
current cases in each county, enabling us to fit and test 
distributive models (Robert Koch Institute 2020a) that can 
predict the temporal and spatial outbreak dynamics.

Besides the medicinal effort to understand the disease, 
numerous mathematical studies have focused on modeling 
the outbreak dynamics of COVID-19, predict its future 
course, and provide scientific reasoning for political deci-
sions. Typically, those epidemiology models follow the basic 
idea of compartmentalizing the entire population into differ-
ent subgroups and modeling their coupled evolution with a 
set of ordinary differential equations (ODEs). Despite their 
inferiority in modeling the disease process based directly 
on data, which is possible with more complex memory-type 
models (Keimer and Pflug 2020; Kergaßner et al. 2020), 
their simplicity has paved their success. The most basic of 
such models is the SIR model, with groups of susceptible, 
infectious, and recovered or removed people, dating back to 
the 1920s (Kermack and McKendrick 1927). Overall, the 
course of a COVID-19 infection within such compartment 
models is quite well established by now. A susceptible is 
first exposed to the virus to become infected, before becom-
ing infectious himself after some latency period. From here 
on, the infection may take various courses (An der Heiden 
and Buchholz 2020), ranging from no or mild symptoms for 
arguably the largest group of patients, to strong symptoms 
and patients who require hospitalization or even intensive 
care, before they recover or die from the disease. Sever-
ity mostly seems to depend on existing pre-conditions and 
general health, but also other reasons that have not yet 
been fully understood (Zhou et al. 2020; Yuan et al. 2020). 
The well-known SIR model has been extensively analyzed 
(Hethcote 2000) and extended to finer compartments (see 
Pastor-Satorras et al. 2015) for an earlier overview) that 
mimic the described course. Examples include the SEIR 
model with an exposed group, the SEIRD model to separate 
truly recovered and dead, an S(E)IQR model (Pedersen and 
Meneghini 2020; Hethcote et al. 2002; Jumpen et al. 2009) 
that puts known infections into a quarantined group that does 
not infect others, or the MSEIR model (Hethcote 2000) to 
include children with mother immunity, thus covering non-
constant population sizes. Overall, these models have been 
abundantly applied to locally analyze COVID-19 outbreak 
dynamics in various countries, largely focusing on China 
(Kucharski et al. 2020; Maier and Brockmann 2020), Italy 

(Pedersen and Meneghini 2020), and the USA (Peirlinck 
et al. 2020).

However, models to predict the temporal and spatial 
spreading of the virus have so far been rather limited, while 
agent-based models (Eubank et al. 2004) successfully cover 
the high-resolution end at the level of individual people 
and their movement, especially the intermediate to high 
resolution on a state or county level is understudied terri-
tory—even though this is exactly where many of the political 
decisions are being made. Recent works analyze statistical 
relationships between neighboring provinces in China (Kang 
et al. 2020) or city districts in New York City (Cordes and 
Castro 2020). A variant of the SIRS model has previously 
been coupled to a reaction–diffusion model (Yamazaki 
and Wang 2017) to mathematically study cholera dynam-
ics with partial differential equations (PDE). Colizza et al. 
have focused on the importance of the air travel network as 
a basis for global diffusion at a pandemic outbreak (Colizza 
et al. 2006). Following this strategy, Ellen Kuhl’s group at 
Stanford have coupled an air travel network to the SEIR 
model to understand spatial spreading in China, the USA 
(Peirlinck et al. 2020), and across Europe (Linka et al. 2020). 
Air travel is likely a major player at the very beginning of 
a global outbreak, in area-wise very large countries, such 
as the USA, and when lifting travel bans again (Linka et al. 
2020). However, other factors may be more important in 
understanding the spatial distribution, for example across 
Europe, and within individual countries such as Germany. 
Zheng et al. similarly find higher correlations between case 
numbers and daily bus and train route frequencies, compared 
to air travel in China (Zheng et al. 2020). Especially with air 
travel being tightly controlled, operating at much lower vol-
ume, and dominating infection seeds present in all countries, 
we are in need of short- to mid-range network models on the 
county and province level (Prasse et al. 2020). At this level, 
models may be further informed by other, more societal 
factors such as income or occupation (Mollalo et al. 2020) 
While the global epidemic and mobility (GLEAM) model 
(Balcan et al. 2009) also includes air travel as the major 
source of wide-range disease spreading, it simultaneously 
models more localized commuting patterns that correspond 
well to traffic data in Germany, among other countries. The 
model is capable of explaining a large part of COVID-19 
spreading in mainland China (Chinazzi et al. 2020).

As suggested by multiple previous studies (Ma et al. 
2020; Bai et al. 2020), mildly or asymptomatic carriers 
account for the major share of new infections, and the large 
number of hidden infections facilitated global spreading (Li 
et al. 2020). Thus, here we model the spatiotemporal out-
break dynamics of COVID-19 in Germany with an SIQRD 
model that specifically distinguishes between the group of 
hidden infectious I and a Q group that holds people with 
known, quarantined infections that, consequently, do not 
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infect others anymore (Kergaßner et al. 2020). Since Ger-
many was several weeks behind China and Italy during the 
first phase of the pandemic with several global travel restric-
tions already in place, we couple the SIQRD model to the 
GLEAM mobility network to model short-range and intra-
country interactions essential to locally resolve the evolution 
of the COVID-19 pandemic. We fit our model to both the 
first and second wave in Germany and compare differences 
and similarities in disease dynamics and political reactions, 
thereby demonstrating its robust predictive capabilities.

