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ABSTRACT

Ancient Alu elements have been shown to be inclu-
ded in mature transcripts by point mutations that
improve their 50 or 30 splice sites. We have examined
requirements for exonization of a younger, disease-
associated AluYa5 in intron 16 of the human ACE
gene. A single G.C transversion in position �3 of
the new Alu exon was insufficient for Alu exonization
and a significant inclusion in mRNA was only
observed when improving several potential splice
donor sites in the presence of 30 CAG. Since complete
Alu exonization was not achieved by optimizing
traditional splicing signals, including the branch
site, we tested whether auxiliary elements in AluYa5
were required for constitutive inclusion. Exonization
was promoted by a SELEX-predicted heptamer in
Alu consensus sequence 222–228 and point muta-
tions in highly conserved nucleotides of this hep-
tamer decreased Alu inclusion. In addition, we show
that Alu exonization was facilitated by a subset of
serine/arginine-rich (SR) proteins through activation
of the optimized 30 splice site. Finally, the haplotype-
and allele-specific ACE minigenes generated similar
splicing patterns in both ACE-expressing and non-
expressing cells, suggesting that previously reported
allelic association with plasma ACE activity and car-
diovascular disease is not attributable to differential
splicing of introns 16 and 17.

INTRODUCTION

Splicing removes introns from eukaryotic precursor (pre-)-
mRNA and joins exons together to form mature transcripts.
This step-wise process involves multiple and relatively weak
interactions of the pre-mRNA substrate, several small nuclear

ribonucleoprotein particles (snRNPs U1, U2, U4/U6 and U5)
and a large number of non-snRNP proteins (1–3). In addition
to numerous trans-acting factors, splicing requires cis-
elements in the pre-mRNA that include the 50 splice site
(50ss; consensus MAG/GURAGU), branchpoint sequence
(BPS; YNCURAY), polypyrimidine tract (PPT) and the 30

splice site (30ss; YAG). These sequences are degenerate in
higher eukaryotes, but are by no means sufficient for accurate
splicing. Efficient intron removal often requires auxiliary
sequences, known as exonic and intronic splicing enhancers
(ESEs and ISEs) and silencers (ESSs and ISSs), that promote
or inhibit splicing, respectively. Splicing enhancers have been
identified through mutations or polymorphisms that alter spli-
cing (4–6), through computational comparisons (7–9) and
through selection of sequences that activate splicing or bind
splicing regulatory factors (10,11), most notably a family of
serine/arginine-rich (SR) proteins [reviewed in (12)]. Typic-
ally, SR proteins bind to ESEs in both constitutive and altern-
ative exons through one or more N-terminal RNA recognition
motifs (RRMs) (12). Unlike more extensively studied ESEs or
ESSs, intronic auxiliary splicing signals have been studied in
much less detail (13–19).

Human introns contain a large number of repetitive
elements that may influence pre-mRNA splicing (20–27).
The most abundant class of intronic repeats is represented
by short interspersed elements that include Alu sequences.
Alus are primate-specific, �300 nt repeats that constitute
�10% of the human genome in over 106 copies. Alu insertions
may cause genetic disease (28–30) and can contribute to
protein diversity through exonization (31–34). About 5% of
alternatively spliced internal exons in the human genome con-
tain an Alu sequence and Alus have recently been shown to
be exonized by single point mutations that improve their 50 or
30ss (32,33). Alus may therefore provide suitable systems for
studying evolutionary aspects of both traditional and auxiliary
splicing signals.

The human ACE gene encodes angiotensin converting
enzyme (ACE; EC 3.4.15.1), which converts inactive
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angiotensin I into a critical vasoconstrictor and blood pressure
regulator angiotensin II. Mice lacking ACE have low blood
pressure, renal pathology and reduced male fertility (35,36).
ACE has been identified as a major component of the genetic
variance of highly heritable ACE plasma concentrations
(37–41). Closely linked ACE polymorphisms have been asso-
ciated with cardiovascular diseases, including arterial hyper-
tension, myocardial infarction, left ventricular hypertrophy
and coronary arteriosclerosis (42–47), and with Alzheimer’s
disease (48). In particular, associations of an insertion/deletion
polymorphism (I/D) of antisense AluYa5 in ACE intron 16 with
these phenotypes have been reported in a large number of
independent studies, with meta-analyses supporting an asso-
ciation of a modest effect (47–51). Detailed linkage disequi-
librium studies have attempted to map ACE levels as a
quantitative trait locus to a particular polymorphism within
ACE, supporting I/D and several intragenic single nucleotide
polymorphisms (SNPs) as probable candidates for causal vari-
ants (47,52,53). However, genetic mapping of low penetrance
genes in regions with high linkage disequilibrium has major
limitations in complex traits and a biological mechanism
for the proposed allelic and haplotype association needs
to be demonstrated. Although several hypotheses have been
considered, including a putative influence of I/D haplotypes on

transcriptional regulation (54), no reliable evidence has been
provided to date.

