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Simple Summary: In large-scale pig farming, alternative and safe antimicrobials are needed to
enhance pig nutrition. Seaweed bioactives, and in particular phlorotannins, have been reported
to have antimicrobial properties. However, their effect on the digestibility of pig feed is not well
understood. This study investigates the effect of these phenolics on the in vitro dry matter digestibility
of seaweed using an in vitro pig digestibility model. The effect of the phenolics when extracted
into their purified phlorotannin form, and blended directly into pig feed, was also tested using the
same model. The results found that, when added to the pig feed, purified phlorotannins had a
more pronounced effect on digestibility than seaweeds containing phenolics. In addition, the results
showed that given the seasonal variation within seaweeds, inclusion of whole seaweeds should be
based on phenolic concentration as opposed to percentage inclusion of seaweeds.

Abstract: Phlorotannins have been reported to have positive effects on pig health, including improved
gut health and digestibility. In this study, we investigate the effect of phenolics found in two
brown seaweeds, Ascophyllum nodosum and Fucus serratus, on in vitro dry matter digestibility of
seaweeds and commercial pig feed. Phlorotannin extracts and whole seaweeds were supplemented
into pig feed to test their effect on digestibility. Solid-phase extraction was used to purify the
phenolics to phlorotannins. The results showed a slight decrease in the digestibility of pig feed
that was found to be significant when phlorotannin extracts were added from either seaweed.
However, when whole A. nodosum was added to the pig feed, the effect on digestibility was less
pronounced. Specifically, no significant difference in digestibility was observed at inclusion rates
up to 5%, and thereafter results varied. A difference in digestibility was also observed in the
same species at the same inclusion rate, collected from different seasons. This suggests that other
compounds, e.g., polysaccharides, are having an effect on digestibility when whole seaweeds are
supplemented to animal feed. This research has also highlighted the need to base supplementation
on phenolic concentration as opposed to a standardised percentage inclusion of seaweeds to ensure
that digestibility is not adversely affected.
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1. Introduction

Due to the increasing human population across the world, the need to supply food products using
more innovative and sustainable techniques has become of paramount importance. Edible seaweeds
have been used widely in oriental cuisine for human consumption [1] and have shown in recent years
that, if farmed or harvested sustainably, they are renewable [2,3]. The seaweed used in animal feeds
commercially, however, has been limited to date. Seaweed as an animal feed supplement has been
shown to enhance pig growth and help improve the digestibility in animal feeds by providing bioactive
phytochemicals [4]. Seaweeds have also been used to feed livestock for thousands of years from the
Ancient Greeks to modern-day Icelandic famers [5,6]. In Iceland, sheep, cattle and horses have all been
fed processed seaweed, dried using geothermal heat, which reduces processing costs [7]. On the west
coast of Scotland Pelvetia, a brown seaweed (Phaeophyceae) is fed to pigs in order to fatten them up
before market [7]. Whilst there are some historical accounts of animal rearing using seaweed as a high
proportion of the diet, there are fewer known commercial and scientific trials. A review by Corino et
al. [8] summarises studies to date that have reported improvements in digestibility and overall animal
health through the supplementation of seaweeds (and/or extracts) to animal feeds in pigs. In addition
to their nutritional benefits, in recent years, seaweed compounds, specifically phenolics have gained
significant attention for their potential antimicrobial [9–11] and anti-methanogenic [12,13] effects in
livestock. Although pigs have the lowest methane emission when compared to other livestock, they still
produce an estimated CH4 emission of 0.8, 2.4 and 8.2 g/head for weaned piglets, fattened pigs and
sows, respectively [14].

Seaweed is an advantageous aquatic plant to be incorporated into feeds from a sustainability
aspect as it does not compete with land space for food crops and does not require fertiliser in order to
grow [15,16]. Seaweed can also be sustainably farmed or harvested from naturally growing sources,
allowing natural regeneration [15]. However, seaweed incorporation into animal diets, especially for
monogastric animals such as pigs, has had largely varied results. An early study (1979) by Jones et
al. [17] reported that the supplementation of brown seaweed into pig diets at high inclusion rates of
10% has a negative effect on weight gain. A study by Michiels et al. [18], however, showed weight gain
after 11 days post weaning when compared to the control diet when the pig feed was supplemented
with between 2.5 and 10 g/kg of A. nodosum (whole feedstock). Inclusion of sun-dried A. nodosum in the
diet at 20 g/kg for 7 days has also been shown to reduce faecal shedding of E. coli 0157:H7 in cattle [19].
Other studies have used seaweed extracts that contain the polysaccharides laminarin and fucoidan.
The inclusion of these extracts allowed for a lower lactose content in the feed given to post weaning
piglets and was found not to adversely affect the growth rate [20]. McDonnell et al. [21] reported
that by supplementing the diet of weaning piglets with laminarin- and fucoidan-containing seaweed
species, they also showed an increased daily weight gain. Most digestibility studies, however, do not
access the impact of seasonal variation, which is important for commercial application. In addition,
there is a lack of understanding of the effect of different seaweed compounds on dry matter digestibility,
particularly in the case of phenolics.

