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Native range estimates for  
red-listed vascular plants
Jan Borgelt   1 ✉, Jorge Sicacha-Parada2, Olav Skarpaas3 & Francesca Verones1

Besides being central for understanding both global biodiversity patterns and associated anthropogenic 
impacts, species range maps are currently only available for a small subset of global biodiversity. Here, 
we provide a set of assembled spatial data for terrestrial vascular plants listed at the global IUCN red 
list. The dataset consists of pre-defined native regions for 47,675 species, density of available native 
occurrence records for 30,906 species, and standardized, large-scale Maxent predictions for 27,208 
species, highlighting environmentally suitable areas within species’ native regions. The data was 
generated in an automated approach consisting of data scraping and filtering, variable selection, model 
calibration and model selection. Generated Maxent predictions were validated by comparing a subset 
to available expert-drawn range maps from IUCN (n = 4,257), as well as by qualitatively inspecting 
predictions for randomly selected species. We expect this data to serve as a substitute whenever expert-
drawn species range maps are not available for conducting large-scale analyses on biodiversity patterns 
and associated anthropogenic impacts.

Background & Summary
Life on Earth is essential to human society as it forms the foundation of present welfare1. The growing human 
population, modern lifestyles and associated pressures on the planet have already resulted in a significant loss 
of natural habitat and are threatening biodiversity2–6. Different initiatives promote the protection of biodiversity 
and aim to halt its loss, such as the UN Sustainable Development Goals7, the Intergovernmental Science-Policy 
Platform on Biodiversity and Ecosystem Services8 and the International Union for the Conservation of Nature 
(IUCN). Different decision-support tools can contribute to this by assessing environmental performances of 
products, strategies and policies2,9–11. For the development of such tools, but also for the implementation of 
global conservation strategies and policies itself, spatial data, e.g. in the form of distribution maps of individ-
ual species12, are crucial. However, besides many species remaining undiscovered or undescribed, we still lack 
spatial information for most of the ones we know13. Consequently, comprehensive and ready-to-use datasets for 
large-scale analyses are only available for a few vertebrate groups14–16. This is concerning, as global conservation 
strategies and biodiversity impact assessments are limited to these groups, while some hyperdiverse species 
groups, such as plants, are often not considered17,18.

Here, we provide spatial distribution data for a large fraction of red-listed terrestrial vascular plant species 
at different levels of spatial detail (Fig. 1), i.e. native regions (n = 47,675), occurrence records (n = 30,906) and 
modelled range estimates (i.e. a predicted relative environmental suitability19 within native regions; n = 27,208). 
The workflow included data scraping and filtering, as well as variable selection, model calibration and model 
selection, aiming for best practice20–22 but within the constraints of data limitations and computational feasibility 
at this scale. Species-specific native regions were retrieved from a scheme specifically developed to challenge the 
lack of distributional knowledge for plant species23. Available native occurrence records were retrieved from the 
Global Biodiversity Information Facility (GBIF)24 and subsequently filtered. Range estimates were generated 
using maximum entropy modelling19,25–27, and show where environmentally suitable conditions exist within 
each species’ native regions (Fig. 2a–d).

The underlying occurrence data is known to be highly spatiotemporally aggregated and variable across 
administrative borders for some species28–31. We aimed at counteracting a potential sampling bias by using 
three differently treated occurrence data types (i.e. different degree of spatial filtering: no filter, presence cells, 
thinned presence cells), and by dividing occurrence data in equally-sized bins during model calibration32. Up 
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to 96 different models were fitted per species to find optimal variables, model settings and data type. The best 
prediction was selected for each species based on common performance metrics (i.e. AUC and AUCPR).

However, some predictions will undoubtedly remain flawed by underlying biases. Based on comparisons to 
expert-drawn range maps available from IUCN (n = 4,257) and qualitative inspection of predictions for ran-
domly selected species, we expect this to mainly influence widespread and common species, and hence, only 
affect the smallest proportion of global biodiversity33. In addition, the species most vital for assessing anthropo-
genic impacts or for defining conservation priorities, are more likely to be small-ranged and endemic. Although 
validating each prediction was not feasible, we found most individually inspected predictions to either offer an 
improvement compared to elsewhere available data or an acceptable substitute, although at a coarser spatial 
resolution and less detailed.