Here, we have tested if ACE I/D and closely linked SNPs
influence pre-mRNA splicing and expression of ACE tran-
scripts using minigene assays. In addition, we have examined
the requirements for I/D Alu exonization by modifying both
traditional and auxiliary splicing signals. We found that this
Alu could not be included in mature transcripts by improving
either 30 or 50ss and that the AluYa5 exonization required at
least one mutation in both splice sites. This process was facil-
itated by a conserved ESE in the new Alu exon. Finally, we
show that the Alu I/D inclusion in mRNA was promoted by a
subset of SR proteins through increased utilization of the
optimized 30ss.

MATERIALS AND METHODS

Plasmid constructs

Minigenes A and B (Figure 1A) were cloned into HindIII/
EcoRI of pCR3.1 (Invitrogen) using primers 1 (50-gat caa
gct taa gtg caa agg agt aca gct cat tg) and 2 (gat cga att cct
cac tca cac tgt ggt ccg tct tt) and a DNA sample heterozygous
for the I/D polymorphism. Constructs C–F were made using

Figure 1. A lack of a haplotype-specific pre-mRNA splicing pattern of ACE minigenes. (A) Construction of ACE minigenes. Minigenes A and B were amplified with
primers 1 and 2 and a DNA sample with defined AluYa5 I/D genotype. Minigenes C and D were prepared by deleting a segment of intron 16 with a combination of
vector primers and primers 3 and 4. Minigenes E and F were constructed by deleting tandemly arranged sense Alu repeats AluSx and AluJb using primers 4 and 5.
Antisense AluYa5 was present in constructs A, C and E. Primers are shown as black arrows. Exons (E) are represented by boxes, introns by lines. The position and
orientation of Alu sequences is denoted by grey arrows. Exons, introns and Alus are shown to scale; scale units are kilobases (kb). Exon and intron numbering is
consensual as referred to in previous studies (52,54). Location of three tested SNPs around the splice acceptor site of intron 16 is shown near the 30ss of intron 16 (the
upper panel). Putative susceptibility (minigenes B, D and F) and protective (A, C and E) haplotypes in the indicated SNP are shown as 3 nt above each construct (the
lower panel). Lines in the lower panel represent DNA sequences of the ACE gene that are present in the indicated minigene, whereas deleted sequences are highlighted
with brackets. Alu-E (for Exonized Alu) and Alu-L (for a Long isoform retaining intron 17 and 30 end of intron 16) represent RNA products generated by mutated
constructs (see Figures 2–4). Alu-E isoforms spliced to the predicted 50ss (black arrow) and positions�16 andþ136 relative to the predicted 50ss are shown below the
I/D AluYa5. (B) Haplotype-specific minigenes A–F were transfected into 293T cells and their splicing pattern was examined by RT–PCR 48 h post-transfection. Exon
17 skipping was not observed after 50 PCR cycles (data not shown). (C) A splicing pattern of a truncated minigene individually mutated in the indicated SNPs. We
mutated minigene B, which has unabridged intron 16 and lacks AluYa5 to study a putative effect of these mutations in the natural context and to facilitate mutagenesis.
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minigenes A and B as templates and a combination of vector
primers PL1 (act cac tat agg gag acc) and PL2 (ggc tga tca gcg
ggt tta) with ACE-specific primers 3 (ctg gat ccgccc agc tcc cac
att aga acaat), 4 (tcg gat cca agg gca ttt cct ggg cac gct gac) and
5 (ctg gat cct ccc atc ctt tct ccc att tct ct, Figure 1A). Muta-
genesis was carried out using a two-step overlap-extension
PCR as described (6). ASF/SF2 cDNA that lacked the
sequence cgg cgg ggg tgg agg tgg cgg encoding a heptaglycine
motif between RRM1 and RRM2 was cloned as described
(55). All constructs were validated by sequencing using auto-
mated sequencer ABI377 as described previously (56).