2 � Methods

We model the spatiotemporal outbreak dynamics of COVID-
19 in Germany with an SIQRD model, coupled to a net-
work model that allows for spatially distributed cross-county 
infections. We start out with the description of our basic 
compartment model that mainly governs the spread of the 
disease over time, and then continue with its spatial inter-
actions and resolution. All simulations were implemented 
and performed in Octave 5.2.0 using packages optim 1.6.0, 
statistics 1.4.1, io 2.4.13, parallel 4.0.0, and splines 1.3.3.

2.1 � Basic SIQRD model

In contrast to many existing studies that use a standard 
SEIR(D) model including a latency period between being 
infected and becoming infectious (Peirlinck et al. 2020; 
Linka et  al. 2020), we focus on the difference between 
asymptomatic or mildly symptomatic, unknown cases that 
account for the major share of new infections (Ma et al. 
2020; Bai et al. 2020), and people with noticeable symp-
toms. We integrate this knowledge and use an SIQRD model 
(Hethcote 2000; Jumpen et al. 2009) that specifically dis-
tinguishes between the infectious group I, representing a 
measure for the estimated total number of infections, and 
a group Q representing known and therefore quarantined 
infections, who do not infect others anymore (Pedersen and 
Meneghini 2020). In our case, the transition rate � from I to 
Q describes how long it takes for an infected person to be 
tested/detected and put in quarantine. The remaining three 
groups are considered as usual, where S represents the ini-
tial state of being susceptible, R represents truly recovered, 
and D dead. Some fraction of I can directly recover at rate 
�1 without ever being tested, overall representing the hidden 
infections that are never detected, while the remainder tran-
sitions to Q at rate � . The rate �2 describes the rate to recover 
from a tested infection, while � represents the rate to die 
from a confirmed infection (see schematic in Fig. 1). Thus, 
our model is based on the assumption that all those dying 
of COVID-19 are also identified through testing. Overall, 
normalized by population, we obtain the set of equations

Since we are neglecting disease-unrelated births and deaths, 
the total number of people N is constant, in Germany N ≈ 8e7 , 
such that N ⋅ [s + i + q + r + d] = S + I + Q + R + D = N.

For easier interpretation of the model parameters, we 
introduce the dark ratio � and the true mortality �(Ker-
gaßner et al. 2020) as

Thus, we can replace the previous parameters � and � by

If we consider the stationary point ̂{∙} when the pandemic 
has passed, we can directly relate the number of confirmed 
or tested infections to the estimated overall number of 

(1)ṡ = −𝛽si

(2)i̇ = +𝛽si − 𝛼i − 𝛾
1
i

(3)q̇ = +𝛼i − 𝛾
2
q − 𝛿q

(4)ṙ = +𝛾
1
i + 𝛾

2
q

(5)ḋ = +𝛿q.

(6)� = 1 +
�1

�
,

(7)� =
�

�2 + �

�

� + �1
.

(8)� =
�1

� − 1
,

(9)� = �2
��

1 − ��
.

Fig. 1   The basic and spatial SIQRD model. a Schematic of the basic 
SIQRD dynamics. b Major connectors (lines) between counties of the 
network mobility model to predict cross-county infections in the spa-
tial SIQRD model. County color varies from yellow to dark purple 
with population density
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infections by Î = 𝜔Q̂ , while � represents the fraction of all 
infected people that died. The true mortality � is also often 
referred to as infection fatality rate (IFR). Further, the mor-
tality can also be represented by the ratio of deaths over 
cumulative total infections, 𝜇 = D̂∕Î . Since 𝜔 = Î∕Q̂ , we 
identify the stationary relationship

In other words, the measurable ratio D/Q, usually referred to 
as the case fatality rate (CFR), will eventually approach the 
number �� , demonstrating the inherent dependence of the 
two parameters, making it impossible to identify them sepa-
rately from one another. During the course of the pandemic, 
however, CFR will not be constant (Dudel et al. 2020).

2.1.1 � Modeling political measures and contact restrictions

Following our previous findings (Kergaßner et al. 2020), we 
introduce federal state-wise initial infection rates �j0 with 
j ∈ {1,… , 16} , and up to m reduction factors �red

m
 represent-

ing imposed major restrictions. The reduction factors are 
assumed constant for all of Germany, but we respect their 
(potentially state-dependent) starting dates Tji , which yields 
a piece-wise constant function for each state 𝛽ji(t) , such that 
the effective contact rate results in

Note that we consider the spring and fall infection waves 
separately, starting over with a new timeline and initial 
infection rate �j0 . In our fitting and prediction periods, we 
do not consider the time when restrictions are removed, but 
those can easily be included by resetting the corresponding 
reduction factor back to 1.0. For the first wave, we follow 
the implemented policies and consider two reduction factors 
�red
1

 and �red
2

 that represent the major restrictions of i = 1 
cancelling large events and i = 2 general contact restrictions, 
together with school closings. Those two major restrictions 
were enacted simultaneously in all of Germany on March 
8 and March 22, 2020, respectively. For the second wave 
in the fall, we consider only one reduction factor when the 
partial lockdown was enacted on November 2, 2020, in all 
of Germany.