We want to stress that the presented dataset is generated for the purpose of global spatial screening stud-
ies and for building a basis for future, global biodiversity impact assessment models. In concert with power-
ful, species-specific trait and conservation-related databases, the provided data can benefit future work, such 
as assessing global extinction probabilities34, effects of terrestrial acidification35, drivers of invasion success36, 
progress towards reaching global conservation goals37 and act as pre-assessment prior to expert-based range 
map generation and red list assessments38–41. With a continuously increasing availability of species occurrence 
records, the presented dataset can be updated frequently to illustrate the state of knowledge at any time. With 
more data becoming available, precision is likely to increase in the future.

Methods
Taxonomic scope.  A species list containing all terrestrial vascular plants (n = 52,372) of the global IUCN 
red list was retrieved from IUCN in April 2021, IUCN version 2021-116. We retrieved each species’ accepted 
name from Plants of the World Online (POWO)42 to facilitate communication to various data portals using the 
package taxize43 in R44. Plant family, order and class were retrieved from the Integrated Taxonomic Information 
System45 using the package taxize43 in R. Only species outside the IUCN threat categories “Extinct” and “Extinct 
in the Wild” were kept, and all species considered as subspecies or varieties according to POWO removed. We 
attempted to assemble spatial data for each of the remaining 48,144 species.

Native regions.  Species-specific native regions (Fig. 1) were retrieved from POWO using a customized 
web-scraper function (see section Code Availability) and the packages taxize43 and rvest46 in R. The data follows 
the World Geographical Scheme for Recording Plant Distributions (WGSRPD)23 and includes a continental, 

Fig. 1  Schematic summary of the dataset. Top: Native region extents were retrieved from Kew’s Plants of 
the World online. Middle: Occurrence data was retrieved from the Global Biodiversity Information Facility 
(GBIF)24 and filtered into three different occurrence data types: raw data (blue), presence cells (grey) and 
thinned data (yellow). Bottom: The different occurrence data types were used in Maxent models to predict 
relative environmental suitability indices within native regions (i.e. range estimates). Differences between Model 
0 and Model 1 to 3. Model 0 was trained to support variable selection using raw data in k-fold cross validated 
Maxent models (one model for each combination of feature classes, i.e. linear (L), quadratic (Q), hinge (H), 
product (P) and threshold (T)). The selected variables and each of the three occurrence data types were used to 
train a set of separate k-fold cross validated Maxent models (one model for each possible combination of feature 
classes, regularization multipliers and occurrence data type). The overall best performing model was selected for 
each species based on performance metrics.
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country and regional level. Retrieved WGSRPD-regions were matched to its corresponding shapefile at level 4, 
available from the Biodiversity Information Standards GitHub repository47 and rasterized at 30 arc minutes spa-
tial resolution (approximately 56 km at the equator).

Occurrence records.  For species with given native extents in POWO, the maximum number of most 
recent occurrence points (i.e. 100,000) per native WGSRPD-country was retrieved from the GBIF application 
programming interface (API) using the package rgbif 48 in R (the equivalent full dataset49 is available at https://
doi.org/10.15468/dl.uvd56q). The considered environmental variables have changed tremendously in the past 
decades50,51 and only cover a limited period of time, i.e. the years 1979–2013 and 2015 respectively (see section 
Environmental data). Therefore, only records between the years 2000 and 2020 were considered to temporally 
align occurrence data to both sets of environmental variables as best as possible. If less than 25 records were 
available for a given species after the year 2000, no temporal filter was set to maximize data retrieval. GBIF 
records without specified coordinates and with flagged geospatial issues48 were not considered. As such, we expect 
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Fig. 2  Data examples for randomly selected species and spatial coverage of the dataset. Best performing Maxent 
prediction, highlighting environmentally suitable conditions within the species native regions (i.e. modelling 
extent) along retrieved occurrence records (white points) for (a) Amomum pterocarpum, (b) Cedrus libani, 
(c) Laburnum anagyroides, (d) Megistostegium nodulosum. Performance of the shown predictions indicated 
by maximum F1-score and the area under the receiver operating characteristics curve for true vs. false positive 
rate (AUC) and recall vs. precision (AUCPR). Bottom: number of (e) retrieved native regions, (f ) retrieved 
occurrence records, and (g) generated Maxent predictions across the globe.
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inaccurate coordinate notations as well as records of specimens preserved in museums or other biodiversity 
facilities to be typically detected. Only points inside reported native WGSRPD-regions were kept and duplicated 
records were removed (hereafter: raw data). The number of raw data records was counted per cell (30 arc min.) 
using the package raster52 in R.

