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ABSTRACT

As chromatin accessibility data from ATAC-seq ex-
periments continues to expand, there is continuing
need for standardized analysis pipelines. Here, we
present PEPATAC, an ATAC-seq pipeline that is easily
applied to ATAC-seq projects of any size, from one-
off experiments to large-scale sequencing projects.
PEPATAC leverages unique features of ATAC-seq
data to optimize for speed and accuracy, and it pro-
vides several unique analytical approaches. Output
includes convenient quality control plots, summary
statistics, and a variety of generally useful data for-
mats to set the groundwork for subsequent project-
specific data analysis. Downstream analysis is sim-
plified by a standard definition format, modularity of
components, and metadata APIs in R and Python. It
is restartable, fault-tolerant, and can be run on local
hardware, using any cluster resource manager, or in
provided Linux containers. We also demonstrate the
advantage of aligning to the mitochondrial genome
serially, which improves the accuracy of alignment
statistics and quality control metrics. PEPATAC is
a robust and portable first step for any ATAC-seq
project. BSD2-licensed code and documentation are
available at https://pepatac.databio.org.

INTRODUCTION

Because cells package chromatin differently depending on
their function and phenotype, profiling chromatin accessi-
bility is a primary experimental approach for understanding
cell states (1–3). The number of chromatin accessibility ex-
periments has grown dramatically in recent years with the
introduction of the assay for transposase-accessible chro-
matin (ATAC-seq) (4). With ATAC-seq now widespread,

there is demand for analytical approaches (5,6), including
systematic processing pipelines to facilitate the goal of re-
producible research and ease cross-study comparisons (7,8).

To address this need we developed PEPATAC, a fast and
effective ATAC-seq pipeline that easily generalizes across
compute contexts and research environments. This pipeline
has been built over years of experience analyzing chromatin
accessibility experiments and implements several concepts
that make it effective. These include ATAC-specific quality
control outputs, both nucleotide-resolution and smoothed
signal tracks, and a serial alignment strategy to deal with
high mitochondrial contamination. Our serial alignment
strategy, or ‘prealignments’, allows the user to configure a
series of genomes to align to before the primary genome.
PEPATAC provides a framework that allows a user to
align serially in customized order to as many genomes as
desired, which will be useful for many situations, includ-
ing species contamination, dual-species experiments, repeat
model alignments, decoy contamination, or spike-in con-
trols.

While numerous ATAC-seq pipelines exist (for more in-
depth coverage see: 5, 6), PEPATAC is designed with mod-
ularity and flexibility as paramount design considerations
(Figure 1A). PEPATAC is compatible with the Portable
Encapsulated Projects (PEP) format (9), which defines a
common project metadata description, allowing projects
that use PEPATAC to be easily analyzed using any PEP-
compatible tool. It also provides the possibility for a single
project description to be shared across pipelines, computing
environments and analytical teams. PEPATAC is easily cus-
tomizable, including changing individual command settings
or even swapping specific software components by modify-
ing a few lines of human readable configuration files.

PEPATAC does not rely on any specific local or cloud
computing infrastructure, and it has already been deployed
successfully in various compute environments at multiple
research institutes to yield numerous peer-reviewed stud-
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Figure 1. PEPATAC is feature-rich with a logical workflow. (A) We com-
pared features across 14 ATAC-seq pipelines (AIAP (17); ATAC2GRN
(18); ATAC-pipe (19); ATACProc (20); CIPHER (21); ENCODE (22);
esATAC (23); GUAVA (24); I-ATAC (25); nfcore/atacseq (26); pyflow-
ATAC-seq (27); seq2science (28); snakePipes (29); Tobias Rausch (30)) and
PEPATAC stands out for being feature-rich . (B) Reads are preprocessed,
serially aligned to the mitochondrial genome, curated repeats and then the
nuclear genome. PEPATAC generates both smooth and exact signal plots,
called peaks, and QC output plots and tables.

ies (10–14). While all ATAC-seq pipelines use several com-
mon bioinformatic tools (Supplementary Figure S1), we
simplify the creation of a computing environment with the
required command-line tools using conda (15) or either
docker or singularity with the bulker multi-container envi-
ronment manager (16).