2.1.2 � Reproduction number

The model allows for straight-forward estimates on the 
initial and effective reproduction numbers R0 and Reff , 
respectively, which are well known in public and the gen-
eral media as the number of infections originating from one 

(10)
D̂

Q̂
= 𝜇𝜔.

(11)𝛽j(t) = 𝛽j0

m∏

i=1

𝛽ji(t), where 𝛽ji(t) =

{
1, if t < Tji,

𝛽red
i

otherwise.

infected person. Since this number is represented by the ratio 
between the influx and outflux of the hidden infectious group 
I in our model, we obtain the time-dependent upper-bound 
expression

for 𝜔 > 1 . In relative numbers, s = 1 during early stages of 
the pandemic. Note that model parameters such as � and 
� may also vary over time, and a continuous or even rand-
omized representation of the evolution of R0(t) (Linka et al. 
2020) may potentially better explain the imperfect data. For 
better readability, we drop the time dependence of � and R0 
in the following.

2.2 � Spatially resolved SIQRD model

In order to study the spatial dynamics of the spreading dis-
ease, we consider a network model on the resolution level 
of individual counties that allows for cross-county infec-
tions. We slightly adapt the GLEAM short- and mid-range 
mobility network (Balcan et al. 2009, 2010) and represent 
time-dependent cross-county infections via

where �k are time-dependent infection rates and ck are the 
cross-county infection weights. We consider Nk as the num-
ber of inhabitants in the largest city of county k, Nmax = 3e6 
corresponds to the number of inhabitants in Germany’s larg-
est city Berlin, and rkl is the distance between counties k and 
l. The exponential cross-county infection term is adopted 
from the Global Epidemic And Mobility (GLEAM) model, 
where the expression represents commuter flows between 
communities k, l. It can be tuned by three parameters � , � , 
and r that were fit to large amounts of commuting data to 
globally emulate their patterns, as described in Balcan et al. 
(2009) (Suppl. Table S1).

We note that �k and ck are identical for all counties 
within one federal state, thus introducing 16 additional 
model parameters cj with j ∈ {1,… , 16} which need to be 
calibrated based on reported data. Major connectors in this 
network over Germany are displayed in Fig. 1b (Kergaßner 
et al. 2020).

We introduce ∙ to denote the transformation of a vector 
∙ into a quadratic diagonal matrix, where the entries along 
the diagonal equal those of the vector. Then, for all counties 
k = 1,… , nc joined in vector notation we obtain the set of 
normalized and reparameterized coupled SIQRD network 
differential equations

(12)Reff(t) =
�(t)s(t)[� − 1]

��1
≤ �(t)

�1

[
1 −

1

�

]
= R0(t),

(13)Bkl=

�
�k if k=l,

ck
√
�k�l

N�
k
N�
l

N�+�
max

exp
�
−

rkl

r

�
else,
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2.3 � Initial conditions and parameter fitting

We use data from the Robert Koch Institute (RKI) that is 
available for each county in Germany over time (Robert 
Koch Institute 2020a). Since RKI infection data have lim-
ited information content, we had to fix several parameters 
from other data describing the course of infection. Following 
the works of An der Heiden and Buchholz (2020), we set 
the mortality to � = 0.006 . As described by various other 
works (An der Heiden and Buchholz 2020; Zhou et al. 2020; 
Dorigatti et al. 2020), the time to recover from a confirmed 
infection varies between 18 and 25 days, while milder, often 
undetected infections last for about 5 to 10 days. Based on 
these data, we chose �2 = 0.04 and �1 = 0.067 , directly fol-
lowing from the assumption that about 50% of cases are 
asymptomatic (National Institute of Infectious Diseases 
Japan 2020) and infectious, yet undetected, over a time span 
of 7.5 days. Following the assumed mortality and an average 
time-to-death for a confirmed infection of 15 days (An der 
Heiden and Buchholz 2020), state-wise dark ratios can be 
directly read out from the RKI-reported death toll (Robert 
Koch Institute 2020a), averaged over the last week of the 
respective fit. We emphasize that the calculated dark ratio 
is a direct consequence of the fixed mortality of � = 0.006 
and is not a result related to our modeling framework or the 
fitting procedure. If the mortality was chosen differently due 
to new findings as the pandemic continues, the dark ratios 
would change accordingly. We decided against fitting the D 
group over time, due to the disparate mortality across the age 
structure of infected people (Dudel et al. 2020), which is not 
very well represented in SIR-type, rate-based models (Ker-
gaßner et al. 2020). The age-dependent mortality was clearly 
visible in Germany, especially during the early stages when 
younger people were over-proportionally affected, with cor-
respondingly low death rates.