Cell lines and transient transfection

HeLa cells (derived from human cervix epitheloid carcinoma),
PANC1 cells (human pancreatic ductal carcinoma) and human
embryonic kidney 293T cells were transfected in 6-well or
12-well plates as described (6). Transient transfection was with
FuGENE 6 (Roche) according to the manufacturer’s recom-
mendations. Cells were harvested for RNA extraction 48 h
later. The genotype of ACE-expressing 293T and PANC1 cells
was I/D, whereas non-expressing HeLa cells had genotype D/D.

Detection of ACE isoforms

Total RNA was extracted using Tri Reagent (Sigma, USA)
according to the manufacturer’s recommendation. RNA was
resuspended in DEPC-treated water and quantified on a spec-
trophotometer. Two micrograms of RNA from each sample
were treated with DNase I (Ambion, USA) and reverse-
transcribed using M-MLV (Promega, USA) in the presence
of RNasin (Promega) at 42�C for 1 h. RT–PCR was carried out
with vector-specific primers PL1/PL2 and a combination of
vector primer PL1 and primer 6 (ggc agc ctg gtt gat gag tt) in
exon 17 to validate the ratios of RNA products in independent
amplifications (Figure 1A). The number of PCR cycles was
28 or lower to maintain approximately linear relationship
between the RNA input and signal. RT–PCR products were
separated on agarose or polyacrylamide gels and the identity of
each isoform was confirmed by sequencing as described (56).
The relative ratios of RNA products were measured with
FluorImager 595 using FluorQuant and Phoretix software
(Nonlinear Dynamics Inc., USA).

RESULTS

A lack of haplotype-specific splicing pattern of
ACE minigenes

To test the influence of ACE variants and Alu sequences
on pre-mRNA splicing, we prepared minigene constructs

carrying predisposing and protective haplotypes (Figure 1A)
that have been identified previously in independent human
populations (57,58). The constructs contained either full
(minigene A, B) or truncated (C, D) intron 16. Since extensive
self-complementarity in intronic sequences may influence
exon inclusion through modifying secondary RNA structure
(20) and intron 16 Alus in the opposite orientation would be
predicted to create stable stem–loop structures (data not
shown), we also deleted tandemly arranged sense Alu elements
in the latter constructs to create minigenes E and F (Figure 1A).

Examination of the splicing pattern after transfection of the
wild-type minigenes with (A, C, E) and without (B, D, F)
AluYa5 into 293T (Figure 1B), HeLa and PANC1 cells (data
not shown) revealed a correctly spliced RNA product and a
transcript retaining short intron 17, but no exon 17 skipping.
Mutations in three SNPs located close to the 30ss of intron 16
(Figure 1A), including IVS16-11C/A in PPT that may weaken
30ss recognition, did not induce exon 17 skipping or intron
16 retention (Figure 1C).

ACE intron 16 I/D Alu is not exonized by a single
mutation at the predicted splice acceptor site

ACE intron 16 I/D Alu belongs to a young, rapidly accumu-
lating Ya5 subfamily (59–61), which tend to occupy less
Alu-dense environment than older relatives of the Y subfamily
or more ancient AluS/J subfamilies (62). Exonization of old
and intermediate Alus could be achieved with a single muta-
tion (33,34) and was facilitated by altering concentration of a
protein involved in the 30ss selection (33) or U1 snRNA (34).
We therefore examined requirements of a polymorphic,
recently integrated and disease-associated Alu for constitutive
inclusion in ACE mRNA.

Table 1 shows alignments of the consensus sequences of
AluJ/S subfamilies with ACE AluYa5 at the predicted 30ss.
Unlike the AluJ subfamily, most AluS-derived exons have
been spliced via proximal AG as they contain inactivating
guanosine in the distal AG (position þ3 relative to the prox-
imal AG or �2 relative to the distal AG, Table 1) (33). The
proximal 30 AG is repressed in the presence of guanosine
�3 (33). Comparison of ACE AluYa5 with exonized Alus
showed that this element was most similar to the AluS
subfamily (Table 1), suggesting that optimizing position �3
relative to the proximal AG may exonize this sequence. We
replaced guanosine �3 with cytosine, which is a preferred
nucleotide in competing AG sites (63,64) and the most evolu-
tionarily conserved nucleotide in vertebrates (65), and
examined the expression of Alu-containing isoforms after
transfection (Figures 1A and 2A). However, neither mRNA
products transcribed from minigene A (Figure 1A, data not

Table 1. Sequence alignment of the 30 splice sites of ACE I/D AluYa5 and AluJ/S consensus sequences