PEPATAC includes a well-documented code base with
detailed installation instructions, tutorials, and example
projects, so it is useful for both the bench biologist and
bioinformatician alike. We anticipate that this pipeline will
provide a useful complete analysis for basic ATAC-seq
projects and serve as a unified starting point for more ad-
vanced ATAC-seq projects.

MATERIALS AND METHODS

PEPATAC configuration

The PEPATAC pipeline is divided into two major parts
(Figure 1B). First, it processes each sample individually at
the sample level. Once sample processing is complete, the
project level part aggregates, analyzes, and summarizes the
results across samples. PEPATAC is composed of two pri-
mary Python scripts that may be run from the command-
line. Sample information and parameters are passed to the
pipeline as command-line arguments (see pepatac.py -
-help), making it simple to use as a standalone pipeline
for individual samples without requiring a complete project
configuration. Project level output is produced using the
project level pipeline (see pepatac collator.py --
help). PEPATAC is built using the Python module pyp-
iper (31), which provides restartability, file integrity pro-
tection, copious logging, resource monitoring, and other
features. Individual pipeline settings can also be config-
ured using a pipeline configuration file (pepatac.yaml),
which enables a user to specify absolute or relative paths
to installed software, change adapter input files for trim-
ming, and parameterize alignment and peak calling soft-
ware tools. This configuration file comes with sensible de-
faults and will work out-of-the-box for research environ-
ments that include required software in the shell PATH, but
it also may be configured to fit any computing environment
and adapt to project-specific parameterization needs.

Refgenie reference assembly resources

Like any genome analysis, PEPATAC relies on reference
genome annotations. To ensure that results are compara-
ble across runs, it’s important to use the same reference as-
sembly. To manage these assets in a reproducible and ro-
bust manner, PEPATAC uses refgenie. Refgenie is a refer-
ence genome assembly asset manager that simplifies access
to pre-indexed genomes and annotations for common as-
semblies and also allows generating new standard reference
genomes or annotations as needed while maintaining asset
provenance (33,34). For a complete analysis, PEPATAC re-
quires several refgenie-managed assets: fasta, chrom sizes,
bowtie2 index, blacklist, refgene tss, and feat annotation.
These can be either downloaded automatically or built
manually, which require a genome fasta file, a gene set anno-
tation file from RefGene, and an Ensembl gene and regula-
tory build annotation file. Using PEPATAC with seqOut-
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Bias requires the additional refgenie tallymer index asset
built for the same read length as the data. Many of these
assets may also be directly specified at the command line
should a user not have refgenie-managed versions available.
The TSS annotation file, region blacklist, and feature anno-
tation file may all be specified to use a local, user-specified
file. For example, while ENCODE provides a common set
of regions that are aberrantly overrepresented in sequenc-
ing experiments (e.g. a blacklisted set of regions) (35), a user
may create their own version of regions that should be ex-
cluded from consideration and point to this file manually.

File inputs and adapter trimming

PEPATAC sequentially trims, aligns, and analyzes se-
quences (Figure 1B). PEPATAC accepts sequence data in-
put in three formats: unaligned BAM, separated FASTQ,
or interleaved FASTQ format. The pipeline first converts
the input format into FASTQ (if necessary) for adapter
trimming. For adapter trimming, users may select between
skewer (36), trimmomatic (37), or an included Python tool
using command-line arguments or the PEP configuration
file. The pipeline stores quality control results including
the number of raw, trimmed, or duplicated reads, and runs
FastQC (38) if installed.