For our parameter optimization, we solve the nonlinear 
set of ordinary differential equations (ODEs) from the start 
date onward in time using an ODE45 integration scheme 

(14)�̇ = −� ��

(15)�̇ = +� �� −
𝛾
1

𝜔 − 1
� − 𝛾

1
�

(16)�̇ = +
𝛾1

𝜔 − 1
� − 𝛾2� − 𝛾2

𝜇𝜔

1 − 𝜇𝜔
�

(17)�̇ = +𝛾1� + 𝛾2�

(18)�̇ = +𝛾2
𝜇𝜔

1 − 𝜇𝜔
�,

with variable time-stepping and evaluate the daily new and 
cumulative infection numbers via spline interpolation.

To identify the free model parameters for our spatially 
resolved county model, we followed an identical cascade 
optimization strategy for both wave scenarios. Using state-
wise identified dark ratios �j and constant � , �1 , and �2 , we 
first used a 16-node network model connecting each federal 
state to obtain a Germany-wide average � and reduction fac-
tors �red

1
 (and �red

2
 for the first wave) by fitting the cumulative 

data for Germany. We then considered state-wise data to fit 
�j0, j ∈ {1,… , 16} , while keeping c = 1 . As initial values, 
we set the number of confirmed infections on our start dates 
as the size of Q0 . To obtain an appropriate size of I0 , we 
estimated the change rate of Q on our start date via an expo-
nential function and then exploit I0 = Q̇0[𝜔 − 1]∕𝛾1.

For the first and second waves, respectively, we fitted 
the cumulative number of confirmed infections from the 
RKI for the time periods from March 3 until April 22 and 
October 2 until November 21 with the cumulative entries in 
our Q group, normalized by the maximum number of RKI 
infections. We also considered the cumulative deceased on 
the last day of the fitting period, for which the death count 
was reliable. For the first wave, data delay was not an issue, 
and we were able to take deceased numbers on April 22, 
identical to the last day of the fitting period for cumula-
tive infected. For the second wave, a significant number of 
deaths were still being reported over a period of two to three 
weeks after the release of the used data set, as analyzed in 
detail in Sect. 3.1. Therefore, we integrated the cumulative 
deceased numbers during the second wave two weeks earlier 
on November 7. In addition, we included the change rate of 
infections over the respective last week of the fit in April 
and November into the residual vector. Note that cumula-
tive infections at time T reported by the RKI correspond to 
the integrated influx �̃(T) into the Q group of our SIQRD 
model, such that the fitted expression is obtained via

 where individual entries j of the vector �(t) can be deter-
mined at state level, i.e., Ij(t) = Njij(t), j = 1,… , 16 , or also 
evaluated at county level. Finally, we increased the resolu-
tion to full county level, amounting to a network of 401 
nodes. We used a gradient descent algorithm to iteratively 
fit state-wise cross-county weights cj, j ∈ {1,… , 16} to re-
balance the changed influence of the larger network, while 
keeping the previously determined state-wise �j0 fixed.

An important component of spatially resolved predictions is 
the choice of appropriate initial conditions. Besides the mere 
size of I0 , the initial infectious population, we also needed to 
specify its spatial distribution at the start date of the county-
wise simulation. For the first wave, this distribution had to 

(19)�̃(T) = ∫
T

t=0

𝛾1

𝜔 − 1
�(t)dt,
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reflect the fast dynamics, lacking experience of the general 
public, and a presumably high dark ratio. Due to several days 
delay between the outbreak in different federal states and, natu-
rally, their different population size, we therefore selected the 
RKI-reported distribution on March 17 and scaled its mag-
nitude down to obtain the overall number as determined on 
March 3, state-wise amounting to ⟨I0,i⟩ = 3075 (see Methods, 
Suppl. Table S2). The ratio between Q and I was computed as 
before. For the second wave, the situation is much simpler, as 
basically all counties were affected by the viral spread, such 
that data alone provided consistent initial conditions.

The entire fitting procedure, except for obtaining the final 
cross-county weights cj , was done using a particle swarm opti-
mization (PSO) scheme. PSO is a meta-heuristic inspired by 
the behavior of natural animal swarms. It uniformly initializes 
a swarm of particles in a multidimensional search space, such 
that the objective function is evaluated at the current posi-
tion of each particle. Particles communicate their best posi-
tion amongst each other. Thereby, individual particle direction 
and speed are updated depending on their own and the overall 
best position in search space found up to this point. This way, 
the swarm broadly covers the bounded search space (Helwig 
2010) and likely converges to a global optimum, while explor-
ing many local minima along the way (Schmitt and Wanka 
2015). The scheme balances broad coverage with fast conver-
gence and provides valuable information on explored samples.

2.4 � Statistical analysis

To validate the model, we evaluated the temporal and spatial 
correlation between model predictions and RKI data by com-
puting the Pearson correlation coefficient rP , the coefficient of 
determination R2 = r2

P
 and the corresponding p value to assess 

statistical significance via the function [ rP,p] = corrcoef(...) in 
Octave 5.2.0. We further compared the daily averaged root-
mean-squared distance (RMSD) of detected infections (com-
partment Q) between RKI data QRKI

j
 and model values, follow-

ing Eq. (19), during the fitting and prediction intervals for each 
federal state j ∈ {1,… , 16} via

 and analogously for the deceased (compartment D).