Positiona �5 �4 �3 �2 �1 þ1 þ2 þ3 þ4 þ5 þ6

AluJ T284 T283 G282 A281 G280 A279 C278 A277 G276 G275 G274

AluS T284 T283 G282 A281 G280 A279 C278 G277 G276 A275 G274

ACE AluYa5 T284 T283 G282>C A281 G280 A279 C278 G277 G276 A275 G274

PGT T284 T283 G282 A281 G280 A279 C278 G277 G276 A275 G274

aPosition is relative to the proximal 30 AG. Sequence variations are in bold. Minigene mutation is indicated in italics. Position in the Alu consensus sequence (33)
is indicated by a subscript. Proximal (Alu position 280 and 281) and distal (276 and 277) AGs are shaded. PGT Alu was significantly exonized following a single
G282>C mutation (33).
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shown) nor mRNA products transcribed from truncated mini-
gene E (lanes 1–2, Figure 2A) had any detectable exonization
of ACE AluYa5.

Exonization of ACE AluYa5 by optimizing several
50 splice sites in the presence of 30CAG

To test whether optimized 50ss can exonize this Alu in the
presence of 30 CAG or GAG, we mutated positions þ2, þ3
and þ5 of the predicted 50ss (34). In addition, we improved the
match to the 50ss consensus by introducing single nucleotide
mutations in one upstream (position �12 relative to the pre-
dicted 50ss) and two downstream (þ136 and þ220) potential
splice donor sites (Table 2). Furthermore, we created a high
Shapiro–Senapathy score 50ss in position �16 by multiple
mutations in both the full-length (A) and truncated (E) con-
structs. To further improve recognition of the 30ss, we mutated

the closest match (CAGUCA�19C) to the BPS consensus
to the almost invariant BPS of Saccharomyces cerevisiae
(UACUAA�19C), which is also an optimal mammalian BPS
(66). Alu-containing isoforms (designated Alu-E for exonized
Alu, Figure 1A) were quantified after transfection of mutated
constructs into 293T cells. Although mutations at the 50ss in
the presence of 30 GAG did not exonize Alu (data not shown),
combination of a strong 50ss at position �16 with the 30 CAG
was capable of significant Alu inclusion. The Alu inclusion
was further improved in reporters with the optimized BPS
(Figure 2A, lanes 3–4, Figure 2B and C). A point mutation
of the putative BP [CAGUC(A�19>U)C], which is located in
the optimal distance from the 30 AG (67), eliminated Alu from
the mRNA (Figure 2A, lane 5), suggesting that A�19 is the BP
of the new Alu exon. Introduction of uridine at position þ2
of the predicted 50ss, which creates a highly conserved GU

Figure 2. Alu exonization generated by minigenes mutated in BPS and 30 and 50ss. Alu inclusion in mRNA was tested following an introduction of a series of
mutations at the 30ss, 50ss and the BPS in a minigene transfected into 293T cells. (A) Inclusion of AluYa5 in mature transcripts following mutations in the 50ss, 30ss and
the BPS in minigene E, which lacks most of intron 16 to simplify overlap-extension PCR and reduce the proportion of constructs with undesired mutations. AI, Alu
inclusion levels as a mean (and SD) of triplicate transfections into 293T cells. Inclusion of AluYa5 in mRNA is indicated by a light grey rectangle on the right side.
WT, wild-type BPS CAGUCA�19C. M, mutation in putative BP A�19>T; Y, yeast (S.cerevisiae) BPS UACUAA�19C. Adenosine �19 was also predicted as a
putative BP (BPS score 3.25) through comparison of human and mouse introns (http://ast.bioinfo.tau.ac.il/). (B) Nucleotide sequence of the junction (arrow) between
upstream exon and exonized Alu; (C–E) boundaries (arrow) between the exonized Alu and downstream exon generated by optimizing the 50ss in position�16 (C; see
lanes 3 and 4 in Figure 2A), in the predicted splice sites (D; lanes 7, 10, 11 and 13 in Figure 2A) and in position þ136 (E).
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consensus, was insufficient for Alu inclusion (lane 6), but
when combined with the 30 CAG, we observed �11% exon-
ization (lane 7 and Figure 2D). In contrast to position þ2U,
mutations designed to improve putative base-pairing interac-
tions with U1 snRNA (þ3, þ5) did not produce any Alu
inclusion in the absence of the 50 GU (lanes 8–9 and 12),
but further improved exonization when combined with
þ2U, with adenosine þ3 being more efficient than guanosine
þ5 (Figure 2A, lanes 10–11 and Figure 2D). Triple mutations
at the predicted 50ss producing a good match to the 50 con-
sensus sequence resulted in Alu inclusion levels comparable to
those produced by optimal BPS in constructs with 50ss in
position �16 (cf. lanes 13 and 4 in Figure 2A). A C>G trans-
version in position �12 (Table 2) led to activation of the 50ss in
position �16 (lane 14), presumably through improved match
in position þ5 of the 50ss. Sequencing of the RNA product
generated by the þ136C>T mutation showed that �30% of
mature transcripts contained a longer, 256 nt Alu exon
(Figure 2E). Finally, a construct mutated in position þ220
(Table 2) did not produce any Alu inclusion despite a high-
score 50ss consensus (data not shown), most probably due to a
shortened distance between this and downstream 30ss and/or
poor exon definition of a predicted 341 nt exon, which is more
than twice the size of an average human exon.