Prealignments and mitochondrial DNA

Because ATAC-seq data can have a high proportion of
reads mapping to the mitochondrial genome (from 15 to
50% in a typical experiment up to 95% in some experi-
ments (39)), we considered how to optimize the pipeline to
deal with abundant mitochondrial DNA (mtDNA). High
mtDNA exacerbates the alignment challenge caused by
nuclear-mitochondrial DNA (NuMts), which are mtDNA
sequences that have integrated into the nuclear genome
throughout eukaryotic evolution (40). NuMts represent
nonfunctional, truncated, and mutation-ridden copies of
mitochondrial protein-coding genes; therefore, we assume
that ATAC reads mapping to them are highly likely to be
erroneous alignments. The typical strategy is to align to the
mitochondrial and nuclear genomes simultaneously, and
then remove nuclear-mitochondrial DNA (NuMts) post-
hoc using a blacklist, but this suffers from three disad-
vantages: First, it is inefficient to align lots of mtDNA to
the larger nuclear genome; second, reads that match both
NuMt and mtDNA will be (incorrectly) split between the
two; and third, this approach relies on an accurate pre-
constructed annotation of NuMt locations, which may not
be available for every reference genome. Furthermore, due
to mitochondrial genetic diversity within and across cells,
some reads derived from true mtDNA may in fact map bet-
ter to the reference NuMt than to the reference mtDNA se-
quence. Also, reads that span the artificial breakpoint in the
linear mtDNA reference may find an adequate NuMt match
but would never align to the mtDNA.

We found that by separately aligning first to the mito-
chondrial genome, we alleviated the challenges with simul-
taneous alignments. To capture NuMts that span the arti-
ficial breakpoint induced by converting the circular mito-
chondrial DNA into a linear representation for alignment,

we use a doubled mitochondrial reference sequence, which
enables non-circular aligners to align reads that span the
breakpoint. By default, the pipeline is configured to align
reads first to the doubled mitochondrial reference genome
but may be easily configured to perform any number of ad-
ditional serial alignments.

Alignments, deduplication and library complexity

For prealignments and primary alignment, PEPATAC em-
ploys bowtie2 by default (41). Bowtie2 settings are config-
urable in the pipeline configuration file but come with sen-
sible defaults of -k 1 -D 20 -R 3 -N 1 -L 20 -i
S,1,0.50 for prealignments and --very-sensitive
-X 2000 for nuclear genome alignment. Users may op-
tionally use bwa (42) with settings similarly configurable
in the pipeline configuration file (default: -M). Following
alignment, reads with mapping quality scores below 10 and
any residual mitochondrial reads are removed and read
deduplication is carried out using samblaster (43), but pi-
card’s MarkDuplicates (44) or samtools (45) may also be
utilized based on user preference. PEPATAC utilizes pre-
seq (46) to calculate and plot sample library complexity at
the current depth and includes the number of independently
calculated duplicates (Figure 2A). The pipeline also projects
the unique fraction of the library at 10M total reads. These
metrics provide an estimate of library complexity and allow
the user to determine the value of subsequent sequencing.