3 � Results

3.1 � Quality of data

To obtain dependable results during fitting, we first analyzed 
the quality of data available in Germany and its information 

(20)RMSDj =

√√√√ 1

NjT

T∑

t=1

[
QRKI

j
(t) − Q̃j(t)

]2
,

content to identify our model parameters. To this end, Fig. 2 
shows the time delay in reported infection cases and deaths, 
i.e., the days between an infection (a death) is known and 
it being reported during the period of the second wave in 
fall. A very similar situation is observed during the first 
phase of the pandemic (not shown). It can be inferred from 
the graph that only after about three to five days delay, a 
relatively complete picture of current infection numbers is 
available. Note that this time delay does not account for the 
incubation period between becoming infected and becom-
ing infectious, but merely the time of information flow. For 
deaths, the situation is even worse. Here, we have to wait for 
one to three weeks before the numbers become sufficiently 
stable. The weekly pattern of daily new infections/deaths is 
clearly visible, represented by the grid-like appearance of 
Fig. 2. Overall, this delay is important to consider when fit-
ting model parameters directly from data. We therefore used 
a data set from November 27 for our fitting period of March 

Fig. 2   Data delay. Data delay in the number of registered infections 
(Q, (a)) and deaths (D, (b)) according to color scale, comparing the 
actual date of infection/death (horizontal axis) and the date the infec-
tion/death is published (vertical axis). Lines are empty where data 
was not available
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3 to April 22 and October 2 to November 21. To avoid any 
impact from reporting delay on the fitting results, cumulative 
deceased were only considered on November 7 when fitting 
the second wave.

As mentioned in Sect. 2.1, dark ratio � and mortality � 
are inherently coupled and cannot be identified exclusively 
from reported infection numbers and deceased. However, by 
assuming a Germany-wide identical mortality of � = 0.006 
based on medical data (An der Heiden and Buchholz 2020), 
we obtain estimates on state-wise dark ratios �j (Fig. 3) 
by fitting to the individually reported death tolls, with 
⟨�j⟩ ≈ 14.84 and ⟨�j⟩ ≈ 4.67 during the first and second 
wave, respectively (see Suppl. Tables S2 and S3). Note that 
the mortality is at the lower end of reported values in the 
literature, thereby providing an upper bound on the dark 
ratios. Interestingly, we observe a low, negative correlation 
(Pearson coefficient rP = −0.3998 , R2 = 0.1599 p < 0.1249 ) 
between state-wise �j and performed per-capita tests, which 
varied significantly from about 0.02% of the population in 
Saarland to about 1.43% in Berlin during the first wave (test 
numbers from April 24, Suppl. Table S2 (Robert Koch Insti-
tute 2020b)). The much higher test capacities, nearly tripling 
from 0.8 million per week in calendar week 16 to 2.1 million 
per week in week 49, 2020 (Robert Koch Institute 2020c), 
very well match and thus explain the significantly lower dark 
ratios during the wave in fall, despite their correlation being 
less prominent at higher testing rates. Here, we observe 
stronger correlations of the dark ratios with reported case 
fatality rates, which is to be expected according to Eq. 10.

3.2 � Optimizing the spatially resolved SIQRD model

Figures 4 and 5 demonstrate that the optimized spatially 
resolved SIQRD model with 401 network nodes rep-
resenting each county of Germany well reproduces the 
cumulative confirmed cases in each of its federal states 

from March 3 until April 22 as well as October 2 until 
November 21. Importantly, they demonstrate how the 
model further extends two-week predictions that well 
match the evolution of data for both waves. For cumu-
lative infection data reported by the RKI (Robert Koch 
Institute 2020a), we find good agreement on the temporal 
evolution for both waves (see Suppl. Tables S4 and S5 for 
correlation measures). The model slightly overestimates 
the number of deaths during the end of the first wave of 
the pandemic. However, considering that besides a delay 
in death counts, one might expect also a certain number 
of undetected deaths related to COVID-19, relativizing 
the deviations. When comparing both waves, it becomes 
obvious that the severe contact restrictions during the first 
wave successfully slowed down the viral spread, while the 
(partial) lockdown during the second wave did not produce 
similar reductions in daily new infections.

Figure 6 displays the corresponding federal state-wise 
�j0 and cj . Importantly, our preliminary investigations had 
shown that it is not sufficient to provide a single � valid 
in entire Germany, even with state-wise dark ratios �j . It 
is, therefore, key to calibrate infection rates �j0 differing 
between federal states. The reduction factors, however, 
are modeled identical for all of Germany, merely consid-
ering their state-wise starting date. They are optimized 
to �red,1 = 0.84 and �red,2 = 0.14 for the first wave, and 
�red,1 = 0.53 for the second wave. We note that the opti-
mized parameter values are to a certain extent affected by 
the choice of the disease-specific input parameters, i.e., 
the mortality � as well as the recovery parameters �1 and 
�2 , which were fixed using data on the course of disease. 
However, the fact that the model provides good estimates 
of cumulative cases for the next two weeks and the qualita-
tive parameter trends are not affected.