Correlation of the Shapiro and Senapathy scores with Alu
inclusion levels produced by minigenes mutated in the pre-
dicted 50ss was significant (r ¼ 0.73, p ¼ 0.02, Figure 2A and
Table 2). However, a slightly lower Alu inclusion observed for
a clone with a high-score 50ss at position �16 than for an
optimized predicted 50ss (cf. lanes 3 and 13, Figure 2A and
Table 2) was indicative of the presence of auxiliary splicing
signals outside a 9 nt 50ss consensus. Thus, despite limitations
of the Shapiro–Senapathy scores, such as independence of
each position, they provided a reasonably good indicator of
splicing outcomes, consistent with their high predictive values
for utilization of competing alternative, mutated and cryptic
donor sites (68,69).

Identification of splicing regulatory sequences in
exonized ACE AluYa5

Strong traditional splicing signals did not result in complete
exonization of the new Alu exon (Figure 2A, lane 4),

suggesting that a constitutive inclusion requires auxiliary ele-
ments in the new Alu exon or in flanking introns. We first used
ESE prediction tools that may facilitate identification of putat-
ive ESEs in the exonized Alu sequence (Figure 3A), including
RESCUE-ESE (7), octamer ESE/ESS (9) and functional sys-
tematic evolution of ligands by exponential enrichment
(SELEX) implemented in the ESE Finder facility (8). Putative
ESEs (shown as segments 1–6, Figure 3A) that did not overlap
splice sites were individually deleted in minigene E that
was optimized at the 30 and 50ss (designated E0, Figure 3A).
Deletion of segment 2 substantially reduced exonization
(Figure 3B, lane 2), whereas deletions of segments 3–5 failed
to do so (Figure 3B, lanes 3–5). Mutagenesis of each position
in this heptamer to reduce Alu inclusion showed that a T>G
transversion in position 5 had the strongest effect (Figure 3B,
lanes 6–14). This alteration had one of the lowest SRp40
matrix scores (8), although no overall correlation was found
between matrix scores and Alu inclusion levels (P > 0.2,
Figure 3B). Mutation of the last heptamer position, which
increased the SRp40 matrix score, did not alter exonization
(data not shown). To test whether double mutations with min-
imized matrix scores can further reduce Alu inclusion, we
created constructs containing either mutations 3G/4T (matrix
score 0.24) or mutations 1G/5G (matrix score 0.42) in segment
2 (Figure 3C). Mutations 3G/4T had no effect, whereas muta-
tions 1G/5G reduced Alu exonization to a level observed
for the segment 2 deletion. Finally, since segments bridging
the splice sites could not be deleted, two mutations were intro-
duced at positions 1 and 3 of segment 6 (CCACAGg to
GCGCAGg, Figure 3A). Alu exonization was reduced to
31% (lane 15, Figure 3B).

Comparison of segment 2 sequence with exonized Alus (34)
showed that this heptamer was invariant (n ¼ 18) or had
only a single nucleotide change (n ¼ 12) in 35 exons
that contained the right arms of exonized Alus in antisense
orientation. The last heptamer position was least conserved.
In contrast, positions 1 and 5, which were most efficient in
reducing Alu exonization (Figure 3B), were virtually invariant
(Figure 3D), suggesting that they are critical for the
splicing enhancement observed for segment 2. Variability
of the heptamer was greater in Alu exons derived from Jb
subfamilies (13 changes in 12 exons) than those derived

Table 2. Minigene mutations at the 50 splice sites

Positiona �3 �2 �1 þ1 þ2 þ3 þ4 þ5 þ6 Shapiro and Senapathy
score
Wild-type Mutated