Maxent predictions.  We generated spatial predictions within species’ native WGSRPD-regions at 30 arc 
min. resolution (approximately 56 km at the equator) using maximum entropy modelling (Maxent)19,26,27, for all 
species with at least 5 raw data records53,54 that were distributed across at least 3 cells, and a native region extent of 
at least 9 cells. Although an arbitrary threshold, we attempted to allocate computational resources to more mean-
ingful predictions, modelled across larger extents. Maxent is a probability density estimation approach widely 
used for predicting species distributions based on presence-only data55. Background information, required to 
fit response curves56, was collected from each cell within each species’ native regions57. For generating models 
we utilized a high-performance computing infrastructure58 allowing for parallel computations using the Maxent 
software25 via R packages dismo59 and ENMeval60.

Environmental data.  We downloaded all CHELSA bioclimatic variables61,62 (n = 19, see Table 1 for full list) 
in 30 arc seconds resolution and aggregated, for computational efficiency, to the chosen modelling resolution 
(30 arc min.) by averaging. CHELSA bioclimatic variables are a set of modelled, biologically relevant, climatic 
variables based on data collected during the years 1979–201361. In addition, fractions for different natural land 
cover types, including different types and mosaics of forest, shrubland, grassland and sparse vegetation, (n = 17, 
see Table 1 for full list) were calculated based on the European Space Agency’s land cover product for the year 
2015 in 300 m resolution63. Each land cover class was transformed into a binary raster depicting presence (=1) 
and absence (=0) of the land cover type. The binary raster was then aggregated to modelling resolution by aver-
aging, resulting in one raster for each land cover class, representing the proportion of land covered by that class 
per pixel.

Occurrence data types.  For some species, several raw data records can be in the same cell at the given spatial 
resolution (30 arc min.). Although pseudo-replication can inflate model performance (here: during model cali-
bration) and, hence, increases the risk of overfitting, we argue that these occurrence points still contain valid 
information if they are discrete observations and therefore kept this data. However, we henceforth applied two 
filters to counteract potential spatial biases, as well as pseudo-replication (Fig. 1). We removed all cell-duplicates 
from the raw data (hereafter: presence cells), and we applied spatial thinning with a minimum distance of two 
cells on the presence cells (hereafter: thinned data). Occurrence data was spatially filtered using the R package 
spThin64.

Model training.  A set of Maxent models was fitted for each species using the differently treated occurrence data 
types. All models were calibrated using k-fold cross validation. The employed occurrence data was partitioned 
into training and testing bins. For species with only few data points (n < 25), we used k - 1 Jackknife partitioning 
(k = n)54. For species with more data points (n ≥ 25) we used block partitioning (k = 4) to account for spatial 
autocorrelation of occurrence points in larger datasets32. This partitioning splits the occurrence data at a longi-
tudinal and latitudinal line, resulting in approximately equally sized bins60.

An initial model (Fig. 1; Model 0) was trained to support the selection of uncorrelated environmental var-
iables using the raw data and all environmental variables (n = 36) for each species. Separate models, one for 
each possible combination out of all included feature classes (i.e. environmental variables and transformations 
thereof), were trained. We included linear (l), quadratic (q), product (p), hinge (h) and threshold (t) transfor-
mations, resulting in 6 possible combinations (i.e. l, lq, h, lqh, lqhp, and lqhpt). The best performing model was 
selected based on the corrected Akaike information criterion (AICc)65–67. However, if no model performed 
best in terms of AICc, or if this metric was unavailable for 50% of fitted models, the average testing area under 
the receiver operating characteristics curve (AUC; see section Technical Validation) during model calibration 
was used instead. Permutation importance was retrieved for all variables in Model 0. Correlated variables were 
identified using Spearman’s rank correlation coefficient (ρ) and defined as ρ ≥ | ± 0.7|. In any set of correlated 
variables, only the variable with the greatest permutation importance was kept.