Library QC metrics

For quality control, PEPATAC provides a TSS enrichment
plot, produced by aggregating reads present in regions 2000
bases upstream and downstream of a reference set of TSSs
(Figure 2B). Enrichment is calculated as the average num-
ber of reads in a 100 bp window around the TSS divided
by the average number of reads in the first 200 bases of
the entire region. This yields low signals in the tails with a
peak in the center, which we take to be the TSS enrichment
score. PEPATAC also produces a fragment length distribu-
tion plot (Figure 2C). A standard quality ATAC-seq library
is expected to yield clearly defined peaks at open chromatin
(<100 bp), mononucleosomes (200 bp), and sequentially
smaller peaks representing multi-nucleosomes at regular in-
tervals. To evaluate the enrichment of all reads across ge-
nomic partitions, PEPATAC plots both the fraction and cu-
mulative fraction of reads (FRiF and cFRiF, respectively) in
genomic features (Figure 2D). A novel feature of PEPATAC
includes the plotting of the fraction of reads in any feature
type, not solely in peaks. This is plotted as the cumulative
sum of reads in each feature divided by the total number of
aligned reads against the cumulative sum of bases in each
feature. The relative proportion of each feature can be then
be directly compared. The standard feature annotation pro-
duced and managed by refgenie includes Ensembl de-
fined enhancers, promoters, promoter flanking regions, 5’
UTR, 3’ UTR, exons, and introns in that order. Users can
specify an alternative annotation file, either a custom one
or simply a different sort order, using the --anno-name
pipeline parameter. For a quality sample, the proportion of
reads in peaks should be the most enriched, reflecting the
specificity of the peak calls for that sample.
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Figure 2. Example PEPATAC QC plots for reads and peaks. (A) Library complexity plots the read count versus externally calculated deduplicated read
counts. Red line is library complexity curve for SRR5427743. Dashed line represents a completely unique library. Red diamond is the externally calculated
duplicate read count. (B) TSS enrichment quality control plot. (C) Fragment length distribution showing characteristic peaks at mono-, di-, and tri-
nucleosomes. (D) Cumulative fraction of reads in annotated genomic features (cFRiF). Inset: Fraction of reads in those features (FRiF). (E) Signal tracks
including: nucleotide-resolution and smoothed signal tracks. PEPATAC default peaks are called using the default pipeline settings for MACS2 (32). (F)
Distribution of peaks over the genome. (G) Distribution of peaks relative to TSS. (H) Distribution of peaks in annotated genomic partitions. Data from
SRR5427743.

Signal tracks and peak calling

Alignments are used to generate two signal tracks: one that
records the exact location of transposition events, and one
that is smoothed (Figure 2E). These tracks may be used
for different downstream analyses; the exact track is use-
ful for analysis that requires nucleotide-resolution, while the
smoothed version is often preferred for visualization and
peak analysis. Reads, representing transposase cut-sites, are
extracted from the deduplicated, low-quality removed, pri-
mary genome mapped BAM file into a wiggle-like track.
For the exact signal track, these cut-sites are shifted +4
bases for positive strand reads and -5 bases for negative
strand reads. For the smooth signal track, we extend the
shifted exact sites ±25 bases to yield 50 bp smoothed win-
dows around the exact cut-site position. seqOutBias is
an optional tool that can be used to correct for enzymatic
(e.g. Tn5 transposase) bias and generate tracks for visual-
ization (47). The bias itself is corrected using a k-mer mask
for the plus and minus strand Tn5 recognition sites and by
taking the ratio of genome-wide observed read counts to the
expected sequence based counts for each k-mer (47). The k-
mer counts take into account mappability at a given read
length using GenomeTools’ Tallymer program (48).

An earlier study found multiple peak callers worked
well with chromatin accessibility data (49), and PEPATAC

provides the option to use F-Seq (50), MACS2 (32),
Genrich (51), HOMER (52), or HMMRATAC (53) for
peak calling, with parameters customizable in the pipeline
configuration file. MACS2 is used by default (--shift -
75 --extsize 150 --nomodel --call-summits
--nolambda --keep-dup all -p 0.01). The
default settings are intended to maximize recall and sen-
sitivity. More stringent settings can be easily adopted by
modifying the pipeline configuration file. Called peaks
are standardized by extending up and down 250 bases (a
tunable parameter, --extend) from the summit of each
peak to establish peaks 500 bases in width. Any peaks
which then extend beyond chromosome boundaries are
trimmed. Utilizing fixed-width peaks reduces bias toward
larger peaks in both count-based and motif analyses while
simultaneously improving the identification of consensus
peak sets by reducing the likelihood of extraordinarily large
peaks created through the union and merging of multiple
peak sets. Finally, peak scores are normalized to score per
million by dividing by the sum of scores over 1M.