�16 C176 A175 A174>G G173 T172 A171>G G170>A C169>G T168 64.01 94.83
�12 T172 A171 G170 C169>G T168 G167 G166 G165 A164 60.92 78.77
þ136 C26 A25 G24 G23 C22>T G21 T20 G19 A18 61.08 78.93
þ220b G A G C>G T A A G G 76.77 94.61
P C160 A159 G158 G157 C156 G155 C154 C153 C152 46.65 –
Pþ2 C A G G C>T G C C C – 64.49
Pþ3 C A G G C G>A C C C – 51.82
Pþ5 C A G G C G C C>G C – 59.65
Pþ3þ5 C A G G C G>A C C>G C – 64.83
Pþ2þ3 C A G G C>T G>A C C C – 69.66
Pþ2þ5 C A G G C>T G C C>G C – 77.50
Pþ2þ3þ5 C A G G C>T G>A C C>G C – 82.67

aPosition is relative to the predicted 50ss. Position in the consensus Alu sequence (33) is subscripted.
bPosition þ220 is downstream of Alu I/D. The 50 GT is shaded. P, clones mutated in predicted 50ss.
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from S subfamilies (11 changes in 19 exons). In addition, the
heptamer sequence was invariant in most of over 8000 Alus
that were identified as amenable to exonization [(34), data not
shown]. Alignment of consensus sequences of major Alu
subfamilies (62,70) with ACE AluYa5 also showed a high
degree of conservation of segment 2 in all Alu subfamilies,
except for AluSp. This subfamily typically contains cytosine in
position 5, which decreased the SRp40 matrix score, but not
Alu inclusion (lane 12, Figure 3B). Interestingly, among 61
Alu-derived exons (34), we found only a single AluSp entry.

SR-mediated inclusion of ACE I/D Alu in mature
transcripts

To test whether Alu exonization is influenced by factors known
to control RNA processing, we co-transfected the wild-type
reporters (data not shown) and minigenes optimized at the
30ss with plasmids expressing SR proteins. Unlike wild-type
constructs, minigenes containing 30 CAG co-transfected with

ASF/SF2, SRp40 and SC35 generated a larger, 1158 bp frag-
ment (Figure 4, lanes 2–4). Sequencing of this RNA product
revealed the presence of complete AluYa5, intron 17 and the
30 end of intron 16 in mature transcripts. This isoform was
designated Alu-L (Figure 1A). Minigene A with 30CAG gen-
erated higher amounts of Alu-L as compared to minigene E
containing the same 30CAG mutation (cf. lanes 2 of Figure 4A
and B), suggesting that the deleted segment of intron 16 con-
tains sequences that promote utilization of the predicted 30ss.
Cells that were co-transfected with splicing reporters and
identical empty vectors lacked Alu-L (lanes 1 in Figure 4A
and B). These results are consistent with promotion of prox-
imal splicing by SR proteins, first observed for ASF/SF2
(71,72).

SR proteins contain one or two N-terminal RRMs and a
C-terminal SR domain (73). To test their requirements for the
Alu-L activation, we co-transfected the splicing reporters
mutated at the 30CAG with the wild-type and mutated ASF/
SF2 plasmids that lacked sequences encoding RRM1, RRM2

Figure 3. Identification of a splicing enhancer element in ACE intron 16 AluYa5 Influence of segments 2–5 deletions and segment 2 point mutations on Alu
exonization. (A) Exonized Alu segment (upper case) with putative ESEs (underlined and numbered 1–6). Segments 1, 2 and 6 were predicted by the ESE Finder (8),
segments 1 (C allele only), 3 and 4 were significant ESEs identified through octamer sequences (9) and segment 5 was predicted by the RESCUE-ESE (7). Intronic
sequence is in lower case. To facilitate mutagenesis, segments 2 through 5 were individually deleted in minigene E0. This minigene contained intron 16 truncation
(Figure 1A) and four point mutations optimizing the splice sites (shown below the nucleotide sequence in bold). A segment 2, which was mutated individually in each
position, is in the middle of the sequence in bold. (B) Alu inclusion levels following deletions of segments 2–5 and point mutations in segment 2. Transfection of all
splicing reporters was into 293T cells. AI, Alu inclusion. (C) Alu inclusion levels in double mutants of minigene E. (D) Consensus sequence of segment 2 heptamer in
alternatively spliced exons containing right arms of antisense Alus as identified previously (34). Representation of each heptamer position (numbered above) and
flanking sequences was visualized using a pictogram utility available at http://genes.mit.edu/pictogram.html.
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and RS domains. In addition, we co-transfected this reporter
construct with ASF/SF2 lacking a heptaglycine tract between
RRM1 and RRM2 as described (55). Deletion of RRMs vir-
tually eliminated the Alu-L formation (Figure 4B, lanes 3–4),
whereas deletion of the remaining segments was insufficient
to prevent the ASF/SF2-induced Alu-L activation, including
the RS domain (Figure 4B, lanes 5 and 6). Similarly, Alu-L
could still be induced upon deletion of the RS domain of
SRp40 (lanes 7 and 8). Together, these results suggested
that interaction of ASF/SF2 RRMs with the pre-mRNA was
essential for Alu-L formation and that this process was RS-
independent.