Seaweeds are grouped into three phyla according to their pigmentation, known commonly
by colour: Chlorophyta (green algae), Phaeophyta (brown algae) and Rhodophyta (red algae) [22].
Each hosts unique phytochemicals (e.g., lipids, phenolics, and alkaloids) and complex carbohydrates,
mainly in the form of sulphated (e.g., carrageenan) and non-sulphated (e.g., alginate) polysaccharides.
The carbohydrate content in all seaweeds is high. However, brown seaweeds tend to have the
highest non-starch polysaccharide content, whereas red and green seaweeds have higher amino
acid content [23]. Livestock diets do not typically contain these complex polysaccharides and
literature studies to date of their digestibility in both ruminant and monogastric animals are limited.
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However, some brown seaweeds, including Laminaria digitata, A. nodosum and Fucus vesiculosus,
have also been used commercially in animal feeds [24], suggesting that their dietary properties are
comparable to terrestrial-based fed ingredients. One commercial seaweed feed, OceanFeed Swine®,
which is a blend of different seaweed species, has been reported to have positive results in terms of
daily weight gain and feed efficiency in nursery and pig-fattening stages of development [25].

Seaweeds are a largely seasonal plant containing varied amounts of phenolics, fatty acids, protein
and minerals throughout the year [26–29]. Brown seaweeds contain phenolic compounds known as
phlorotannins, which are unique to this class of seaweed. Although these phenolic compounds are
commonly compared to the terrestrial tannins, they are structurally very different [5]. The phlorotannins
in seaweeds, however, do have some effects similar to terrestrial plant tannins such as binding to
protein [30,31]. Gulzari et al. [32] hypothesised that phlorotannins from seaweed-supplemented soybean
meal formed complexes with proteins and fibres in the meal and reduced its overall digestibility in the
rumen. However, few studies have looked specifically at the effect of phlorotannins on the digestibility
of meal in ruminant or monogastric animals.

The aim of this study was to test the in vitro dry matter digestibility of the brown seaweeds
that were rich in phenolics in order to assess the correlations between their digestibility and the
phlorotannins levels. Previous studies have shown that phlorotannins could potentially help improve
the gut health of pigs [8,10]. However, a review by Huang et al. [33]. highlighted that terrestrial tannins
can inhibit digestion when added at high concentrations in livestock diets. Therefore, it is important to
understand the effect of phlorotannins on digestibility in order to ensure that their addition does not
negatively impact on the weight gain of the animals. In addition, whilst phlorotannins act in a similar
way to condensed and hydrolysed tannins from terrestrial plants, they are structurally very different,
and little is currently known about their effects in the digestive tract of livestock, in particular pigs.
This study investigates the dry matter digestibility of two brown seaweeds, A. nodosum and F. serratus,
that are known to be rich in phenolics and the effect of phenolic content on the digestibility of the
whole seaweed biomass. The phenolic content in brown seaweeds is known to vary seasonally [10,28],
and therefore seaweed collected from different seasons were used to study this effect. To better
understand the effect of phenolics on the digestibility of the seaweed biomass, a further in vitro study
was performed with and without polyethylene glycol (PEG). Some methane migration studies have
shown that PEG inhibits the activity of phenolics [13,34]. This approach was therefore taken to help
better understand the role of phenolics in seaweed biomass digestibility. Phenolic compounds and
tannins are known to bind to proteins and fibre, with a higher affinity for the protein fractions [35].
Therefore, purified phlorotannin extracts were isolated from the phenolic fraction and blended with
protein-rich commercial pig feed to assess the specific effect of the phlorotannins as opposed to the
whole seaweed that contains other macromolecules including chlorophylls, carotenoids and complex
mono-/polysaccharides that might affect digestibility.