PEPATAC also produces several plots detailing enrich-
ment of reads in peaks including: the distribution of peaks
across the genome by chromosomal location (Figure 2F),
the distribution of peaks relative to TSSs (Figure 2G), and
the distribution of peaks within genomic partitions (Figure
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2H). The TSS distance distribution shows the distance of
called peaks with respect to TSSs grouped in log-scale bins.
Finally, users may optionally employ HOMER to calculate
motif enrichments in called peaks (54).

Running multiple samples with PEPATAC

To run the pipeline across multiple samples in a larger
project, the pipeline uses the job submission enginelooper
(55), which employs the Portable Encapsulated Project stan-
dardized definition of project metadata (9) (Supplementary
Figure S2). This standard project format enables a pipeline
to be run on any project that follows the format, which is
simple, standardized, and well-documented. Looper en-
ables the PEPATAC pipeline to be run in any compute envi-
ronment, including locally (the default) on a single laptop or
desktop, or with any cluster resource manager. It also can be
used with containers. Additionally, looper's project for-
mat gives pipeline users access to APIs written in Python
and R for downstream analysis of pipeline results.

For the user whose environment is set up to run
containers, we enable container use with either Docker
or Singularity via a single image file or through the
multi-container environment manager, bulker (16). Using
bulker, PEPATAC may be run in containers across sam-
ples and compute environments, simplifying deployment by
requiring only bulker and the PEPATAC pipeline itself,
eliminating the need to install each required package inde-
pendently.

Aggregating results from multiple samples

To summarize and incorporate data across samples, the sec-
ond step in a PEPATAC analysis is to run a project-level
pipeline (pepatac collator.py) that identifies consen-
sus peaks across a project and calculates sample coverage of
those consensus peaks in a convenient table for easy down-
stream analysis. To establish consensus peaks, PEPATAC
identifies overlapping (1 bp, a tunable parameter: --min-
olap) peaks between every sample in a project and de-
fines the consensus peak’s coordinates based on the overlap-
ping peak with the highest score. Peaks present in at least
2 (parameter: --cutoff) samples with a minimum score
per million ≥5 (parameter: --min-score) are retained. A
peak count table is then provided where every sample peak
set is overlapped against the consensus peak set. Individual
peak counts for an overlapping peak are weighted by mul-
tiplying by the percent overlap of the sample peak with the
consensus peak.

For navigating results, PEPATAC provides both sample
and project level reports in a convenient, easy-to-navigate
HTML report with project-level summary table and plots,
job status page and individual sample pages with sample
statistics and QC plots all at your fingertips. In addition,
looper will produce summary plots from individual sam-
ple statistics including the number of aligned reads, percent
aligned reads, TSS scores and library complexities. A user
can produce the HTML report during a run or after com-
pletion, with the job status page providing information on
whether a sample has failed, is still running, or has already
completed.

RESULTS

To demonstrate PEPATAC’s default workflow and output,
we analyzed samples from the original standard ATAC
(4), fast ATAC (56), and omni ATAC (57) protocol pa-
pers. This dataset includes human ATAC-seq reads from
33 standard ATAC, 152 fast ATAC, and 139 omni ATAC
samples (Supplementary File S1). PEPATAC provides out-
put and quality control results both for individual sam-
ples and for the project as a whole. For each sample,
PEPATAC produces narrowPeak and bigWig files to visual-
ize nucleotide-resolution alignments, smoothed alignments,
and peak calls. PEPATAC also produces summary statistics
files that report the number of reads, duplicates, genome
alignment rates, transcription start site (TSS) enrichment
score, number of called peaks, fraction of reads in peaks
(FRiP), and job runtime, among others, for every sample
in a project.

Performance

PEPATAC is designed to be computationally efficient. To
evaluate how PEPATAC scales with increasing numbers
of reads, we ran 430 ATAC-seq samples of varying input
size through PEPATAC (Supplementary File S4). We then
placed samples in 500 MB input file size bins and compared
runtimes and peak memory usage (Supplementary Figure
S3). Runtime scales linearly with increasing file size, but im-
portantly, even samples with >150 million reads completed
in <8 h (Supplementary Figure S3a). We also show that
PEPATAC, with default settings, only utilizes between 5 and
9 GB at peak memory use (Supplementary Figure S3b).

