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Metaproteomics characterizes human gut microbiome function

1n colorectal cancer
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Pathogenesis of colorectal cancer (CRC) is associated with alterations in gut microbiome. Previous studies have focused on the
changes of taxonomic abundances by metagenomics. Variations of the function of intestinal bacteria in CRC patients compared to
healthy crowds remain largely unknown. Here we collected fecal samples from CRC patients and healthy volunteers and
characterized their microbiome using quantitative metaproteomic method. We have identified and quantified 91,902 peptides,
30,062 gut microbial protein groups, and 195 genera of microbes. Among the proteins, 341 were found significantly different in
abundance between the CRC patients and the healthy volunteers. Microbial proteins related to iron intake/transport; oxidative
stress; and DNA replication, recombination, and repair were significantly alternated in abundance as a result of high local
concentration of iron and high oxidative stress in the large intestine of CRC patients. Our study shows that metaproteomics can
provide functional information on intestinal microflora that is of great value for pathogenesis research, and can help guide clinical

diagnosis in the future.

npj Biofilms and Microbiomes (2020)6:14; https://doi.org/10.1038/s41522-020-0123-4

INTRODUCTION

Colorectal cancer (CRQ) is the third most commonly diagnosed
cancer and the fourth leading cause of oncological mortality
worldwide'. In recent years, CRC incidence rates in developing
countries have been rising because of obesity and westernized
diet’. In particular, high-level intake of red meat and inadequate
intake of vegetables and fiber could increase the risk of CRC2. The
pathogenesis of CRC is a complex multistep process involving
genetic alterations®, immune factors®, environmental factors (e.g.
diet and lifestyle)®, and human gut microbiome®.

Human gut hosts about 100 trillion microbes. Most microbes
colonize the large intestine at a concentration of about 10'? cell
per mL’. Emerging evidences indicate that microbial dysbiosis is a
driving force in the pathogenesis of intestinal tumor®. Studies
using metagenomics-based approaches demonstrated that Parvi-
monas micra, Solobacterium moorei, Fusobacterium nucleatum, and
Peptostreptococcus stomatis are enriched in the gut of CRC
patients’. It has been observed that the enterotoxigenic
Bacteroides fragilis is increased in the feces and colonic mucosa
of CRC patients'®'". Tjalsma et al. presented a bacterial
driver-passenger model for CRC pathogenesis, indicating that
CRC can be initiated by “driver” bacteria that are eventually
replaced by “passenger” bacteria during tumorigenesis®. However,
the actual function of human gut microbiome in the pathogenesis
of CRC remains largely unexplored. There is an urgent need to
fully understand the impact of microbes in CRC.

Traditional methods for bacterial characterization are usually
based on bacterial culture. Culturomics is a bacterial identification
method that combines multiple culture strategies, matrix-assisted
laser desorption/ionization—-time of flight mass spectrometry (MS)
identification, and 165 rRNA typing'2. However, most microbes in
the gut are difficult to culture. Metagenomics has recently been
widely used to characterize gut microbiome without bacterial
culture'®, The methods can provide information on the taxonomic

abundances of samples. Nevertheless, biases can exist due to DNA
extraction methods, the use of amplification primers, and
bioinformatic tools'*'2. In addition, sequencing cannot distinguish
between live bacteria and transient DNA'2. It is also difficult to
reveal important functional elements of gut microbiome solely by
metagenomics. Therefore, it has been suggested that functional
omics, like metaproteomics and metabolomics, should also be
involved in the study of gut microbiome, wherein “function first,
taxa second” has been proposed'*.

Metaproteomics was initially used to study the microbial
function of environmental samples, like soil, activated sludge,
and acid mine drainage'®. In 2009, Verberkmoes et al. first studied
human gut microbiome using shotgun metaproteomics, wherein
the samples were feces collected from a pair of monozygotic
twins'®. In 2017, Tanca et al. chose a cohort of 15 healthy
Sardinian populations and studied the function of their gut
microbiome using metaproteomics'’. In 2018, Zhang et al.
demonstrated an upregulated expression of human proteins
related to oxidative antimicrobial activity in pediatric inflamma-
tory bowel disease (IBD) by metaproteomics'®.

Herein, we used data-independent acquisition (DIA)-based
label-free quantitative proteomics for a cohort analysis of CRC
patients’ and healthy volunteers’ gut microbiome. A total of
30,062 protein groups and 91,902 peptides from 195 genera of
microbes were identified and quantified. Three hundred and forty-
one protein groups were found significantly different in abun-
dance between the CRC patients and the healthy volunteers.
Among the 341 proteins, 27 are related to iron intake and
transport, and 42 are related to oxidative stress, which can be
resulted from the high local concentration of iron and high
oxidative stress in the large intestine of CRC patients. The results
show that not only taxonomic abundances but also function of
gut microbiome is changed during the pathogenesis of CRC.
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Fig. 1 Metaproteomic characterization of the gut microbiome of CRC patients and healthy crowds. a Experimental design and workflow.
The numbers of protein groups (b), peptides (c), and genera (d) identified from the CRC patient group (P) and the healthy volunteer group (H).
e Volcano plot indicating the differential proteins. Protein groups with P/H fold change (FC(P/H)) > 2 and P value < 0.05 were colored red, while
those with FC(P/H) £ 0.5 and P value < 0.05 were colored blue. Source data are provided as a Source Data file.