The selected environmental variables were used to train separate models for each of the three differently 
treated occurrence data types: raw data (Model 1), presence cells (Model 2), and thinned data (Model 3). Model 
1 was trained if at least 5 raw data records were available, distributed across at least 3 cells (see above). Model 
2 and Model 3 were trained if at least 3 records of the corresponding data type were available to avoid compu-
tational failure. Although a smaller sample size, we argue that if those models performed better than Model 1, 
the threshold of 5 records becomes arbitrary and the assessed performance indicators (see section Technical 
Validation) more valuable. The same model architecture as in Model 0 was utilized, including model calibration 
and selection of the best performing model. However, this time, we added five different regularization multipli-
ers (RM; i.e. 1, 2, 3, 5 and 10; based on previous studies68–70) to counteract overfitting20,56 and for building sim-
pler, ecologically more relevant, models60. Hence, separate models for each possible combination out of feature 
classes and RMs were trained (Fig. 1; Model 1–3), resulting in 30 trained models for each data type and up to 90 
models per species.

Metadata.  Metadata was assembled for all data and includes general information about species (taxonomy 
and red list status), provided data type (native regions, occurrence records or Maxent prediction), bounding box 
of native regions, and if relevant, information about the occurrence data (number of raw data records, Moran’s 
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Index71, calculated as a measure of spatial autocorrelation and based on the number of raw occurrence points 
obtained per cell), and Maxent metadata: training data (filter treatment, number of training data points), thresh-
olds for converting the prediction into binary range maps59, model settings (features, parameters, transforma-
tions, regularization multiplier, variables) and out of the box60 model performance, including degree of overfit 
(DOO) quantified as the difference between calibration and testing AUC during k-fold cross validation70, as well 
as self-assessed model performance metrics as described in the section Technical Validation.

Data Records
Dataset.  The presented dataset is stored in a stable Dryad Digital Repository72 and can be explored at https://
plant-ranges.indecol.no. The dataset includes spatial information for 47,675 species at different levels of detail. In 
total, range estimates (i.e. relative environmental suitability within native regions) have been predicted for 27,208 
species using Maxent, for 30,906 species native occurrence records are provided, and for 47,675 species the spatial 
extent of its native WGSRPD-regions is provided.

All gathered and generated data are stored in netCDF files and can be called by specifying a varname. Spatial 
predictions are provided in Maxent’s raw as well as default output (i.e. complementary log-log (cloglog) trans-
formed, but see section Usage Notes)27,59,60. The suggested data is stored in folder basic. These netCDF files 
(default output and raw output) assemble the best performing Maxent prediction (varname: Maxent predic-
tion) for each species selected based on the highest harmonic mean between AUC and AUCPR (see Technical 
Validation), along with number of occurrence records per cell (varname: Presence cells) and rasterized native 
WGSRPD-regions (varname: Native region).