Prealignments

To evaluate the advantage of serially aligning to the mi-
tochondrial genome (Figure 3A), we measured the total
alignment runtime of synthetic mixtures of mitochondrial-
aligning (mtDNA) and whole human-aligning (hg38) se-
quences with and without prealignments. We constructed
libraries of mixed mtDNA:hg38 mapping ATAC-seq reads
from 0% to 100% mtDNA in increments of 10%, at 10 mil-
lion, 20 million, and up to 200 million total reads in incre-
ments of 20 million reads, resulting in 121 different library
combinations. We recorded the alignment time for each in-
put file with and without prealignments (Figure 3B). To
determine for which scenarios using prealignments is ben-
eficial, we calculated the log ratio of run times with pre-
alignments versus without prealignments and found that
using prealignments reduces the total time of alignment
even when mtDNA alignment rates are under 10% (Figure
3C). In addition to speed and efficiency gains, PEPATAC
with prealignment compared to without prealignment to
mtDNA yields higher alignment rates to mitochondrial se-
quence than aligning to a combined human and mitochon-
drial genome as is commonly performed (Figure 3D). This
is true for every sample tested no matter the library prepa-
ration protocol nor percent mitochondrial contamination
(Supplementary Figure S4). This result indicates that the
common approach of simultaneously aligning to the nu-
clear and mitochondrial genomes systematically underesti-
mates the fraction of mitochondrial reads in an experiment.
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Figure 3. PEPATAC prealignments increase mapped mtDNA reads, improve computational efficiency and positively influences the fraction of reads in
peaks (FRiP) metric. (A) NuMTs represent a significant complication of simultaneous alignment. (B) At mtDNA percentages from 10 to 100% at total read
numbers ranging from 10 to 200 M, using prealignments dramatically reduces run time. (C) Log ratio of prealignments runtimes versus no prealignment
runtimes yields significant savings. (D) There is a significant increase in the percent of reads mapped to mitochondrial sequence when using prealignments
versus not across standard, fast and omni-ATAC protocols. (E) As reported for ChIP-seq (58), FRiP is positively correlated with the number of called
peaks. (F) With prealignments, the positive correlation between FRiP and the number of called peaks tends to increase ((D) **P < 0.001; t-test (mu = 0)
with Benjamini–Hochberg correction. (E and F):*P < 0.0001; Kendall rank correlation coefficient).

We therefore propose that mitochondrial alignment rates
are generally underestimated by about 1–5% in published
reports.

To show how prealignments successfully depletes
reads aligning to NuMTs, we ran a standard ATAC
(SRR5427804), fast ATAC (SRR2920492) ,and omni
ATAC (SRR5427806) sample through PEPATAC with no
prealignments, prealignment to mitochondrial sequence,
and prealignment to mitochondrial, ribosomal, and known
repeat sequences. We then compared the highest signal
peaks between each prealignment strategy across each
ATAC-seq protocol. We used BLAST (59) to annotate the
highest signal peaks and then intersected called peaks un-
der each strategy with the ENCODE blacklist (35), which
normally is used to filter results in PEPATAC by default.
The omni ATAC sample had the least number of aberrant
high signal peaks with only a single NuMT peak identified
in the top 10 highest signal peaks and only present when
analyzed without prealignments. Significantly, as soon
as mitochondrial prealignment is included, this peak is
excluded (Supplementary File S3, Supplementary Figure
S5a). Of the top 100 omni ATAC peaks, there are fewer
overlaps with blacklisted regions, both overall, and as we
increase the number of prealignments. With no prealign-
ments there are 4 blacklisted regions in the top 100 and only
2 with prealignments (Supplementary File S3). As omni
ATAC is reported to reduce mitochondrial reads, this result
is expected. Furthermore, this difference is highlighted as
we compare both fast ATAC and standard ATAC. Three
of the top 10 peaks from the fast ATAC sample without
prealignments aligned to mitochondrial sequence (Supple-