RESULTS

Metaproteomic characterization of the gut microbiome of CRC
patients and healthy crowds

In the study, we enrolled 14 CRC patients and 14 healthy
volunteers. There was no significant difference in ages or body
weights between the two groups (Supplementary Table 1). As
illustrated in Fig. 1a, gut microbes were enriched using differential
centrifugation. After protein extraction and trypsin digestion,
label-free DIA was used to identify and quantify proteins in each
sample using a merged spectral library generated by data-
dependent acquisition (DDA) experiments performed on a pool
from every sample and spectrum-centric analysis of the DIA data.
The workflow of library generation is described in detail in the
“Methods” section and Supplementary Fig. 1. De novo
sequencing-assisted database searching by PEAKS'® was con-
ducted on the pooled fractionated DDA data against successively
a database of stool from Human Microbiome Project (HMP)
(containing >4.8 million protein entries) and a database
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combining the National Center for Biotechnology Information
(NCBI) non-redundant (nr) bacteria (containing >78 million protein
entries) and the SwissProt human (>20,000 protein entries). At the
protein group level, 15,685 protein groups were identified,
including 11,391 (72.6%) from the HMP database and 3920
(25.0%) from the NCBI nr database (Supplementary Fig. 1a and
Supplementary Data 1). Most of the identified protein groups are
from microbes, indicating a good sample pretreatment by the
differential centrifugation. Then the DDA and DIA data were
searched against a database combined from the HMP and the
identified NCBI nr proteins (11,994 entries) by SpectroMine, and
the results are shown in Supplementary Fig. 1b and Supplemen-
tary Data 2. Consequently, 36,053 protein groups and 103,444
peptides were identified from the pooled DDA data with an
identification rate of MS/MS spectra of 26.7% (178,300 peptide-
spectrum matches (PSMs) from 668,162 MS/MS spectra). From the
DIA data, 12,463 protein groups and 39,319 peptides were
identified with an identification rate of 33.3% (794,028 PSMs from
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2,386,773 MS/MS spectra) by spectrum-centric database search-
ing. The search results were merged to generate spectral library
for peptide-centric DIA analysis, and finally the library contained
37,416 protein groups and 112,436 peptides corresponding to 210
genera of microbes (Supplementary Fig. 1¢).

From the 28 samples, 30,062 protein groups and 91,902
peptides were identified and quantified by peptide-centric DIA
analysis (Fig. 1b, ¢, and Supplementary Data 3). Taxonomic
information was assigned to 78,391 peptides. Among them,
36,244 peptides were matched to 114 families of microbes and
33,690 peptides to 195 genera. One hundred and fifty-seven
genera were shared between the healthy control group and the
CRC patient group, while 25 were found only in the healthy
crowds and 13 only in the CRC patients (Fig. 1d, and
Supplementary Data 4). In average, 21,510+5760 (mean+
standard deviation, sic passim) peptides and 9078 + 2225 protein
groups were identified per sample from the healthy volunteers
group, and 18,368+ 6941 unique peptides and 7761 + 2663
protein groups were identified per sample from the CRC patient
group. It is worth noting that 17% more proteins were identified
from the healthy crowds than the CRC patients, indicating a lower
diversity of microbial proteins in the CRC patients. During the
proteomic experiments, independent retention time (iRT) peptides
were added to calibrate RT. No obvious changes in the MS1 and
MS2 intensities of the iRT peptides were observed (Supplementary
Fig. 2) during the 28 DIA runs, demonstrating that there was not
an obvious change of MS sensitivity during the experiments. The
median full width at half maximum of chromatographic peaks in
each sample was 0.294 £ 0.017 min for the healthy control group
and 0.291 + 0.024 min for the CRC patient group. The numbers of
data points per peak were 9.1+ 0.6 and 8.8 + 0.9 for the healthy
control and CRC patient groups, respectively.

Owing to the complexity of fecal sample, heterogeneity among
samples, and the large numbers of identified proteins, no
significant difference in protein abundance between the two
groups could be reached with a significance cut-off of a
Benjamini-Hochberg adjusted P value < 0.05. The same situation
has been reported in previous metaproteomic research?®?’.
Therefore, differentially expressed proteins were determined using
fold change (FC) analysis and t test. Proteins with FC>2 and
P value < 0.05 were accepted as differentially expressed proteins.
Three hundred and forty-one differential proteins between the
CRC patients (P) and healthy crowds (H) were discovered, shown
in the volcano plot (Fig. 1e) and Supplementary Data 5.