2. Materials and Methods

2.1. Collection of Seaweed Samples

A. nodosum and F. serratus, two intertidal brown seaweeds, were collected by hand at the end of
each month from an artificial lagoon behind a breakwater in Bangor, Northern Ireland (54◦39′58.6′′ N
5◦39′53.4′′ W). Samples were identified by a marine phycologist, collected and stored in plastic sample
bags to be transported to the laboratory. Within 3 h of collection, the samples were washed with fresh
water to remove particulates and grazing species before being frozen for storage at −20 ◦C. The whole
plant was used for each sample collected. Approximately 200 g wet weight was collected for each
species at each collection point. The dry matter was the mass of sample after freeze drying taken away
from the mass of the sample before freeze drying.
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2.2. Seaweed Processing

Frozen seaweed samples were lyophilised, then ground using a Polymix PX-MFC 90D mechanical
grinder fitted with a 2 mm sieve. Samples were weighed before and after lyophilisation to determine
the dry matter (DM) of samples. They were then placed in plastic bags and stored in the freezer at
−20 ◦C until used for analysis. Samples for commercial feed study were purified to ensure that the
activity measured was due to the phlorotannins only. Samples were purified by solid-phase extraction
(SPE) using Amberlyst XAD 7HD. Dried seaweed (approximately 10 g) was stirred using a magnetic
flee with acetone/water (7:3 v/v, 200 mL) for 3 h at room temperature. The seaweed extracts were then
centrifuged (5000 rpm for 10 min). The supernatant was placed on the rotary evaporator to remove the
acetone. The aqueous mixture was then added to the Amberlyst XAD 7HD beads (10 g) in a solid-phase
extraction (SPE) column. The column was first eluted with water (3 × 200 mL) and then with ethanol
(3 × 100 mL). The ethanol was then removed by rotary evaporation and then the dried material was
stored in the freezer until it could be used for biological analysis.

2.3. Proximate Analysis

2.3.1. Proximate Measurements

The ash content, acid detergent fibre (ADF) and neutral detergent fibre (NDF) were measured
using the same methods as reported by Van Soet et al. [36]. Briefly, ground seaweeds were analysed
for NDF by boiling in neutral detergent (ND) solution, amylase and sodium sulphite for 1 h. For ADF,
the ground seaweed was boiled for 1 h in acid detergent solution. Crude protein (CP) was calculated
by measuring the nitrogen content and multiplying it by 5 [37]. The nitrogen content was measured
using the Dumas method using Leco Protein/N Analyser (FP-528, Leco Corp., St Joseph, MI, USA) [38].
Gross energy (GE) content was determine by AFBI Hillsborough Analytical Services using an isothermal
automated bomb calorimeter (PARR Instrument, Model 6300, Illinois, IL, USA).

2.3.2. In Vitro Dry Matter Digestibility (IVDMD)

In vitro digestion was measured using a technique adapted from Tiwari and Jha [39]. A three-step
enzymatic digestion technique was used to determine the apparent total tract digestibility of dry matter
(DM). An amount of 1 g of digestible sample was placed in a flask. Then 50 mL of phosphate buffer
solution 1 (0.1 mol/L, pH 6.0) was added to the flask followed by 20 mL of hydrochloric acid (HCl)
solution (0.2 mol/L). The pH was adjusted to 2.0 by mixing with HCl solution (1.0 mol/L) or sodium
hydroxide (NaOH) (1.0 mol/L). A volume of 1 mL of chloramphenicol (34 mg/mL in ethanol) was added
to the solution to prevent bacterial growth during hydrolysis. A volume of 2 mL of freshly prepared
pepsin solution was added to the solution which was prepared by adding pepsin (0.75 g, Sigma CAT
NO 9001-75-6, Dorset, UK) to 30 mL of ultra-pure water. The flask was then closed and incubated
in a water bath at 39 ◦C for 2 h. A volume of 20 mL phosphate buffer solution 2 (0.2 mol/L, pH 6.8)
was then added to the samples and 10 mL of NaOH solution (0.6 mol/L). The pH was adjusted to
6.8 with HCl (1 mol/L) or NaOH (1 mol/L) and 6 mL of pancreatin solution was added. Pancreatin
solution was made by adding 3 g pancreatin (Sigma CAT NO 8049-47-6) to 90 mL ultra-pure water.
Hydrolysis was then continued under the same conditions for a further 4 h.