DISCUSSION

Antisense Alus are amenable to exonization since they contain
strong PPTs and several potential 50 and 30ss (32–34). A single,
30 GAG to 30 CAG mutation in an Alu in the PGT gene, which
has the 30ss identical to the ACE AluYa5 (Table 1), resulted
in almost constitutive inclusion in mRNA (33). In contrast,
an identical mutation in ACE AluYa5 did not result in any
inclusion in mature transcripts (Figure 2A). Differential
effects of this mutation on Alu inclusion could explain a
less significant contribution of the younger AluY subfamily
to protein diversity as there are only few examples of AluY-
containing exons (32).

Proximal 30 AG (positions 280/281, Table 1) is selected in
most exonized Alus that were derived from S subfamilies,
whereas the distal AG (positions 276/277) is preferred by
exonized Alu J sequences (33). The proximal 30CAG was
essential for successful exonization of this element, as we
observed no Alu inclusion with the 30 GAG minigenes carrying
strong 50ss at position �16 (Table 2, data not shown). This
is consistent with an unproductive use of the proximal 30 GAG
in most Alu-derived exons (33) and with a general C �
T > A > G hierarchy in the 30ss utilization (63,64). An appar-
ently inefficient use of the 30 CAG (Figure 2A, lane 2) could be
due to a shorter PPT in our constructs (14 uninterrupted Ts) as

compared with, on average, 19 ± 3 Ts in exonized Alus (33).
The mean size of poly(A) tail of Alu S/J and the younger Ya5
was �21 and �26 nt, respectively, whereas the size range of
recent, disease-causing Alu insertions was between 40 and
97 nt (74), suggesting that the size of poly(A) tails determines
retropositional capability. If in antisense orientation, the 30ss
that contain longer tracts may be recognized more efficiently
by the spliceosome than Alus with shorter tracts.

Since the BPS of the new Alu exon is located in a flanking
intronic sequence, branch site variability may contribute to
diverse exonization potential of similar Alu elements. This is
supported by the observed increase of Alu inclusion in mini-
genes with optimized BPS consensus (lane 4, Figure 2A) and
its elimination in a construct with A�19>T mutation (lane 5),
suggesting that a poor BPS consensus limits exonization of
weakly included Alus. Although we did not test if improve-
ment of the 50ss coupled with the optimal BPS would suffice
for Alu inclusion in constructs containing 30GAG, the enhance-
ment mediated by the S.cerevisiae BPS was only minor
(Figure 2A, lane 4).

Although the predicted 50ss in ACE Alu (Table 2) was not
used in the presence of the 30 CAG, creation of the 50ss GT
consensus resulted in 11% Alu inclusion, which was further
improved by optimizing 50ss in positions 3 and 5 (Figure 2,
lanes 7, 10, 11 and 13). The GT dinucleotide was essential for
Alu inclusion, because mutations in these positions did not
exonize Alus in constructs lacking the GT consensus (lanes 8
and 9, Figure 2A). The enhancement of Alu inclusion is likely
to be mediated by optimized pairing with U1 snRNA, as
shown earlier (34).

However, the presence of strong traditional splicing signals,
including a long PPT, the preferred BPS and optimized 30 and
50ss, did not result in complete inclusion of the new Alu exon
(lane 4 in Figure 2A). This suggested that auxiliary splicing
signals, such as the presence of enhancers or a lack of silen-
cers, or both (7,8,75), were essential for constitutive Alu
derepression. Consistent with this assumption, deletion of a
predicted enhancer element in Alu positions 222–228 dimin-
ished exonization in the presence of optimized 30 and 50ss and