Taxonomy of the gut microbiome of CRC patients and healthy
crowds based on quantitative metaproteomics

The density of bacteria in large intestine is very high (10'? cells per
mL), and some researchers have suggested that CRC could be a
bacteria-related disease®®. Herein, we utilized the quantitative
information of all the identified peptides to display the taxonomic
abundances of the gut microbiome of the CRC patients compared
to that of the healthy controls, Fig. 2a and Supplementary Data 6.
We observed some abundance differences in taxa that have been
reported in previous metagenomic studies®?3. At the order and
family level, Desulfobacterales, Methanobacteriaceae, and Spor-
olactobacillaceae showed higher abundance in the CRC patients
than in the healthy crowds (Fig. 2a). Desulfobacterales are sulfate-
reducing bacteria that can oxidize lactate, pyruvate, and molecular
hydrogen during the reduction of sulfate to generate hydrogen
sulfate that is toxic to intestinal epithelium cells**. Methanobacter-
iaceae are strict anaerobes, which can produce methane by
reducing carbon dioxide and molecular hydrogen®. Some studies
have suggested that excessive methane production could lead to
CRC?%%’. Sporolactobacillaceae and Methanobacteriaceae compete
for molecular hydrogen utilization. It has been reported that
interaction between Sporolactobacillaceae and Methanobacteriaceae
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in the large intestine can contribute to the pathogenesis of CRC?’.
At the species level, we found that B. fragilis and Peptostrepto-
coccus anaerobius were more abundant in the CRC group, (Fig. 2b),
which is consistent with previously reported metagenomic
results®2°,

Based on the metaproteomic data, we have also observed
significant changes (P value < 0.05) in taxonomic abundance that
have not been revealed by metagenomics. Indeed, it has been
reported that taxonomic abundances based on metagenomics
and metaproteomics are different'”. As shown in Fig. 2a, b, the
family Sutterellaceae was more abundant in the healthy crowds (P
value = 0.031, FC(P/H) = 0.341). At the genus level, Epulopiscium (P
value = 0.002, FC(P/H) < 0.001) and Gordonibacter (P value = 0.041,
FC(P/H) < 0.001) were more abundant in the healthy crowds.

Differential gut microbial proteins between CRC patients and
healthy controls

Among the 341 differential proteins, 124 were more abundant in
the CRC patients, and 217 were more abundant in the healthy
controls. The 10 proteins with the largest FC(P/H) were from the
genera of Odoribacter, Eubacterium, Subdoligranulum, Parabacter-
oides, and Ruminococcus, as well as the Clostridiales order, Fig. 3a.
Site-specific integrase, the protein with the largest FC(P/H) from
Odoribacter, involves in DNA binding, DNA integration, and DNA
recombination. Bacterioferritin from Parabacteroides, the protein
with the seventh largest FC(P/H), is an iron storage protein that
participates in iron ion transportation and cellular iron ion
homeostasis. The 10 proteins with the smallest FC(P/H) were
from Prevotella, Bacteroides, Lachnospira, Firmicutes, Parasutterella,
Gordonibacter, and Clostridiales, Fig. 3a. The proteins are related to
protein folding, transmembrane transport, asparagine metabo-
lism, RNA binding, or lipopolysaccharide synthesis. We assessed
whether the 20 most differential proteins could be used as
potential candidate biomarkers in clinical CRC diagnosis. Linear
support vector machine (LSVM) was used as a classification
method. Cross-validations (described in the “Methods” section)
were performed to generate the receiver operating characteristic
(ROCQ) curve as shown in Fig. 3b, where the area under the curve
was 0.952, indicating that the 20 gut microbial proteins are
potential candidate biomarkers for CRC diagnosis.

Functional characteristics of the intestinal microbiome of CRC
patients

We annotated functions of the differential proteins using
eggNOG?. The 341 differential proteins were annotated in 19
clusters of orthologous groups (COG) categories (shown in Fig. 4a).
For most of the COG categories, more proteins were found with
high relative abundance in the healthy control group than in CRC
patient group. However, we found that there were more gut
microbial proteins related to DNA replication, recombination, and
repair (category L) that were more abundant in the CRC patient
group compared to the healthy control group. Excinuclease
UvrABC ATPase subunit (P value = 0.022, FC(P/H) = 16.3) and ATP-
dependent DNA helicase RecQ (P value =0.021, FC(P/H) = 3.29)
related to DNA repair and SOS response were more abundant in
the gut microbes of the CRC patients than the healthy crowds, Fig.
4b. The observation is in accordance with a previous report that
the functions of microbial proteins related to DNA replication,
recombination, and repair are among the most significantly
increased functions of gut microbes in the patients of IBD'.