The IVDMD was calculated as follows:

IVDMD = (DWH − DWR)/DWH × 100

where
DWH = dry weight of sample before hydrolysis;

DWR = dry weight of residue.
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To counteract the effect of the phlorotannins on digestibility, a solution of PEG (MW 4000)
(Fluka Research Chemicals) in water was added in different volumes to achieve the required PEG:
phlorotannin (PT) ratio. Phlorotannins were extracted from seaweeds collected in May as this month
had the highest concentration of phlorotannins and required less biomass to obtain the concentration
required. A stock solution of PEG 4000 was prepared at a concentration of 5 mg/mL PEG in water.
The stock solution was sonicated until fully solubilised. The concentration of the phenolic content
of seaweeds were calculated using the Folin–Ciocalteu (FC) assay which gives the concentration of
phenolics in phloroglucinol equivalents mg/g of seaweed (see Section 2.4). The volume required of PEG
stock solution was then calculated for each seaweed digestibility based on weight/weight calculations.
Molar equivalents are not possible when using biological matrixes such as these due to the unknown
molecular mass of the mixture of compounds present in the extracts.

2.4. Folin–Ciocalteu (FC) Assay

The phenolic content was measured using the FC assay using a method described by Ford et
al. [10]. Briefly, phenolic extracts were prepared as per Section 2.2 (seaweed processing). The resultant
extract was then diluted ×40 before it was added to the FC reagent at a dilution of 1:1 with deionised
water (0.5 mL). After 5 min, 20% aqueous sodium carbonate was added (2.5 mL). The solution was then
left to stand for 40 min in the dark before the absorbance was recorded at wavelength of 755 nm on a
Jenway 6305 fixed-wavelength spectrophotometer. The absorbances were converted to a concentration
in phloroglucinol equivalents using a calibration curve (R2 > 0.95) of phloroglucinol.

2.5. Gel Electrophoresis

Samples were prepared using seaweed polyphenols previously extracted and purified using
solid-phase extraction and produced a water-soluble powder. Standard samples were prepared at a
concentration of 1 mg/mL in deionised water of the phlorotannins (extracted from seaweeds collected
in May) and pepsin enzyme (Sigma) and PEG (2000 and 4000 MW). When mixtures were used,
samples were prepared at 1:1 ratio (w/w). After preparation, the samples were centrifuged for 5 min at
5000 RPM to remove particulates. Sample solution (30 µL) was added to LDS buffer (10 µL, Invitrogen)
and vortexed. This solution was then added to 10 well gel plates (NuPAGE 4–12% BisTris gels) along
with a PageRuler pre-stained protein ladder (Thermo Scientific, Loughborough, UK) which was run in
NuPAGE MES SDS running buffer at 200 V for 30 min. A Powerease 300 W powerpack was used with
a Xcell sure-lock gel chamber for running the gel plates. After 30 min, the gel plates were removed
from the sure-lock chamber and carefully removed from the plastic casing. The gel was then placed in
staining solution (Coomassie® brilliant blue; 0.25 g in 125 mL ethanol, 100 mL deionised water and
25 mL acetic acid) for 4 h. After 4 h, the gel was removed and left overnight in de-staining solution
1:1:8 v/v methanol:acetic acid:water). The gel was then photographed.

2.6. Statistical Analysis

All the ANOVA statistical calculations were performed using IMB SPSS v25
(SPSS Inc, Chicago, IL, USA). All data sets were analysed using one-way ANOVA and post hoc
with LSD multiple comparison test, with the exception of Figure 1. For this data set, linear regression
analysis was performed with a significant test for regression on the data in excel to test the null
hypothesis that phlorotannin content will have no effect on digestibility. A significance level of p < 0.05
was used for statistical analysis.
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Figure 1. Correlation of phenolic content in phloroglucinol equivalents mg/g (DM) to in vitro
digestibility of dry matter (%IVDMD) for A. nodosum (A) and F. serratus (B).

3. Results

3.1. Proximate Analysis

The in vitro dry matter digestibility of the brown seaweeds was studied to determine the effect of
phenolics in a monogastric model. The proximate analysis investigated included GE, CP, ADF, NDF,
DM, ash, IVDMD and phenolic content. The results of this analysis are shown in Table 1. In terms of
CP, there was no significant difference found between A. nodosum and F. serratus, throughout the year,
with the exception of F. serratus in spring, which showed a significant (p < 0.001) increase in CP from
14.5 ± 1.2 to 20.7 ± 1.2%. Overall, the CP was found to be significantly higher (p < 0.05) in winter and
spring for both species.

The NDF and ADF measurements are given in Table 1. The effect of seasonal variation was
apparent in A. nodosum in ADF data, with an exponential increase from summer to winter from 28.4± 5.8
to 48.9 ± 0.8%, although the increase was only found to be statistically significant between summer
and autumn (p = 0.002), whereas no seasonal effect was observed in the ADF results for F. serratus.
No statistically significant difference was found in the NDF results for F. serratus between seasons.