Variable Code

Annual Mean Temperature CHELSA_BIO1

Mean Diurnal Range CHELSA_BIO2

Isothermality CHELSA_BIO3

Temperature Seasonality CHELSA_BIO4

Max Temperature of Warmest Month CHELSA_BIO5

Min Temperature of Coldest Month CHELSA_BIO6

Temperature Annual Range CHELSA_BIO7

Mean Temperature of Wettest Quarter CHELSA_BIO8

Mean Temperature of Driest Quarter CHELSA_BIO9

Mean Temperature of Warmest Quarter CHELSA_BIO10

Mean Temperature of Coldest Quarter CHELSA_BIO11

Annual Precipitation CHELSA_BIO12

Precipitation of Wettest Month CHELSA_BIO13

Precipitation of Driest Month CHELSA_BIO14

Precipitation Seasonality CHELSA_BIO15

Precipitation of Wettest Quarter CHELSA_BIO16

Precipitation of Driest Quarter CHELSA_BIO17

Precipitation of Warmest Quarter CHELSA_BIO18

Precipitation of Coldest Quarter CHELSA_BIO19

Fraction of mosaic cropland/natural vegetation X30_ESA_CCI

Fraction of mosaic natural vegetation/cropland X40_ESA_CCI

Fraction of broadleaved evergreen, closed to open, tree cover X50_ESA_CCI

Fraction of broadleaved deciduous, closed to open, tree cover X60_ESA_CCI

Fraction of needleleaved evergreen, closed to open, tree cover X70_ESA_CCI

Fraction of needleleaved deciduous, closed to open, tree cover X80_ESA_CCI

Fraction of mixed leaf type tree cover X90_ESA_CCI

Fraction of mosaic tree and shrub/herbaceous cover X100_ESA_CCI

Fraction of mosaic herbaceous cover/tree and shrub X110_ESA_CCI

Fraction of shrubland X120_ESA_CCI

Fraction of grassland X130_ESA_CCI

Fraction of lichens and mosses X140_ESA_CCI

Fraction of sparse vegetation X150_ESA_CCI

Fraction of tree cover, flooded, fresh or brakish water X160_ESA_CCI

Fraction of tree cover, flooded, saline water X170_ESA_CCI

Fraction of shrub or herbaceous cover, flooded, fresh/saline/brakish water X180_ESA_CCI

Fraction of bare areas X200_ESA_CCI

Table 1.  Environmental data used in this study. The layers (n = 36) are based on Karger et al.62 and the 
European space agency’s land cover product63.
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The netCDF files in folder advanced contain one Maxent prediction for each occurrence data type (varname: 
Model 1, Model 2 or Model 3), instead of best performing Maxent prediction (i.e. varname Maxent predic-
tion is not applicable). Number of occurrence records per cell (varname: Presence cells) and rasterized native 
WGSRPD-regions (varname: Native region) are identical in all netCDF files.

Each band in the netCDF files assembles the mentioned variables for one species. The corresponding bands 
can be looked up in the metadata (i.e. speciesID). Furthermore, the metadata can be used to select appropriate 
cut-off thresholds for generating binary range maps, filter models based on species, performance, or desired 
datatypes, and to lookup the relevant study extent for masking individual predictions (see Usage Notes).

Technical Validation
Maxent predictions.  We calculated performance metrics for model 1 to 3 for each species using its cor-
responding presence cells to validate the Maxent predictions. Receiver operating characteristic curves and the 
corresponding area under the curve for recall (i.e. true positive rate, sensitivity) versus false positive rate (AUC) 
as well as precision versus recall (AUCPR) were generated using the packages ROCR73 and PRROC74 in R. Recall 
was calculated as the fraction of correctly predicted presence cells compared to all presence cells of the reference 
(Eq. 1), the false positive rate as the fraction of falsely assigned presence cells compared to all true absence cells 
(Eq. 2), and precision as the fraction of correctly assigned presence cells compared to all predicted presence cells 
(Eq. 3). In addition, F1-scores (Eq. 4) were calculated as harmonic mean between recall and precision at all pos-
sible cut-off thresholds to transform the Maxent prediction into a binary range map. The maximum obtained 
F1-score indicates how well a potential binary range map performs at equal importance of recall and precision.

Recall True Presence
True Presence False Absence (1)

=
+

False positive rate False Presence
False Presence True Absence (2)

=
+

Precision True Presence
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=
+

=





⋅
+




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F
precision recall

precision recall
2

(4)
1

AUC and AUCPR are threshold-independent performance measures for binary classifiers. An AUC value of 1 
indicates a perfect model, an acceptable AUC value (>0.7)75 indicates the ability to predict many true presences 
at a low false positive rate, and an AUC value of 0.5 indicates the model performing as good as a random guess. 
The average AUC obtained across the suggested dataset was 0.95 when comparing predictions to its correspond-
ing presence cells (Table 2), indicating well-performing models for the majority of species. For 26,977 species 
(99%), at least one Maxent prediction had an AUC value above 0.775.