Gut microbial proteins in CRC patients related to iron intake/
transport and oxidative stresses

It has been reported that the increased risk of CRC caused by red
meat intake is mainly due to a high amount of heme iron in red
meat®®. There are evidences showing that excessive iron is
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Fig. 2 Taxonomic abundances of the gut microbiome of the CRC patients (P) and healthy crowds (H). a Cladogram illustrating taxa
(domain to family) abundances in the two groups. Colors indicate the fold change log,(P/H). Large circles indicate P value < 0.05. Information
on the phylum, class, order, and family of the labeled numbers is given in Supplementary Data 6. b Bar charts showing the selected differential
families, genera, and species between the CRC patients and the healthy controls. The bars show the average of 14 samples in each group.
Error bars indicate standard deviation. Individual data points are overlaid as dots. Taxa are selected for presentation in a and/or b if significant
differences of their abundance between CRC patients and healthy people have been reported in previous studies or are observed (P value <
0.05) in this work. The selected classes and families are highlighted in a with red or blue color of the taxa name. Source data are provided as a

Source Data file.
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Site-specific integrase [Odoribacter splanchnicus]

Helix-turn-helix transcriptional regulator [Eubacterium]
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Phosphoenolpyruvate carboxykinase [Parabacteroides sp.]

Formate C-acetyltransferase [Ruminococcus sp.]

Dicarboxylate/amino acid:cationsymporter [Clostridiales bacterium]
Bacterioferritin [Parabacteroides)

Glycosyl hydrolase [Subdoligranulum sp. |

FprA family A-type flavoprotein [Subdoligranulumsp.]
Glucose-1-phosphate adenylyltransferase subunit GIgD [Subdoligranulum sp.]
Co-chaperone GrokES [Parasutterella excrementihominis]

Sodium:alanine symporter family protein [Prevotella copri]
Molybdopterin-dependent oxidoreductase [Gordonibacter pamelaeae]
S1 RNA-binding domain-containing protein [Clostridiales]
Lipopolysaccharide biosynthesis protein [Bacteroides cellulosilyticus)
Type |l asparaginase [Parasutterella excrementihominis)

S-layer homology domain-containing protein [Firmicutes bacterium]
Elongation factor Tu [Lachnospira pectinoschiza]

SusC/RagA family TonB-linked outer membrane protein [Bacteroides sp.]
DUF4925 domain-containing protein [Prevotella copri]
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Fig. 3 Top 20 differential proteins between the CRC patients and the healthy controls. a The 10 proteins with the largest fold change (FC
(P/H)) (red) and the 10 proteins with the smallest FC(P/H) (blue). b Receiver operating characteristic (ROC) curve using the 20 proteins as
potential candidate biomarkers for CRC diagnosis. Linear support vector machine (LSVM) was used as a classification method, and 100 rounds
of Monte-Carlo cross-validation were performed to generate the ROC curve. Details are described in the “Methods” section. Source data are

provided as a Source Data file.

associated with the development and progression of CRC3**". Iron
was found accumulated in tumors of CRC patients, and studies
have shown that elimination of free iron by chelation can inhibit
the growth of CRC cells?>2, By gene ontology (GO) annotation*?,
we found that 27 of the 341 differential proteins are related to iron
intake and transport (Supplementary Table 2). TonB-dependent
receptors can regulate iron concentration in human intestinal
lumen%. In our results, TonB-dependent receptors from Prevotella
sp. (FC(P/H) =12.2, P value =0.010) and Bacteroides (FC(P/H)=
2.35, P value =0.029) were more abundant in the CRC patients
compared to the healthy crowds, Fig. 5a, which could be a result
of the high iron concentration in the large intestine of the CRC
patients. Rubrerythrin is di-iron protein that belongs to the ferritin-
like superfamily and is involved in iron storage, iron detoxification,
and oxidative stress response®. Our results show that rubrerythrin
family protein from Anaerobutyricum hallii was more abundant in
the CRC patients compared to the healthy crowds (FC(P/H) = 2.44,

Published in partnership with Nanyang Technological University

P value = 0.025), Fig. 5b, which could also be a result of the high
iron concentration in the large intestine of CRC patients.

There are many studies supporting that oxidative stress can
cause carcinogenesis including CRC3®. Studies have shown that
the oxidative stress in CRC cells is normally higher than that in
normal cells®”*8, According to the GO annotation results, 42 of the
341 differential proteins are related to oxidative stress (Supple-
mentary Table 3). Nicotinamide adenine dinucleotide (NADH)
oxidase family has been reported as the major sources of reactive
oxygen species (ROS) and reactive nitrogen species (RNS)*°. Our
results show that NADH:flavin oxidoreductases/NADH oxidases
from both Roseburia intestinalis and Lachnospira pectinoschiza
were less abundant in the CRC patients compared to healthy
crowds (FC(P/H) =0.31, P value =0.038 and FC(P/H)=0.089, P
value = 0.027, respectively) (Fig. 5¢), which could be a result of the
high concentrations of external ROS and RNS in the large intestine
of the CRC patients. Superoxide dismutases (SODs) are important
in oxidative stress modulation and act as superoxide scavengers*.