When comparing the phenolic content between seaweed species (Table 1), no significant difference
was observed between the phenolic content of A. nodosum when compared to F. serratus in spring and
summer (p = 0.120), but there was a significant difference (p < 0.05) between species in both autumn
and winter. In autumn, F. serratus showed the greatest increase in phenolic content to 43.4 ± 2.6
(p < 0.001) mg/g compared to compared to 29.4 ± 1.4 (p < 0.001) for A. nodosum. To better understand
the relationship between the phenolic content and digestibility, the phenolic content was correlated
to the IVDMD, as shown in Figure 1. A linear response was observed for the relationship between
phlorotannin content and IVDMD for A. nodosum with R2 value 0.9745 (Figure 1A), which was found
to be statistically significant (p = 0.01). In F. serratus, the relationship between phenolics and IVDMD
showed the opposite trend, whereby a negative correlation was observed. This, however, was not
statistically significant for IVDMD (Figure 1B).
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Table 1. Proximate analysis of A. nodosum and F. serratus. All parameters are expressed in terms of % of the overall biomass unless otherwise stated.

Species of Seaweed Season
Gross Energy

MJ/kg DM
Dry Matter Ash Crude Protein

(CP)
Acid Detergent

Fibre (ADF)
Neutral Detergent

Fibre (NDF) IVDMD Phenolic Content FC
Assay mg/g (DW)

Ave SD Ave SD Ave SD Ave SD Ave SD Ave SD Ave SD

A. nodosum

Winter (Jan) 13.92 89.23 0.45 30.20 2.45 11.58 3.06 16.90 0.58 48.48 0.82 28.24 6.78 19.20 2.74
Spring (April) 14.02 88.50 0.05 28.36 0.38 14.50 1.19 15.34 4.68 40.26 3.29 43.32 1.26 27.46 2.95
Summer (July) 15.08 88.66 0.20 22.61 1.23 7.27 2.22 15.04 1.68 28.39 5.80 50.79 1.47 29.28 1.26
Autumn (Nov) 14.61 88.38 0.06 23.49 0.39 6.79 1.34 18.79 0.87 41.63 1.32 39.01 2.41 24.53 1.39

F. serratus

Winter (Jan) 14.39 89.70 0.06 33.15 0.39 13.29 1.34 21.94 0.87 42.83 1.32 23.85 2.41 29.42 1.39
Spring (April) 15.16 90.78 0.60 26.94 3.37 20.73 1.53 24.54 3.51 45.04 7.73 39.99 2.42 31.70 2.96
Summer (July) 16.55 89.83 0.53 19.34 0.66 7.77 0.69 22.81 1.82 43.73 4.69 38.10 7.93 26.49 1.42
Autumn (Nov) 15.06 89.50 0.07 26.44 1.28 9.85 1.08 25.71 2.15 44.49 5.21 28.69 2.88 43.40 2.56
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3.2. Effect of Phenolics on Digestibility with and without PEG

Purified phlorotannin extracts were complexed with different molecular weights (MW) of PEG
to test which would bind the best to the phlorotannins in A. nodosum and F. serratus (Figure 2).
The complexes were tested with the FC assay.

Figure 2. Change in absorbance of the FC assay upon binding to different PEG MW for purified
phlorotannins from (A) A. nodosum and (B) F. serratus extracted from samples collected in May.

In A. nodosum, there was no significant difference between the control and PEG of a MW of
200 to 600. However, for PEG 1000 MW upwards, a statistically significant decrease (p < 0.005)
in absorbance was observed. However, in F. serratus, all molecular weights were found to have a
significant decrease in absorbance (p < 0.001) with respect to the control.

To verify that PEG was inhibiting the effect of the phlorotannins, gel electrophoresis was used
to measure the change in MW of proteins when using pepsin, which was used as an enzyme in the
in vitro study. Pepsin was bound to purified phlorotannin and showed a distinct change in the MW
when compared to the protein ladder. When PEG was incorporated into the matrix, the spot for the
phlorotannin–protein complex was diminished and the pure pepsin spot was recovered (Figure 3).
The results suggest that the phlorotannins are binding to the enzymes in the digestive tract but the
enzyme was recovered when PEG is added, therefore confirming that PEG is counteracting the effect
of the phlorotannins on the proteins.
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to right after protein ladder: (a) pure pepsin, (b) pepsin + Asco phlorotannin, (c) pepsin + Fucus
phlorotannin, (d) pepsin + Asco phlorotannin + PEG 2000MW, (e) pepsin + Asco phlorotannin +

4000MW, (f) pepsin + Fucus phlorotannin + PEG 2000MW and (g) pepsin + Fucus phlorotannin +

PEG 4000MW.