mentary File S3). These are eliminated with prealignments.
Additionally, without prealignments, 22 of the top 100
peaks intersect blacklisted regions. Only 18 overlap with
mitochondrial prealignment, and significantly, only 3 of
the top 100 overlap blacklisted regions when prealigning
includes ribosomal and repeat regions (i.e. satellite DNA).
This suggests that a number of regularly identified peaks
should typically be excluded in the absence of prealign-
ments. While a blacklist does an excellent job at removing
these regions, prealignment achieves similar results while
also removing additional non-blacklisted regions that
are likely spurious (mapping to unmapped regions or to
different species, see Supplementary File S3). These results
are even more obvious with standard ATAC. Standard
ATAC without prealignment to mitochondria mapped 8
of the top 10 peaks to NuMTs (Supplementary File S3).
These are removed with prealignment to mitochondria.
Furthermore, the number of blacklisted regions drops
from 17 without prealignments to 7 with mitochondrial
prealignment and only 2 with mitochondrial, ribosomal
and repeat region prealignment. Because prealignment
reduces spurious peak assignment (Supplementary File
S3 and Supplementary Figure S5b) and it reduces total
runtime in nearly every scenario (Figure 3C), prealignment
is an effective strategy to include in every pipeline run.

Peak caller comparison

To evaluate the difference in called peaks when using dif-
ferent peak callers, we compared both the PEPATAC deter-
mined consensus peaks and the peaks from a single sample
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(SRR5210416) produced when using different peak callers
(Fseq, Genrich, HOMER, HMMRATAC, MACS2 with
variable peaks and MACS2 with fixed peaks). Similarity be-
tween the intervals was evaluated with a modified Jaccard
statistic (60) implemented in the bedtools (61) package. At
the single sample level MACS2 with variable peak width
is the most similar in output to MACS2 with fixed peaks
and Fseq (Supplementary Figure S6a and see Supplemen-
tary File S2). Interestingly, the least similar peak results are
from Genrich and HMMRATAC, which possibly reflects
the goal of both tools being designed to evaluate ATAC-
seq data as opposed to originally being developed for ChIP-
seq (Supplementary Figure S6a). These differences become
more pronounced at the consensus peak level, with HMM-
RATAC becoming more dissimilar (average jaccard statis-
tic = 0.31, Supplementary File S2) to the other peak callers
(Supplementary Figure S6b).

We also asked whether this difference was due to an im-
provement in reduced peak calling at nuclear mitochondrial
sequences (NuMTs), repeat regions, or high signal regions.
One way to evaluate this is to determine the number of inter-
sections of the individual peak caller called regions against
a known blacklist (35) and to BLAST (59) the highest sig-
nal peaks. Indeed, HMMRATAC overlaps the least num-
ber of blacklisted regions (231 versus the maximum of 756
with HOMER; see Supplementary File S2) and it turns out
a number of both the blacklisted regions and the highest sig-
nal peaks are NuMTs or repeat regions (Supplementary File
S3). While MACS2 remains the most commonly employed
peak caller across ATAC-seq pipelines, further comparative
studies may better illustrate the utility of some of the more
recently developed peak callers.

Library QC comparison

Several of the QC metrics (e.g. TSS enrichment score,
the fragment distributions, non-redundant fractions, and
the PCR bottlenecking coefficients 1 and 2) employed by
PEPATAC are near-universal in the field, and as such are
calculated in the same manner. To evaluate how differ-
ent annotations may affect the TSS score, we also com-
pared TSS annotations from Ensembl, Gencode, and Re-
fgene (PEPATAC default). Refgene produces higher TSS
scores (Supplementary Figure S7), which reflects the fact
that Refgene contains only the most commonly employed
transcription start sites for each gene whereas both Ensembl
and Gencode include all known sites, diluting the aggre-
gated signal.