npj Biofilms and Microbiomes (2020) 14
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[C] Energy production and conversion

[D] Cell division and chromosome partitioning

[E] Amino acid transport and metabolism

[F] Nucleotide transport and metabolism

[G] Carbonhydrate transport and metabolism

[H] Coenzyme transport and metabolism

[I] Lipid transport and metabolism

[J] Translation, including ribosomal structure, and biogenesis
[K] Transcription

[L] Replication, recombination, and repair

[M] Cell wall, membrance, and envelope biogenesis

[N] Cell motility

[0] Post-translational modification, protein turnover, and chaperones
[P] Inorganic ion transport and metabolism

[S] Function unknown

[T] Signal transduction mechanisms

[U] Intracellular trafficking, secretion, and vesicular transport
[V] Defense mechanisms

[Z] Cytoskeleton
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Fig. 4 Clusters of orthologous groups (COG) categories of the 341 differential proteins (P value < 0.05). a Numbers of proteins in each
COG category; red: more abundant in CRC patients, blue: more abundant in healthy crowds. b Bar plots of differential proteins in COG
category L (DNA replication, recombination and repair); red: gut microbial proteins in CRC patients, blue: gut microbial proteins in healthy
crowds. The bars show the average of 14 samples in each group. Error bars indicate standard deviation. Individual data points are overlaid as

dots. Source data are provided as a Source Data file.

We found that SODs from Bacteroides were more abundant in the
CRC patients compared to the healthy crowds (FC(P/H) =6.06, P
value = 0.019), Fig. 5d, which could also be a result of the high
local oxidative stress in the large intestine of the CRC patients.

DISCUSSION

Studies have shown that the microbial composition in CRC
patients is different from that in healthy crowds®%3. However, the
function of microbes in CRC patients remains poorly understood.
Quantitative metaproteomics has been emerging as a powerful
approach to characterize microbial function in diseases pathogen-
esis*!. Nevertheless, the quantitative metaproteomic characteriza-
tion of gut microbiome is particularly difficult because of the
ultrahigh complexity of the samples. In our experiment, we used a
label-free DIA method to identify and quantify gut microbial
proteins from fecal samples.

The HMP stool database was used for data analysis, in which the
protein entries were translated from gut microbial genes
confirmed in healthy crowds (80 males and 59 females). Since
no metagenomic sequencing was performed in the work, proteins
from species specific to CRC and proteins expressed by microbial
genes with mutations specific to CRC may not be identified. As an
attempt to identify proteins not included in the HMP database, de
novo sequencing was performed to assist database searching
against the NCBI nr bacteria database. The SPIDER algorithm in
PEAKS is also used to assign the de novo only results to proteins
from the HMP, SwissProt human, or NCBI nr bacteria database. The
proteins identified from the NCBI nr database (11,994 entries)
were used as a complement to the HMP database to ensure that
database searching was performed with an optimal protein

npj Biofilms and Microbiomes (2020) 14

sequence database for library generation. Since DDA was made
by pooling, it might deplete low abundant peptides present in
small fraction of samples. Therefore, we also used spectrum-
centric approaches to analysis the DIA data to identify peptides
that were present in individual samples. The numbers of
identifications using spectrum-centric approaches were less than
those from the pooled DDA at both the protein group and peptide
levels. It has been reported that peptide-centric approaches
perform better to exploit highly comprehensive DIA data than
spectrum-centric methods*2 In this metaproteomic study, com-
plex microbiome samples could lead to limited extraction
accuracy of precursor-product groups during the spectrum-
centric analysis.

The DDA search results and the spectrum-centric DIA results
were merged to generate a spectral library for peptide-centric DIA
analysis to identify and quantify proteins from each fecal sample
in a high throughput manner. Compared to isobaric labeling-
based quantitative proteomics, e.g., tandem mass tags (TMT)*,
DIA is more efficient and provides higher throughput for analysis
of large cohorts of samples. TMT allows simultaneous analysis of
up to 16 samples. Nevertheless, for experiments with >16 samples
(e.g., 28 samples in this study), multiple blocks are required with a
reference channel in each block, which can lead to missing values
across blocks™. In addition, prefractionation is performed on each
sample in TMT workflow but only on the pooled sample in DIA
workflow for library generation. Compared to label-free quantifi-
cation based on MS1 peak intensities or spectra count, DIA can
provide more reliable quantitative results and wider dynamic
ranges’. We have identified and quantified in total 30,062
proteins from the intestinal microbes present in the healthy
crowds or CRC patients using the DIA proteomic strategy, which is
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Fig. 5 Quantitative comparison of proteins related to iron intake
and transport and oxidative stress between the CRC patient
group (red) and the healthy control group (blue). a TonB-
dependent receptors, b rubrerythrin family proteins, ¢ nicotinamide
adenine dinucleotide (NADH):flavin oxidoreductase/NADH oxidases,
d superoxide dismutases (SODs). The bars show the average of
14 samples in each group. Error bars indicate standard deviation.
Individual data points are overlaid as dots. Source data are provided
as a Source Data file.

more than the most recently published metaproteomic results on
fecal samples. Functional variations of the gut microbiome of the
CRC patients compared to the healthy crowds were confirmed by
the observed quantitative variations of the microbial proteins
related to oxidative stress and iron intake/transport.