AUCPR is not affected by true negatives (i.e. true absence) which often dominated our dataset. A higher 
AUCPR value indicates a relatively higher ability to correctly predict a high proportion of presumably true 
range while maintaining a high precision compared to a lower AUCPR. However, the AUC and AUCPR values, 
as well as max. F1-score, described here were calculated based on presence-background data and are highly 
influenced by class balances. Strictly speaking, both false presences and true absences cannot be determined 

Reference

Red list category

DD LC NT VU EN CR Total

AUC

Presence - background
Mean 0.939 0.937 0.95 0.96 0.971 0.957 0.945

Median 0.961 0.951 0.977 0.985 0.994 0.989 0.964

Reference range
Mean 0.817 0.89 0.927 0.931 0.929 0.915 0.902

Median 0.852 0.925 0.972 0.974 0.98 0.987 0.943

AUCPR

Presence - background
Mean 0.576 0.529 0.656 0.69 0.749 0.7 0.589

Median 0.603 0.535 0.717 0.755 0.833 0.797 0.617

Reference range
Mean 0.516 0.664 0.686 0.653 0.655 0.592 0.658

Median 0.527 0.702 0.737 0.712 0.699 0.626 0.702

Table 2.  Performance of Maxent predictions in the suggested dataset. Mean and median values of area under 
the receiver operating characteristics curve for true vs. false positive rate (AUC) and recall vs. precision (AUCPR) 
for all species and across different IUCN threat categories (i.e. data-deficient (DD), least concern (LC), near-
threatened (NT), vulnerable (VU), endangered (EN) and critically endangered (CR)). Calculations are based on 
presence-background data (n = 27,208) and on comparison to expert-based range maps retrieved from IUCN 
(i.e. reference range, n = 4,257).
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with presence-only data. Hence, the performance metrics described here can only be used to compare different 
models for a given species, but not across different species76,77.

Therefore, we evaluated the Maxent predictions by comparison to available expert-based range maps, as an 
additional evaluation dataset32. Expert-based range maps were retrieved from IUCN, if available (hereafter: ref-
erence ranges). Only reference ranges that were labelled as “native” and “extant (resident)” or “probably extant 
(resident)” were considered. For 4,257 species of our Maxent predictions, range maps were available at IUCN. 
These species were unevenly distributed in space (Fig. 3a), across IUCN red list categories (Fig. 3d) as well as the 
plant classes dicots (Magnoliopsida, n = 3,480), monocots (Liliopsida, n = 731), ferns (Polypodiopsida, n = 27), 
conifers (Pinopsida, n = 17), and lycopods (Lycopodiopsida, n = 2). Reference ranges were used to calculate the 
above described performance measures (i.e. max. F1-score, AUC and AUCPR). However, this time we dealt, pre-
sumably, with actual presences and absences of the given species, making the performance metrics comparable 
across species76. Maxent predictions for species classified as “data-deficient” (DD) obtained the lowest, and pre-
dictions for species classified as “near-threatened” (NT), “vulnerable” (VU) and “endangered” (EN) the highest 
AUC values (Fig. 3d). However, these differences were marginal and all average values consistently high across 
different IUCN categories (mean AUC: 0.9; Table 2) and across the globe (Fig. 3b). Although AUC is a strong 
indication of model performance75, the predictions seem to rarely accommodate both a high recall and a high 
precision (represented in either max. F1-score or AUCPR value) when compared to reference ranges. However, 
we found a large variation and no clear trend in AUCPR values for species across different threat-level categories 
(Fig. 3d), and although the average AUCPR was lowest for species native to parts of central Africa, India and 
south-eastern Asia (Fig. 3c), we expect these values to be of little explanatory power due to the limited sample 
sizes in these regions (Fig. 3a). Moreover, AUCPR seems to increase with increasing data availability (Fig. 3d). 
We assume that low data coverage in sparsely populated areas influenced modelling performance for some, pri-
marily widespread, species, highlighting that sometimes more spatially distributed occurrence data is required 
for making expert-alike range maps78.