Digestibility experiments were set up with and without PEG to measure the effect that the
phlorotannins are having on the digestibility of the two seaweed species over the year. Given that
gel electrophoresis showed no difference, 4000 MW was selected for the following studies. PEG was
added into the seaweed at ratios of 1:1, 1:3 and 1:5 phlorotannin: PEG, the phlorotannin content was
calculated using the FC assay and expressed in mg/g PGE.

Figure 4 shows the effect on digestibility when PEG 4000 MW is added to the seaweed samples
in the in vitro digestibility study. There was no significant decrease in the IVDMD when PEG was
added at any ratio, in any season accept for winter for A. nodosum. In autumn, however, there was a
statistically significant decrease in IVDMD when PEG was added at a 1:1 ratio (p = 0.015) and 1:5 ratio
(p = 0.003) when compared to the PEG 0 control. In F. serratus, a significant decrease was observed in
winter at a 1:1 ratio (p = 0.028), whereas there was a significant increase in digestibility in summer at
all ratios: 1:1 (p = 0.012), 1:3 (p = 0.017), 1:5 (p = 0.011). The phenolic content (Table 1) in F. serratus was
found to be the lowest (p < 0.05) at 26.49 ± 1.42 mg/g in summer compared to the other seasons tested
in this species.



Animals 2020, 10, 2193 10 of 16

Figure 4. In vitro DM digestibility (IVDMD) profiles of (A) A. nodosum and (B) F. serratus with and
without PEG. Three different ratios of PEG were used: 1:1, 1:3 and 1:5 phlorotannin:PEG (p < 0.05,
* = significant decrease; � = significant increase).

Given the mixed results in this study, purified extracts were isolated to study the specific effect of
the phlorotannins on the digestibility, which is discussed in the next section.

3.3. Effect of Phlorotannins on Commercial Pig Feed

Purified phlorotannins extracts were mixed at different concentrations with a commercial feed
and their effect on digestibility was recorded. The results are shown in Figure 5. A significant decrease
(p < 0.05) in IVDMD was observed in A. nodosum (Figure 5) between the control and all concentrations
of phlorotannins added. The same trend was also observed in F. serratus. However, when comparing
A. nodosum to F. serratus, there was an observed difference in digestibility between both species when
phlorotannins were added. This was found to be statistically significant at concentrations of 0.781, 3.125,
20 and 50 mg/mL. However, at lower concentrations of 0.781 and 3.125 mg/mL, IVDMD was found to be
higher in A. nodosum than F. serratus, whereas the opposite trend was observed at higher concentrations
of 20 and 50 mg/mL. When pure phlorotannin extracts were added directly to the pig feed, the results
clearly show that phlorotannins found in both A. nodosum and F. serratus affect the digestibility of the
pig feed. At lower concentrations of <3.125 mg/mL, F. serratus was less detrimental to the digestibility
of a high protein feed than A. nodosum, whereas the opposite occurs above 3.125 mg/mL.

Figure 5. In vitro DM digestibility (IVDMD) of a commercial pig feed when different concentrations
of phlorotannins isolated from A. nodosum (purple) and F. serratus (green) in May were added.
Control (commercial pig feed, grey) (* = p < 0.05; ** = p < 0.001).

3.4. Effect of Seaweeds Added to Commercial Pig Feed

Finally, the same digestibility study was repeated using the whole seaweed plant (without PEG), as
opposed to just the phlorotannin extracts, in order to investigate the effects of other compounds found
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in A. nodosum on the digestibility of the pig feed, in addition to the phlorotannins. Our results (Figure 6)
show that there was no significant difference in digestibility between samples collected in winter and
spring at up to 5% inclusion, which is equivalent to 0.95 and 1.9 mg/g (Table 2) of phlorotannins,
respectively, in comparison to the control (pig feed only). At 10% inclusion, a significant drop (p < 0.01)
in digestibility was observed from 77.8 (±3.5) % to 61.0 (±3.3) % in winter (TPC ≈1.9 mg/g), whereas no
significant difference in digestibility was observed in May, which had a significantly higher phenolic
content (TPC ≈3.8 mg/g). At 20% inclusion, the opposite trend was observed, whereby the higher
concentration of phenolics, ≈7.6 mg/g in May showed a lower digestibility of 51.0 (±2.8) %, compared to
winter which was 59.2 (±8.1) %. However, this was not found to be significant.