Red meat consumption has been considered as one of the
major factors inducing CRC™. Excessive meat consumption
increases the concentration of iron in the intestinal lumen of the
host. It has been reported that the iron intake in daily diet can
affect tumor growth in mice*’. And iron accumulated in intestinal
tumors of CRC patients may result in tumor growth?. It has also
been reported that unabsorbed iron in the intestinal lumen might
cause gut microbial dysbiosis in CRC patients*®. Iron acquisition is
required for the virulence and colonization of many enteric
pathogenic bacteria*®. An increase in colonic iron concentration
may be beneficial for the growth of pathogens rather than
probiotics®. Lee et al. demonstrated that oral iron-replacement
therapy obviously affects the diversity and composition of gut
microbiome®'. TonB-dependent receptors are required for the
transport of ferri-siderophores in Gram-negative bacteria®. We
found that the proteins were significantly increased in concentra-
tion in the CRC patients, suggesting an increased iron intake by
the gut bacteria of the CRC patients.

Iron metabolism is strictly related to the regulation of oxidative
stress by Fenton reaction®. Oxidative stress is another leading
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Fig. 6 Diagram of gut microbiome in the pathogenesis of CRC.
High iron concentration in the intestinal lumen of CRC patients
promotes the production of reactive oxygen species (ROS) and
results in high oxidative stress. Concentrations of superoxide
dismutases (SODs) in the intestinal bacteria are increased. The
excessive ROS cause DNA damage of intestinal epithelial cells and
probiotic bacteria, which can accelerate the progression of CRC.

cause in the pathogenesis of CRC*°. Excessive production of ROS
and RNS can result in lipid oxidation, protein oxidation, nitric oxide
production, altered enzyme activity, and DNA damage, thereby
inducing gene mutations and cell damage®*. Oxidative stress is
also a key factor in aggravating intestinal dysbiosis>>. Li et al.
demonstrated that fecal microbiome transplantation could
eliminate oxidative stress in mice with experimental necrotizing
enterocolitis®®. According to the metaproteomic results of the CRC
patients, the concentrations of SOD were significantly increased,
which could be a result of high oxidative stress in the intestinal
environment. The high oxidative stress can accelerate the
progression of CRC. Based on our metaproteomic research, we
suggest that not only intestinal cells but also gut bacteria
participate in the pathogenesis of CRC through iron intake and
oxidative stress regulation.

Based on previous reports and the metaproteomic study in this
work, we propose the global function of gut microbiome in the
pathogenesis of CRC as shown in Fig. 6. High iron concentration in
the intestinal lumen of CRC patients promotes the colonization of
intestinal pathogenic bacteria. Moreover, iron regulates the
production of free radicals and involves in oxidative stress
regulation through Fenton reaction. With high oxidative stress in
intestinal microenvironment, concentrations of antioxidases such
as SODs in the intestinal bacteria of CRC patients are increased.
The excessive ROS can cause DNA damage of intestinal epithelial
cell and probiotic bacteria, which was observed by the increase in
concentration of the proteins, e.g., excinuclease UvrABC ATPase
subunit and ATP-dependent DNA helicase RecQ, related to DNA
damage repair and SOS response in microbes in CRC patients.

In conclusion, we have used quantitative metaproteomics to
characterize the gut microbiome of CRC patients and healthy
control volunteers. We found 341 microbial proteins of signifi-
cantly different abundance in CRC patients compared to healthy
crowds. Gut microbial proteins related to DNA replication,
recombination, and repair were more abundant in CRC patients
compared to healthy crowds, which can be associated with high
local oxidative stress in the large intestine of CRC patients. Indeed,
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there were 27 of the 341 differential proteins related to iron intake
and transport and 42 related to oxidative stress, and their
regulations suggested high local concentration of iron and high
oxidative stress. We also suggest some taxonomic abundance
variations new to CRC by the quantitative metaproteomics. Our
results suggest that gut microbiome can vary in taxonomic
abundance and function during the pathogenesis of CRC.
Metaproteomics can provide functional information of intestinal
microflora and can be a clinical diagnostic method in the future.
Clinicians may use the 20 most discriminating proteins to
diagnose CRC. Manufacturers can invent a test card for the 20
proteins and patients only need to use their fecal sample to check
the risk of CRC in a non-invasive and convenient way. Fecal
microbial transplantation to reduce the production of ROS and
iron in gut can be a promising method for the prevention of CRC.