On average, the intra-county infection rates �j0 are about 
half as large as for the basic SIQRD models (Pedersen and 
Meneghini 2020), leading us to believe that about half 
of infections occur through cross-county interactions. We 
observe an opposite trend between �j0 and cj . This can in 
part be attributed to their inherent parameter dependence, 
as demonstrated by an extended sensitivity analysis of the 
model (Suppl. Table S6, for details on the analysis see 
Kleuter 2007). Nevertheless, due to our cascading opti-
mization scheme, �j0 and cj are never optimized simulta-
neously. Since we scale the calibrated network mobility 
model (Balcan et al. 2009) by cj , a trade-off between usual 
inter-state contact and the spread of the disease is sug-
gested. For example, northern (touristy) regions obtain 
higher inter-state contact rates, suggesting that they 
observed relevant inflow from other states, compensating 
for their relatively sparse intra-state cross-county network. 
The distributions show very similar patterns for both the 
first and second wave.

Fig. 3   Federal state-wise dark ratios. State-wise estimated dark ratios 
following from a Germany-wide constant mortality during the first 
(a) and second (b) wave
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3.3 � County‑wise predictions

We then analyzed how well the federal state-wise fitted 
model represented the infections on a county level. Fig-
ure 7a and b shows the difference of cumulative entries 
in Q between our model predictions and RKI-reported 
numbers on two dates in April and November, respec-
tively, without further county-wise fitting or optimization. 
During both waves, we find a strong, significant correla-
tion of the spatial distribution over time, as displayed in 
Fig. 7c, demonstrating an overall high level of accuracy 
of our mesoscale model. The initially larger discrepan-
cies during the first wave originate from the difficulty of 
obtaining suitable initial conditions when only few coun-
ties were affected. However, the model representation on 
county level improves after two to three weeks. Larger 
differences that catch the eye occur in Hanover, a large, 
well-populated county that seems to be over-represented 
in the model, and a few southern, more rural counties that 
suffered from more infections than predicted by our model. 
The most prominent examples are the indicated counties 
Rosenheim (R) and Tirschenreuth (T). Per-capita infec-
tions in the hot spot city Mitterteich in Tirschenreuth tem-
porally surpassed the numbers in New York City (Johns 
Hopkins University 2020), and one of the most stringent 
curfews was put in place to contain the virus spread (Lan-
dratsamt Tirschenreuth: 2020).

During the second wave, both infection numbers and 
absolute differences between model and data are on a higher 
level. Strikingly, most counties where the model seems to 
underestimate outbreak dynamics are on borders to neigh-
boring countries (Fig. 7b). This is not surprising: While bor-
ders were closed during the first wave, they remained open 
during fall, allowing for more exchange between Germany 
and its neighbors, which is not included in the model. Nev-
ertheless, our county-wise distribution matches very well, as 
indicated by the high correlations in Fig. 7c.

Following this validation, we used our model to obtain 
a complete spatiotemporal timeline of the COVID-19 
spreading. Figure 8 and supplementary movies S1 and S2 
show the predicted spatial distribution of all infections, 
i.e., combined entries of I and Q, evolving March to June 
and October to January, respectively, at the resolution 
of individual counties, assuming the particular contact 

reduction factors stay in place. The snapshots nicely cap-
ture the fading first wave, while infection levels stay high 
during the second wave.

3.4 � The effect of seeds

The spreading of COVID-19 in Germany and the initiation 
of the first wave had allegedly evolved from two major hubs: 
(1) a carnival event in the county Heinsberg (H) in the Ruhr 
area in Western Germany, and (2) returnees from skiing holi-
days in Northern Italy and Austria, with a large share trac-
ing back to Ischgl (I). With the aid of our spatially resolved 
model, we investigated how these sources may have affected 
the spreading throughout Germany.

In Heinsberg, we set 10% of the population in the I group, 
i.e., I0 = 4195 , corresponding to about 65% of the popula-
tion found infected in Streeck et al. (2020). In Ischgl, we 
started out with an I group of 30 times the number of its 
inhabitants, amounting to I0 = 1617 ⋅ 30 = 48510 , to repre-
sent the major tourist flow through the town and returnees 
from other ski resorts in Austria and Italy. We further chose 
parameters c and �j0 equal to the highest ones found in a 
German state to initiate the spreading, corresponding to the 
value in Brandenburg and Saarland, respectively.

Figure 9a shows the distributions of confirmed, quaran-
tined infections Q resulting from initial outbreaks in Heins-
berg (left) and Ischgl (center) only, as well as the distribution 
resulting from the combination of both (right), demonstrat-
ing the balance of local and far-reached infections with our 
model. Red hot spots appear in nearly all major urban areas 
across Germany, but rural spreading occurs much more 
in areas closer to the seeds. When evaluating differences 
of infections from their combined spreading to RKI data 
(Fig. 9b) near the German peak on April 03, we find that, 
despite increased differences very close to the Southern 
borders, the overall state-wise distribution in BY is nearly 
identical in quality ( R2 from 0.8642 to 0.8420). This dem-
onstrates the dominating influence of returnees from skiing 
holidays in Italy and Austria represented by the Ischgl seed 
for the Germany-wide initiation of the spread. Tirschenreuth 
(T), however, seems to have suffered from their very own, 
less documented super-spreading event. On the other hand, 
the distribution in NW differs more to the data ( R2 from 
0.9009 to 0.5964). We observe several underrepresented 
counties, suggesting that cases from Heinsberg alone spread 
less, similar to the localized situation in Tirschenreuth. The 
overall similarity between Figs. 9a and 8, as well as Figs. 9b 
and 7a, is in line with previous epidemiological findings 
(Streeck et al. 2020; Felbermayr et al. 2020) that the virus 
indeed spread from the Southern and Western states of Ger-
many, with Ischgl and Heinsberg as two major representative 
seeds.