Figure 4. SR-mediated activation of the 30ss of ACE AluYa5. Minigenes A and E were co-transfected with plasmids expressing a subset of SR proteins. (A) Inclusion
of ACE IVS16 AluYa5 in mature transcripts in 293T cells transfected with 0.5 mg of minigene A containing 30 CAG and 1 mg of plasmids expressing the indicated
proteins. (B) RRMs are critical ASF/SF2 domains for the Alu-L formation. ASF-dRRM1, ASF-dRRM2, ASF-dRS and ASF-dGly denote ASF/SF2 lacking RRM1,
RRM2, the RS domain and a heptaglycine stretch, respectively. WT, wild-type. Inclusion levels are mean values (SD) of two independent transfection experiments.
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mutations in positions conserved in exonized Alus contributed
most to Alu exclusion (Figure 3B). This segment was predicted
by the ESE Finder (8) as a putative SRp40 binding site with a
significant matrix score of 5.2, suggesting that it might be a
binding site for this protein, although novel regulatory features
in sequences created by deletions could not be excluded
(Figure 3A). Although testing of putative ESEs in the exonized
Alu of the ADAR2 gene did not identify any splicing auxiliary
sequences (34), this heptamer is present in the ADAR2 Alu
exon and it will be interesting to examine its activity in other
exonized Alus and in a heterologous context. The presence of
sequences that strongly repress splicing in sense Alus (55) may
contribute to a low exonization potential of these elements.
Since antisense Alus also contain sequences that repress spli-
cing (14), it will be interesting to compare their inhibitory
activities in future studies.

In addition to exonization of ACE Alu by optimizing both 30

and 50ss, we have shown that this element can be included in
mature transcripts in cells over-expressing three SR proteins in
the presence of a single point mutation G282>C. This effect,
which depends critically on the interaction between ASF/SF2
RRMs with the pre-mRNA (Figure 4B), can be explained by
promotion of proximal splicing (6,71,72,76) or could be attrib-
uted to altered mRNA export or translation in co-transfected
cells. Future studies should test to what extent, if any, the
promotion of proximal splicing depends on the sequences
contributed by the I/D Alu. Together, these results suggest
that�238 000 antisense Alus in human introns (33), which may
represent a reservoir of ready-to-use segments expanding pro-
tein diversity (31), have a differential exonization potential
and that trans-acting factors controlling coupled processes
of transcription, splicing and mRNA export play an important
role in this process.

Altered splicing contributes to aberrant expression of genes
that may predispose to cardiovascular diseases, including
LDLR, LPL, LIPA, LCAT, APOB and APOAII [reviewed in
(77)]. The variability of ACE mRNA expression, its sensitivity
to external signals and inaccessibility of relevant patient tis-
sues make it difficult to study the importance of ACE SNPs
in functional assays. Here, we have tested the hypothesis that
ACE haplotypes and several SNPs flanking the 30ss of intron
16, including IVS16-11C/A, result in differential exon 17
skipping, alter the amounts of natural transcripts and explain
putative allelic association with disease. Purine residues
around position IVS-11 show a great depletion in the PPTs
of several mammals, zebrafish, fugu, ciona and other species
(65), suggesting that this conserved position is important in
evolution. As the IVS16-11C>A transversion may weaken the
PPT by reducing interaction with the 65 kDa subunit of aux-
iliary factor of U2 snRNP and other polypyrimidine-binding
proteins, carriers of the A allele would be predicted to show
increased exon skipping and/or lower expression of natural
transcripts. However, the absence of ACE AluYa5, which is in
tight linkage disequilibrium with the IVS16-11A allele
(Figure 1A), has been associated with a higher ACE activity
in plasma and a higher risk of coronary disease (47,48,58).
Intron 16 has a strong 50ss (the Shapiro and Senapathy score
89.3) and was spliced out efficiently in our reporter assay
(Figure 1B). A small reduction in the strength of the 30ss scores
(71.0 in minigenes A, C and E down to 68.5 in minigenes B, D
and F, Figure 1A) due to IVS16-11A may not lead to

recognizable differences in ACE expression. Although neither
the exonic SNP nor PPT variants altered splicing (Figure 1C)
and minigene assays generally show good reproducibility of
the splicing patterns in vivo, we cannot formally exclude that
the tested SNPs exert differential effect on mRNA expression
in relevant tissues or distinct developmental stages. Taken
together, our results do not support a role of allele-specific
pre-mRNA splicing patterns generated by putative predispos-
ing and protective ACE haplotypes in the analyzed gene seg-
ment. Future studies should address putative involvement of
other ACE polymorphisms in mRNA processing, such as the
recently implicated SNP rs4362 in a downstream exon (47).

ACKNOWLEDGEMENTS

We wish to thank Dr G. Screaton, University of Oxford, and
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