Furthermore, based on a qualitative assessment of predictions for twelve randomly selected species,  
we expect uncertainties due to differences in data availability across administrative borders as well as for highly 
naturalized species. For instance, the clustered occurrence records for Cedrus libani in Lebanon (Fig. 2b) 

Fig. 3  Performance metrics for the suggested Maxent predictions. (a) Number of reference range maps 
available used for calculating performance metrics. Average values for species native to the corresponding 
regions of area under the receiver operating characteristics curve for (b) true vs. false positive rate (AUC) 
and (c) recall vs. precision (AUCPR). (d) Mean and standard deviation of AUC (blue) and AUCPR (yellow) per 
rounded log-transformed number of raw occurrence data points (left) and for species in different IUCN red 
list categories (right), i.e. data-deficient (DD), least concern (LC), near-threatened (NT), vulnerable (VU), 
endangered (EN) and critically endangered (CR). Significant differences across IUCN categories in d are 
indicated by different letters in bars for AUC (white text) and AUCPR (black text).
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resulted in less precise data than elsewhere available for this species79, while the prediction for Laburnum anagy-
roides (Fig. 2c) was affected by naturalized occurrence records outside its native origin80 but still within its native 
WGSRPD-regions. However, this will be most problematic for abundant, widespread, and naturalized species, 
and hence only relevant for the smallest fraction of global biodiversity33. In addition, the predictions for more 
vulnerable species, presumably small-ranged or endemic, seem to perform better than species in the lowest red 
list category (i.e. least concern (LC)) in terms of AUC when compared to reference ranges (Fig. 3d).

In fact, the remaining randomly selected predictions were either consistent with point data (e.g. Terminalia 
macrostachya81), reflected the current knowledge of elsewhere available data, although at a coarser spatial res-
olution and less detailed (e.g. Mammillaria grahamii82), or offered an improvement compared to previously 
unavailable spatial data (e.g. Eucalyptus elliptica83, Megistostegium nodulosum84 (Fig. 2d), Memecylon elegantu-
lum85, Psidium salutare86,87, Siparuna conica88,89, Trisetaria dufourei90). However, the prediction of Pyracantha 
angustifolia was difficult to evaluate due to poorly understood range dynamics91, highlighting the need for more 
data for vascular plant species.

We want to stress that our predictions indicate environmentally suitable conditions even if isolated from 
known species occurrence locations. For instance, Amomum pterocarpum seems to be restricted to southern 
India and Sri Lanka92,93 while our prediction indicates environmentally suitable conditions in north-eastern 
India (Fig. 2a), which in fact, supports a possible observation nearby94. We further detected several expert-based 
range maps with a substantial mismatch to our data, confirming that some of the expert-based data may be 
too conservative95 (e.g. Magnolia pugana)96. However, we also found expert-based ranges being smaller (e.g. 
Vallesia glabra or Tetraclinis articulata)97,98 than predicted environmental suitability indicates, or being incor-
rectly georeferenced (e.g. Corylus cornuta)99. Hence, besides highlighting mismatches to expert-based range 
maps, we expect this dataset to be of sufficient quality to serve as time- and cost-efficient range map substitutes 
and pre-assessed range estimates for currently unmapped species.

External data.  The retrieved native WGSRPD-regions are provided by POWO under a CC BY 3.0 license 
(https://creativecommons.org/licenses/by/3.0/) and have been checked for consistency to assure proper work-
flow of data retrieval from POWO and feature matching to the WGSRPD level 4 shapefile. However, the data 
provider, POWO, cannot warrant the quality or accuracy of the WGSRPD data42. In addition, other data (e.g. 
ecoregions100) may ecologically be more relevant than administrative boundaries. However, WGSRPD offers the 
most detailed data on species’ native origins available on a large-scale, to the best of our knowledge. An attempt 
in matching native WGSRPD-regions to ecoregions was discontinued after loss of information due to incompat-
ible geographical boundaries. Hence, we consider the utilized WGSRPD-regions, currently, as the best compro-
mise between level of detail and availability of data on species’ native origins. Furthermore, spatial inaccuracies 
and biases in the occurrence data retrieved from GBIF were counteracted by the implemented filtering steps, 
the coarse spatial resolution, by avoiding non-native occurrence records and the model calibration techniques. 
However, any unforeseen misclassified or misreported records may flaw predictions for individual species. In 
addition, data retrieval via GBIF’s API was limited to 100,000 occurrence records per request. We extended this 
limit by sending one request per native country for each species, and hence, expect this issue to be irrelevant for 
our study. We further want to stress that most of the generated predictions have not been validated individually, 
and that some predictions may be erroneous either due to data limitations or simply because digitally stored data 
can contain minor but crucial blunders. For instance, in terms of nomenclature, the red-listed species Cotoneaster 
cambricus is endemic to Wales101, but also seems to be a synonym for a widespread species according to POWO42. 
Consequently, either our spatial prediction or the expert-based range for this species is incorrect.