METHODS
Clinical sample collection

Fresh stool samples from newly diagnosed CRC patients prior to any
clinical treatments and healthy volunteers were collected in Changhai
Hospital (Shanghai, China). All the participants have provided written
informed consent prior to the study. Individuals with diabetes, mental
disease, gastrointestinal diseases, infections, or who had taken antibiotics
during the past 6 weeks before the sample collection were excluded. All
participants received only normal Chinese diets 2 months prior to the
sample collection. A Chinese diet mainly includes wheat, rice, seasonal
vegetables, and lean meats like pork, chicken and beef. Fecal samples were
collected in sterile collection tubes in the hospital and sent to our
laboratory within 2 h. All fecal samples were stored at —80 °C and handled
within 1 month after collection.

Sample preparation and microbial protein extraction

Microbial cells were enriched from the fecal samples by differential
centrifugation according to a method reported by Tanca et al.>” Briefly,
fecal samples were suspended in 45 mL phosphate-buffered saline (PBS),
vortexed for 45 min, and then centrifuged at 500 x g for 5 min to remove
food debris. The supernatant was collected and stored at 4 °C. The pellets
were resuspended in 45 mL PBS, and the above procedure was repeated
twice. For each sample, 3 tubes of supernatant were collected, combined,
and centrifuged at 10,000 x g for 10 min. The pellets were collected and
washed by 2 mL deionized water.

The final pellets were frozen in liquid nitrogen and grinded into powder.
The powder was collected and suspended in a sodium dodecyl sulfate
(SDS)-based buffer (2% SDS, 100 mM dithiothreitol (DTT) in 20 mM tris-HCl,
pH=28.8) at 1:10 (w:v), vortexed, and heated at 95°C for 30 min. The
suspension was centrifuged at 20,000xg for 10min at 4°C, and the
supernatant was collected for protein extraction. Proteins were extracted
by acetone precipitation (6 mL acetone per 1 mL sample) overnight. The
purified proteins were collected by centrifugation at 12,000 x g for 10 min
and redissolved in 7M Urea and 1% SDS aqueous solution. The final
concentrations of the protein samples were adjusted to 1mg/mL.
Bicinchoninic acid (Beyotime, Shanghai) method was used to quantify
the extracted proteins, and SDS polyacrylamide gel electrophoresis was
used to evaluate the quality of the protein extracts.

The protein extracts were reduced by DTT (5 uL 200 mM DTT per 100 pL
sample), alkylated by iodoacetamide (IAA) (20 uL 200 mM IAA per 100 pL
sample), and then subjected to trypsin digestion (20 ug trypsin (from
Beijing Hualishi Technology Ltd) per 1 mg protein) overnight by following
a standard in-solution tryptic digestion protocol®®. Peptides from each
sample were purified and concentrated using Pierce C18 spin columns
(Thermo Fisher Scientific, Rockford, USA) and then quantified using Pierce
Quantitative Colorimetric Peptide Assay (Thermo Fisher Scientific,
Rockford, USA).

Liquid chromatography (LC)-MS/MS analysis

All samples were analyzed by an online nanospray Orbitrap Fusion Lumos
Tribrid mass spectrometer (Thermo Fisher Scientific, MA, USA) coupled
with a Nano ACQUITY UPLC system (Waters Corporation, Milford, MA). Ten
Ug peptides of each sample were analyzed in DIA mode. The peptides
were redissolved in 50 pL solvent A (0.1% formic acid in water) spiked with
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1x iRT standard (iRT Kit; Biognosys, Schlieren, Switzerland). Ten pL peptide
sample was loaded to an Acclaim PepMap C18 column (75 um x 25 cm)
and separated with a 120-min linear gradient, from 3% to 32% solvent B
(0.1% formic acid in acetonitrile). The column flow rate was maintained at
300 nL/min and the column temperature was maintained at 40 °C. The
electrospray voltage of 2100V was used. The full scan was performed for
m/z 350-1200 with the resolution of 120,000 at m/z=200, and the
maximum injection time was 50 ms. The MS/MS scan was performed with
higher-energy collision-activated dissociation for m/z 200-2000 with the
resolution of 30,000 at m/z= 200, and the maximum injection time was
64 ms. The collision energy was 35%, and the stepped collision energy was
5%. DIA was performed with 39 variable isolation windows with 1Da
overlap, and the total cycle time was 3s.