Figure 6. Change in in vitro DM digestibility (IVDMD) of a commercial pig feed when different
percentages of A. nodosum were added from samples collected in Jan and May. * = p < 0.05 between
control and % inclusion; ? = p < 0.05 between pairs.

Table 2. Concentration of phlorotannins at each inclusion rate.

% Inclusion 1 3 5 10 20

TPC (mg/g) DW Winter 0.19 0.57 0.95 1.9 3.8

Spring 0.38 1.14 1.9 3.8 7.6

4. Discussion

Brown seaweeds are relatively low in protein compared to other feed sources, such as alfalfa or
soy [40,41]. The highest CP contain in this study was found in winter and spring for both species and
is likely caused by N-based fertilisers leaching into coastal areas, as terrestrial crops and grasslands
tend to be fertilised during this period [42]. Al-Yaman et al. [43] reported that the phenolic contents in
brown seaweeds correlate to their protein content. However, no correlation was observed between
CP and phenolics in this study. It is noteworthy that the species of brown seaweeds differed between
these two studies.

The NDF results of the seaweeds studied have been found to be comparable to other terrestrial
forage, e.g., alfalfa [44,45], corn and wheat [46], which have been reported to be approximately 45%.
In the ADF results, no seasonality effect was observed in either seaweed species. The difference was
not found to be statistically significant between seasons. Typically, ADF <35% are desirable in livestock
diets [47]. In this study, the digestibility of the whole seaweed of F. serratus was found to have lower
digestibility than A. nodosum seaweed, with ADF in the range of 21 to 26% and 15 to 18%, respectively.
While a correlation between phenolic and ADF content for A. nodosum was observed, this trend was
not found in F. serratus. The polymer content might also account for the difference in digestibility.
In brown seaweeds, the polymers are mainly alginates and sulphated fucoidans [48,49]. In humans,
alginate has been reported to be indigestible and is likely to have the same effect in pigs given that our
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digestive systems are very similar [50]. It is considered beneficial as an anti-obesity fibre that promotes
weight loss [51,52], whereas fucoidan has been reported to have no effect on weight loss in humans
in a recent obesity study [53]. Therefore, it is likely than fucoidan is more digestible than alginate in
brown seaweeds. Fletcher et al. [54] have reported the fucoidan content in A. nodosum is significantly
higher than F. serratus throughout the year Therefore, a higher fucoidan content in A. nodosum may
have contributed to the significant difference in ADF.

When comparing IVDMD to total phenolic content, the different trend observed between
A. nodosum and F. serratus suggests that seaweed species produce an effect on digestibility.
Studies of phenolic compounds in seaweeds have reported that phlorotannin structures vary between
species [55–57]. It is likely that phlorotannins with different linkages, functional groups, reactivities and
molecular weights interacted and/or bound differently with other macromolecules within the seaweeds,
namely polysaccharides and proteins, thus causing a different effect on digestibility.

Polyethylene glycol (PEG) is used to counteract the effect of tannins in the animal feed [6].
This method has been used for terrestrial tannins and with phlorotannins from brown seaweed [35].
Polyvinylpyrrolidone (PVP) and PEG have been used to bind to tannins for the last three decades.
However, the same has been performed on conventional terrestrial tannins [6]. The use of PEG and
PVP with molecular weights (MW) between 2000 and 35,000 has been tested for their binding abilities
with terrestrial tannins [58], with the most commonly used molecular weights between 3500 and
4000 [6]. The FC assay is a colorimetric assay based on the redox potential of the substrate and its
ability to complex with the metallic FC reagent [59]. The reaction produces a dark blue colour upon
complexation and this can be measured at 755 nm. Therefore, the PEG MW best at counteracting the
effect of the phlorotannins should have the largest decrease in absorbance. In the PEG binding study,
the most pronounced decrease was observed in F. serratus at PEG 2000 MW. This would suggest that
PEG 2000 was the best phlorotannin binder for F. serratus phlorotannins. However, it is noteworthy that
there was an obvious precipitate formed from 1000 to 20,000 MW in both seaweeds tested, which could
have caused higher readings in the absorbance due to turbidity and the precipitates absorbing the light
at all wavelengths. Further, the FC assay is a metal complex colorimetric reaction and therefore the
affinity between the phlorotannins and FC reagent is likely to be very different from that of the affinity
between the tannin and protein.