Usage Notes
All data handling, modelling and visualization was done using R version 4.0.344 in RStudio version 1.4.1103102. 
Handling of all spatial data was done using the R packages raster, rgdal, maptools, rgeos and sp52,103–106. A show-
case for opening the different data types for individual species, is available at https://github.com/jannebor/plant_
range_estimates. Although functionality of the code may be given at newer, or older, versions, we expect the best 
user-experience using the versions specified in this descriptor.

Maxent predictions are given as raw and cloglog transformed output. These outputs are related monoton-
ically, meaning that the performance metrics described in this study, as well as a potential binary range map 
(excluding prevalence dependent thresholds), will be identical for both raw and cloglog output56. For users 
mostly interested in qualitative analyses, both predictions can simply be interpreted as indices of environmental 
suitability20. However, due to rescaling, the exact interpretation and appearance of each output differs. In gen-
eral, Maxent’s output interpretation depends on the underlying data, and differs, in our case between Model 1 
(raw data including pseudo-replicates = abundance) compared to Model 2 and 3 (presence), but gives an esti-
mate of the abundance, or presence, of the species in relation to the true modelled quantity (either abundance or 
presence). Maxent’s raw output reflects the exponential Maxent model itself, and can be interpreted as a relative 
occurrence (or presence) rate summing up to 120. The raw output does not rely on any assumptions20, however, it 
may not perform well in visualizing actual differences in suitability107. Being rescaled on a more common range 
from 0 to 1, the cloglog transformation compresses extreme values, and hence facilities visualization and com-
parison amongst predictions27. It can, arguably, be interpreted as a relative probability of presence under certain 
assumptions27. However, as these assumptions are rarely met, we strongly discourage users from this interpre-
tation and suggest interpreting the cloglog output values as an estimate of relative environmental suitability20 
instead.

We further suggest using Maxent predictions with an AUC below 0.7 only in exceptions, and in large-scale 
studies. In general, our predictions may overestimate true range extents of endemic species and underestimate 
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ranges of widespread species. However, in worst case, the entire native WGSPRD-regions are outlined as being 
environmentally suitable, which may be acceptable in some cases, but not in others.

In addition, Model 1 has been fitted with the suggested minimum number of records for generating mean-
ingful distributions models53,54, but Model 2 and 3 were in some cases trained with less records. Whether this 
low sample size as well as its implied uncertainty is acceptable or not will differ between users and applications 
and needs to be considered.

The full data, including Maxent predictions (cloglog transformed), underlying occurrence records, native 
regions and corresponding metadata, can be explored at https://plant-ranges.indecol.no. Here, the predictions 
based on individual models (Model 1 to 3) as well as a suggested (i.e. best performing) prediction highlight 
environmentally suitable conditions, if available for the selected species. Predictions can potentially be trans-
formed into a map indicating where the species is most certainly found, as required for local management and 
conservation actions95, or into a conservative range map, best suited for analysing global patterns108 and high-
lighting where a species is certainly absent109. However, the choice of an appropriate cut-off threshold is highly 
application specific. We outlined “potential range maps” in the data explorer for illustrational purposes only and 
based on the best performing prediction. We applied different cut-off thresholds to represent different levels of 
confidence using the R package dismo59. The threshold at which there was no omission (possibly suitable), the 
threshold at which the F1-score is highest (probably suitable) and presence cells (presence).

Code availability
All data and code is available without restrictions under the terms of a Creative Commons Zero (CC0) waiver 
(https://creativecommons.org/share-your-work/public-domain/cc0/). R code for retrieving and filtering data 
from POWO and GBIF, and for generating and evaluating Maxent models is available on GitHub (https://github.
com/jannebor/plant_range_estimates). Any further requests can be directed to the corresponding author.
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