Fraction of reads in peaks

It has also been reported that in ChIP-seq experiments,
but not specifically in ATAC-seq, that FRiP correlates pos-
itively with the number of identified peaks (58) (Figure
3E). In libraries with significant mitochondrial contamina-
tion, for example, from libraries produced using standard-
ATAC library preparation protocols, this correlation is em-
phasized when using prealignments (Figure 3F). We next
sought to understand how the serial alignment strategy af-
fects calculation of Fraction of Reads in Peaks (FRiP).
FRiP is a common qualitative measure of enrichment and

sample quality. However, FRiP calculations are poorly de-
fined, making it dangerous to compare FRiP scores among
different protocols and approaches. ENCODE defines the
denominator of the FRiP score to be total mapped reads
(ENCODE Terms). If only one genome is used for align-
ment, then the calculation is clear, but for a serial align-
ment pipeline, the FRiP score depends on whether the de-
nominator includes reads mapped to the nuclear genome
only, or to all genomes (Supplementary Figure S8c,d). By
default, PEPATAC uses the deduplicated, low-quality re-
moved, primary genome mapped BAM file to calculate the
fraction of reads in the final called peak output file, which
by default utilizes fixed width peaks and has removed any
blacklisted regions. This has the consequence of chang-
ing the FRiP calculation based on whether prealignments
were used (Supplementary Figure S8c,d). When using pre-
alignments, the default FRiP calculation will significantly
increase because the number of reads mapped to the pri-
mary genome is reduced due to reads mapping more accu-
rately to the mitochondrial genome and thus being excluded
from downstream analysis. When FRiP is calculated using
the total mapped reads (prealignments and primary align-
ment), these relationships are inversed (Supplementary Fig-
ure S8c,d). In any scenario, prealignments lead to more total
mapped reads, due to more efficient mitochondrial align-
ment. As more recent ATAC-seq sample preparation pro-
tocols intentionally reduce mitochondrial contamination,
these differences are most pronounced when using the orig-
inal, standard ATAC-seq protocol. Therefore, reliance on a
specific cutoff (e.g. 0.3 or greater) as indicative of a quality
sample must be relative to protocol and method.

DISCUSSION

PEPATAC is an efficient, user-friendly ATAC-seq pipeline
that produces helpful quality control plots and signal tracks
that provide a comprehensive starting point for further
downstream analysis. Two key benefits of the PEPATAC
pipeline over existing pipelines are its flexibility and mod-
ularity. PEPATAC is uniquely flexible, for example, by al-
lowing pipeline users to serially align to multiple genomes,
to select from multiple aligners, peak callers, and adapter
trimmers, while providing a convenient, configurable inter-
face so a user can adjust parameters for individual pipeline
tasks. Furthermore, PEPATAC reads projects in PEP for-
mat, a standardized, well-described project definition for-
mat, providing a reproducible interface with Python and R
APIs to simplify downstream analysis.

Because PEPATAC is built on looper, it is easily de-
ployable on any compute infrastructure, including a laptop,
a compute cluster, or the cloud. It is thereby inherently ex-
pandable from single to multi-sample analyses with both
project level and individual sample level quality control re-
porting. This means that a user may submit any number of
samples using a single looper command and corresponding
PEP metadata file. Its design allows for simple restarts at
any step in the process should the pipeline be interrupted.
Due to its modular construction multiple software options
for primary pipeline steps are available, creating a swap-
pable pipeline flow path with individual steps adaptable to
future changes in the field. PEPATAC is a rapid, flexible
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and portable ATAC-seq project analysis pipeline providing
a standardized foundation for more advanced inquiries.

Documentation and links

• PEPATAC v0.9.16: pepatac.databio.org.
• PEP metadata standards: pep.databio.org.
• Looper job submission engine: looper.databio.org.
• Refgenie reference genomes: refgenie.databio.org.
• Source code to reproduce output for this paper: github.

com/databio/pepatac paper data.
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