DDA mode was used for building a spectral library for protein
identification and quantification by DIA. Ten pg of peptides from each
sample were combined, and the mixture was redissolved in 80 pL buffer C
(20 mM ammonium formate in water, pH = 10.0 adjusted by ammonium
hydroxide). Then the combined peptide solution was subjected to a high-
pH reversed phase LC fractionation using an Ultimate 3000 system
(Thermo Fisher Scientific, MA, USA) with an XBridge C18 column (4.6 mm x
250 mm, 5 um) (Waters Corporation, MA, USA). A linear gradient was used:
5-45% buffer D (20 mM ammonium formate in 80% acetonitrile, pH = 10.0
adjusted by ammonium hydroxide) in 40 min. The column flow rate was
maintained at 1 mL/min and the column temperature was maintained at
30°C. Fractions were continuously collected each 4min during the
gradient. Each fraction was dried in a vacuum-freezing dryer, redissolved
in 50 uL solvent A (0.1% formic acid in water), and then subjected to LC-
MS/MS analysis. The injection volume was 5 pL. Dynamic exclusion was
enabled within 30s duration. MS/MS scan was performed with 1.6 Da
isolation window widths. The other MS parameters as well as LC gradient
conditions and LC column were the same as those in DIA experiments.

LC-MS/MS data analysis

DDA data were first analyzed using PEAKS Studio (version X, Bioinformatics
Solutions Inc,, Canada). MS1 tolerance was set to 7 ppm, and MS/MS
tolerance was 0.02 Da. All the DDA MS/MS spectra were searched against
the database of stool microbial proteomes downloaded from HMP
(4,854,034 protein entries, https://hmpdacc.org/, access data November
2017). Those identified with PSM-level false discovery rate (FDR) <1% were
assigned to a peptide from the HMP database. All the other DDA MS/MS
spectra with de novo sequencing average local confidence (ALC) threshold
>80% were then searched against the database combining SwissProt
human (20,416 protein entries, https://www.uniprot.org/, access date July
2019) and the NCBI nr bacteria (78,778,748 protein entries, https://www.
ncbi.nlm.nih.gov/, access date July 2019). Those identified with PSM-level
FDR <1% were assigned to a peptide from the SwissProt human plus NCBI
nr bacteria database. The remaining spectra with de novo sequencing ALC
threshold >80% were reported as de novo only results. Some of the de
novo only results were assigned to proteins from the HMP, SwissProt
human, or NCBI nr bacteria database using the SPIDER algorithm in PEAKS.
The rests were reported as not assigned as shown in Supplementary Fig. 1.

Then the DDA and DIA raw data were processed and analyzed by
SpectroMine (version 1.0.21621, Biognosys AG, Switzerland) with default
settings to search against a database combined from the HMP and the
identified NCBI nr proteins (11,994 entries). Trypsin was the digestion
enzyme. Carbamidomethyl (C) was specified as fixed modification.
Oxidation (M) was specified as variable modification. FDR cut-off on
PSM, peptide, and protein group level were 1%. The DDA and DIA
spectrum-centric search results were combined to generate a spectral
library for peptide-centric DIA analysis.

Raw data of DIA were then processed and analyzed by Spectronaut
(version 13.10.191212, Biognosys AG, Switzerland) with default settings. RT
prediction type was set to dynamic iRT. Decoy generation was set to
mutated. Interference correction on MS2 level was enabled. The top 3
filtered peptides that passed the 1% Q-value cut-off were used to calculate
the major group quantities. Protein inference was performed with IDPicker
algorithm®’ implemented in Spectronaut. Only the leading protein (with
the strongest evidence and ranked first by Spectronaut) in each protein
group was taken into consideration in subsequent statistical, functional,
and taxonomic analysis. Quality control was performed with QuiC
(Biognosys AG, Switzerland).
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Statistical, functional, and taxonomic analysis

Statistical analysis was performed using MetaboAnalyst (version 4.0,
https://www.metaboanalyst.ca/)°>. ROC curves were generated by 100
rounds of Monte-Carlo cross-validation using balanced sub-sampling. In
each round, 2/3 of the samples were used to build classification models,
which was validated on the 1/3 of the samples that were left out. LSVYM
was used as a classification method. Annotation of the differentially
expressed proteins was performed with Blast2GO integrated in OmicsBox
(version 1.2, https://www‘biobam‘com/omicsbox/)?’?’. The top hits were
assigned to the query proteins. In addition, eggNOG (version 4.5.1, http://
eggnogdb.embl.de/)”® was used to perform COG annotation. Identified
peptides were subjected to Unipept (version 4.0, https://unipept.ugent.be/)
for taxonomic analysis using the lowest common ancestor approach®’.
Abundance of each taxon was determined by summing the intensities of
all peptides corresponding to the taxon. Data visualization was conducted
with R (version 3.5.1, https://www.r-project.org/), ggplot2 (https://github.
com/tidyverse/ggplot2), and AntV G2 (https://github.com/antvis/g2).

Ethical statement

The subjects gave their informed consent for using the biological material
for research purposes. The study protocol was approved by the Shanghai
Changhai Hospital Ethics Committee.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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