The gel electrophoresis showed that both PEG 2000 and 4000 MW successfully inhibited
phlorotannins. Previous studies have reported PEG 3350 MW at blocking phlorotannin [34] and
most terrestrial tannins studies have reported between 3500 and 4000 MW to be most effective [6].
Therefore, 4000 MW was used to mask the effect of phenolics in the subsequent study IVDMD study.
As PEG counteracts the effect of the phlorotannins, the results would suggest that PEG was only
successful at blocking the phlorotannins in F. serratus in summer at all ratios. However, at higher
phenolic concentrations, no significant difference in digestibility was observed, suggesting that the
ratios and ME of PEG used have not been successful at blocking the phlorotannins. The same trend
was observed in A. nodosum, whereby there was no significant difference in IVDMD between the
control and the samples complexed with PEG, suggesting that the PEG ratio and MW used was not
sufficient to bind this concentration of phenolics. PEG may have been less effective in the IVDMD
study compared to binding study (Figure 2) and gel electrophoresis (Figure 3) due to pH. The effect of
pH on the binding efficiency of terrestrial tannins has previously been reported by Makkar et al. [58].

The results of the PEG binding digestibility study (Figure 4) suggest that the phenolics found
in F. serratus in summer do affect digestibility, whereas no relationship was found when correlating
the IVDMD to phenolics (Figure 1). The lack of correlation in the results shown in Figure 1 may
be a result of the limitations in the FC assay, as discussed in a recent review by Ford et al. [60], as
opposed to a lack of relationship between phenolics and digestibility, thus highlighting the need to
improve characterisation methods used to measure phenolics in seaweeds. Further, as discussed above,
pH may have affected the correlation. In addition, these studies have investigated the digestibility
of the whole seaweed including the polymer fraction and other compounds as previously discussed,
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as opposed to the specific relationship between the phlorotannins on the animal feed used. The most
common method of inclusion to animal feeds is the inclusion (between 1 and 5%) of the whole seaweed
feedstock [5], as opposed to the crude (phenolics) or purified (phlorotannins) due to animal feed
regulations governing the use of extracts.

The results (Figure 5) clearly show that phlorotannins can negatively affect digestibility of the
pig feed. However, when whole seaweed (Figure 6) was added, the effect was significantly reduced.
This would suggest that the other compounds (most likely the polysaccharides) which form the
seaweed matrix are inhibiting the interaction between the phlorotannins and digestive enzymes,
thus counteracting the reduction in digestion. The results also show that higher concentrations of
phenolics can be added by using the whole feedstock as opposite to purified phlorotannin extracts
before effecting digestibility. However, in spring, 10% seaweed inclusion with ≈3.8 mg/g did not
affect digestibility, whereas 20% seaweed inclusion with ≈3.8 mg/g in winter significantly reduced
digestibility, thus confirming that other compounds, or a variation in phenolic structure, may be
affecting digestibility. In the literature, the most common inclusion rates reported are between 1
and 5% [5,30,41]. Although this would suggest that supplementing whole seaweeds, as opposed to
phlorotannin extracts, might be better to counteract the effect of phlorotannins on digestibility, it is
noteworthy to consider that the acetone/water yields may extract higher concentrations of phlorotannins
from the biomass than the buffer system used in the digestibility studies, thus also masking the effect
of the phlorotannins on digestibility. Further work is required to better understand the digestibility of
the polysaccharides, types of phlorotannins and other compounds found in seaweeds to determine the
overall effect of adding seaweeds to pig feed.

5. Conclusions

The work herein shows a clear correlation between the digestibility of pig feed and phenolics, when
the phenolics were purified in phlorotannin. In the two seaweeds studied, A. nodosum and F. serratus,
the addition of phlorotannin extracts caused a significant decrease in IVDMD. This relationship
becomes more complex when the whole seaweed plant was added. Further work is required to better
understand the inclusion of whole seaweeds in feeds. In addition, consideration needs to be given
to the effect of seasonality on the chemical composition of seaweed being added, as phenolics can
vary significantly within the same species during the year. Ideally, the seaweed should be harvested
when the phenolics are most abundant in order to reduce the overall amount of seaweed that needs to
be supplemented. This research has highlighted that supplementation should not just be based on
standardised percentage inclusion of seaweeds, but on the chemistry of biomass (e.g., phenolic and
biopolymers) to mitigate the effect on digestibility. To validate the use of seaweeds in pig feed, an animal
trial is required to gain a better understanding of the in vivo digestibility of seaweed-supplemented pig
feeds before seaweeds could be considered for use in commercial pig feed. In addition, further work is
required on the digestibility of other seaweed compounds and the bioavailability of the pholorotannins
to the animal if whole seaweed is to be supplemented.
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