Fig. 4   State-wise calibrations and predictions of the spatially resolved 
SIQRD model for the first wave. The evolution of cumulative quaran-
tined infections Q (left axis, blue; current Q in teal) and dead count 
on the last day (right axis, ocher) during the first wave were state-
wise fitted to RKI data (dashed) from March 3 to April 22 (x in days 
since March 3). The change from solid to dotted lines highlights the 
end of the calibration and start of the prediction phase for the infected 
and the only value fitted for the deceased. Thin vertical lines denote 
changes in �

◂



128	 D. Lippold et al.

1 3

0

5000

10000

15000

Schleswig-Holstein

0

10000

20000

30000

Hamburg

0

20000

40000

60000

80000

Lower Saxony

0

5000

10000

Bremen

0

1e5

2e5

3e5

Northrhine-Westphalia

0

50000

1e5

Hesse

0

20000

40000

Rhineland Palatinate

0

50000

1e5

1.5e5

grebmettrüW-nedaB
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4 � Discussion

We have shown that a spatially resolved SIQRD model can 
well explain and predict the temporal and spatial outbreak 
dynamics of COVID-19 in Germany during both waves 
encountered so far. The reparameterized model specifically 
includes undetected, hidden infections as a separate compart-
ment, revealing a direct coupling between mortality, testing 
efforts, and the dark ratio. Our systematic refinement from 
Germany-wide to spatially resolved county-level predictions 
has revealed that we require different values for dark ratios 
�j , infection rates �j0, and cross-county weights cj in each 
federal state of Germany to accurately capture the spreading 
of COVID-19. At first, this is quite surprising considering 
that various other studies with single-node, country-wide 
models have predicted single infection rates � that are quite 
similar for different countries, such as Germany, France, or 
Spain (Yuan et al. 2020; Pedersen and Meneghini 2020). 
However, this can be attributed to their low spatial reso-
lution and high infection numbers, which average out any 
spatiotemporal fluctuations. Higher-resolution information 
as presented here thus comes at the cost of more complex 
model requirements.

Differences in �j can in part be attributed to variable test-
ing activities. It is important to note, however, that the vary-
ing dark ratio alone is not enough to account for the different 
outbreak dynamics in the federal states of Germany. Rather, 
there seems to be a non-negligible influence of habits and 
mentality that drive different infection rates �j0 , together 
with random factors and local super-spreader events such as 
the carnival celebrations in Heinsberg (Streeck et al. 2020). 
We observe an opposite trend between �j0 and cj (Fig. 6), 
suggesting that some states (mostly Northern and distant 
from initial seeds) received more infections from neighbor-
ing states, while states close to epidemic seeds suffered more 
from localized infections. Generally, the adapted mobil-
ity network tended to overestimate cross-county terms in 
densely populated areas, where the pandemic seemed to have 
a larger reduction effect on typically observed traffic pat-
terns, manifested by smaller weights ci.

It has become clear from our analysis that the data we 
currently have at our disposal makes it impossible to pro-
vide ‘true’ parameter sets that uniquely describe the evo-
lution of the pandemic. However, despite the deduced 

interdependence of mortality � and dark ratio � , the rela-
tionship to testing activities holds regardless, underlining 
the importance of broad, fast testing. Interestingly, the test 
capacity increased from 0.8 to 2.1 million per week from 
the first to the second wave (Robert Koch Institute 2020c). 
This corresponds well to the identified decrease in the dark 
ratio from an average of 14.8 (Table S2) to an average of 4.7 
(Table S3). Increased (antibody) testing can help strengthen 
our confidence bounds on � and � in the future. Importantly, 
our analysis showed that data sets must be taken with cau-
tion, as newly reported cases still affect past infection and 
death numbers for days and even weeks before becoming 
robust. This must be considered during the fitting procedure.

Our spatially resolved model can predict the temporal 
evolution of infections on a county level fairly well. It cap-
tures the fact that the probability for new incoming infec-
tions and higher spreading is generally larger in densely 
populated urban environments. However, we have also seen 
a few rather rural counties with high infection numbers that 
were much less hit in our predictions, e.g., the county Tir-
schenreuth in Eastern Bavaria (Fig. 7a). We postulate that 
such locally over-proportionate case counts can be attributed 
to rather random super-spreading events, which may pop up 
anytime and can easily be included in our model, but are 
hard to predict in advance.

Exploiting our county-level resolution, we were able 
to infer the effect of infections stemming from selected 
seeds, such as two major hubs for Germany, Heinsberg 
and returning travellers from Ischgl in Austria. Our model 
demonstrates how the outbreak dynamics in Germany were 
initially driven by these two major seeds and spread from 
there throughout the rest of the country (Fig. 9). Neverthe-
less, from our difference analysis we found that Heinsberg 
itself was significantly more contained than Ischgl. Taken 
together, these observations corroborate that refraining from 
traveling and large events are two key interventions that can 
effectively attenuate the spreading of infectious diseases 
such as COVID-19. In addition to reducing travel (Linka 
et al. 2020), or mobility in general (Linka et al. 2020), our 
model results support the notion that containing local seeds 
is a further important aspect to get the viral spread under 
control.

The county-wise comparison between both waves impres-
sively showed how our model, being limited to Germany, 
underestimated infections in counties close to the border. 
While severely limited travel during the first wave success-
fully reduced new infections, political actions during the sec-
ond wave were much less successful. While it is important to 
balance the economic and health consequences during this 
pandemic, it is clear that policies must focus on mobility 
and contact reduction to get the spread under control again.

The presented model has certain limitations that we 
aim to address in the future. One drawback of all SIR-type 

Fig. 5   State-wise calibrations and predictions of the spatially resolved 
SIQRD model for the second wave. The evolution of cumulative 
quarantined infections Q (left axis, blue; current Q in teal) and dead 
count on the last day (right axis, ocher) during the second wave were 
state-wise fitted to RKI data (dashed) from October 2 to November 
21 (x in days since October 2). The change from solid to dotted lines 
highlights the end of the calibration and start of the prediction phase 
for the infected and the only value fitted for the deceased. The thin 
vertical line denotes the change in �

◂



130	 D. Lippold et al.

1 3

modeling approaches is that they hardly account for the vari-
ous courses of disease: In such rate-dependent models, some 
appear as infinitely long infectious. To prevent this issue 
from significantly affecting our optimized parameters, we 
only considered the latest dead count in our fitting procedure 
(see Methods). Still, we plan to adapt our model to integrate 
detailed information on specific courses of disease within a 
memory-based or delayed ODE, as introduced, for example, 
in Keimer and Pflug (2020 and Kergaßner et al. (2020).

While our county-level models well captured the spati-
otemporal outbreak dynamics and could even be extended 
to city-level resolution (Kergaßner et al. 2020), general SIR-
type models then seem to approach their validity limit, while 
stochastic effects start to become more important. Whereas 
SIR-type compartment models may capture the spread on a 
macro- and mesoscale level, at very low infection numbers 
or high spatial resolution, individual agent-based models 
(Eubank et al. 2004; German et al. 2020) are required to 
accurately predict the course of the epidemic. It is notewor-
thy, though, that current agent-based models may scale up 
to ≈ 50.000 agents, leaving quite a gap to mesoscale models 
like ours. We will investigate how coupling both types of 
methods in a multi-scale model can close this gap in the 
future. Similarly, explicitly integrating uncertainty via sto-
chastic models (Palomo et al. 2020) may help to further 
improve model predictions at high spatial resolution and low 

to medium infection numbers, potentially providing insights 
into optimal strategies for political action.

Overall, our refined predictions could provide a trust-
worthy rationale to elaborate community-wise reopening 
and closing strategies, and inform on distribution strate-
gies of vaccination and/or antibody tests once available for 

Fig. 6   Optimized state-wise model parameters. Illustration of state-
wise optimized values for �

j0
 (a, c) and c

j
 (b, d) for j ∈ {1,… , 16} for 

the first (a, b) and second (c, d) wave

Fig. 7   County-level validation. County-level evaluation of cumula-
tive quarantined infections Q on two randomly selected dates during 
the first (a) and second (b) wave, showing the difference of infections 
SIQRD−RKI, increasing from blue to red, with indicated counties 
Tirschenreuth (T) and Rosenheim (R). For comparability and better 
contrast, we fixed the color scale to [−1000,1000] from [−717,2166] 
on April 3, [−1280,4402] on April 29, [−1518,4001] on November 
2, and [−3056, 12449] on November 28. (c) Temporal evolution of 
the spatial Pearson coefficient of determination across all counties 
for both waves. Time is measured in days since the start of the cor-
responding wave, March 3 and October 2, respectively
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the general public. The optimized model can be directly 
adopted to estimate the effects of loosened restrictions, 
potential new seeds, new waves, or other influencing fac-
tors on the resolution of individual counties when continu-
ously fitted to new incoming data. It can thus be a valuable 
tool to support (political) decision makers to appropriately 

react to future developments of the COVID-19 situation 
and expediently avoid a third wave.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10237-​021-​01520-x.

Fig. 8   Spatiotemporal model predictions. Spatiotemporal snapshots of the epidemic spread (overall number of active infections I + Q) across 
Germany during the first (top) and second (bottom) wave, continuing with the identified reduced infection rates �

j
 , respectively

Fig. 9   Seed effects. (a) Scenario comparison on April 03 close to the 
epidemic peak, with seeds spreading from Heinsberg (H, left), Ischgl 
(I, center), and both cities (H+I, right). (b) Difference plot of cumu-

lative infections Q between our simulation with seeds from Ischgl 
and Heinsberg vs RKI data on April 03. Color scale cropped from 
[-3317,3645] to [-1000,1000] for better contrast

https://doi.org/10.1007/s10237-021-01520-x
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