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Atherosclerosis-related cardiovascular diseases 
are the leading cause of mortality worldwide. 
Immune-mediated reactions initiated in re-
sponse to multiple potential antigens, including 
oxidatively modified lipoproteins and phospho-
lipids, play prominent roles in atherosclerotic  
lesion development, progression, and complica-
tions (Binder et al., 2002; Hansson and Libby, 
2006; Tedgui and Mallat, 2006). Besides the 
critical requirement for monocytes/macro-
phages (Smith et al., 1995), adaptive immunity 
substantially contributes to the perpetuation of 
the immunoinflammatory response, further  
promoting vascular inflammation and lesion de-
velopment (Binder et al., 2002; Hansson and 
Libby, 2006; Tedgui and Mallat, 2006). Mice on 
a severe combined immunodeficiency or Rag-
deficient background show reduced susceptibil-
ity to atherosclerosis under moderate cholesterol 

overload (Dansky et al., 1997; Daugherty et al., 
1997; Zhou et al., 2000). Resupplementation of 
these mice with purified T lymphocytes acceler-
ates lesion development (Zhou et al., 2000), 
even though it does not fully recapitulate lesion 
development of the immunocompetent mice. 
The proatherogenic T cells are related to the 
Th1 lineage (Gupta et al., 1997; Buono et al., 
2005), and are counterregulated by both Th2 
(Binder et al., 2004; Miller et al., 2008) and  
T reg cell responses (Ait-Oufella et al., 2006; 
Tedgui and Mallat, 2006).

The development of atherosclerosis is also as-
sociated with signs of B cell activation, particu-
larly manifested by enhanced production of natural  
IgM type and adaptive IgG type anti–oxidized 
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B cell depletion significantly reduces the burden of several immune-mediated diseases. 
However, B cell activation has been until now associated with a protection against athero-
sclerosis, suggesting that B cell–depleting therapies would enhance cardiovascular risk.  
We unexpectedly show that mature B cell depletion using a CD20-specific monoclonal  
antibody induces a significant reduction of atherosclerosis in various mouse models of the 
disease. This treatment preserves the production of natural and potentially protective  
anti–oxidized low-density lipoprotein (oxLDL) IgM autoantibodies over IgG type anti-oxLDL 
antibodies, and markedly reduces pathogenic T cell activation. B cell depletion diminished  
T cell–derived IFN- secretion and enhanced production of IL-17; neutralization of the 
latter abrogated CD20 antibody–mediated atheroprotection. These results challenge the 
current paradigm that B cell activation plays an overall protective role in atherogenesis 
and identify new antiatherogenic strategies based on B cell modulation.
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Noncommercial–Share Alike–No Mirror Sites license for the first six months 
after the publication date (see http://www.rupress.org/terms). After six months 
it is available under a Creative Commons License (Attribution–Noncommercial– 
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acceleration of lesion development. These studies led to the cur-
rent paradigm that overall B cell activation is atheroprotective. 
Surprisingly, however, whether mature B cell depletion acceler-
ates atherosclerotic lesion development in immunocompetent 
mice, as expected from previous studies, is still unexplored. This 
is a critical question given the potentially important risk of car-
diovascular complications that might arise from the clinical use 
of B cell–depleting CD20-targeted immune therapy in patients 
with severe rheumatoid arthritis or systemic lupus erythemato-
sus, who are at particularly high risk of cardiovascular diseases 
(for review see Roman et al., 2001). We have therefore de-
signed a series of experiment to address this important question.

RESULTS AND DISCUSSION
CD20 antibody–mediated B cell depletion reduces  
the development of atherosclerosis both in apolipoprotein  
E–deficient (Apoe/) and LDL receptor–deficient (Ldlr/) mice
To directly assess the role of B cells in atherosclerosis, we 
examined lesion development in mice with or without  

low-density lipoprotein (oxLDL) autoantibodies (Shaw et al., 
2000; Caligiuri et al., 2002). However, in contrast to other 
immune-mediated diseases, i.e., rheumatoid arthritis and sys-
temic lupus erythematosus, B cells have been assigned a protec-
tive role in atherosclerosis (Caligiuri et al., 2002; Major et al., 
2002; Binder et al., 2004; Miller et al., 2008). Although IgG 
type anti-oxLDL antibodies show variable association with vas-
cular risk, circulating levels of IgM type anti-oxLDL antibodies 
have been more frequently linked with reduced vascular risk in 
humans (Karvonen et al., 2003; Tsimikas et al., 2007). In mice, 
IL-5– and IL-33–mediated atheroprotective effects have been 
indirectly associated with specific B1 cell activation and en-
hanced production of natural IgM type anti-oxLDL antibodies 
(Binder et al., 2004; Miller et al., 2008). On the other hand, 
splenectomy (Caligiuri et al., 2002) or transfer of MT-deficient 
(B cell–deficient) bone marrow (Major et al., 2002) into lethally 
irradiated atherosclerosis-susceptible mice resulted in profound 
reduction of IgG (Caligiuri et al., 2002) or total (Major et al., 
2002) anti-oxLDL antibody production, and was associated with 

Figure 1.  CD20 mAb (-CD20) treatment depletes B cells and reduces the development of atherosclerosis. (a and b) Efficiency of B cell  
(B220+ or IgM+B220+) depletion in blood (gated on lymphocytes, low forward scatter/low side scatter; a) and spleens (gated on total viable splenocytes; b) 
of Apoe/ mice fed a Western diet for either 6 or 12 wk and treated with -CD20 (blue) or a control antibody (magenta). Data are representative of four 
(spleen) or eight (blood) mice per group and per experiment, and two separate experiments. (c–f) Reduction of atherosclerosis development after -CD20 
therapy in four different experiments using Apoe/ or Ldlr/ mice fed either a chow diet (CD) or a Western diet (WD). Representative photomicrographs 
of oil red O–stained aortic sinuses are shown for each experimental setting along with quantification of intimal lesion size. Horizontal bars indicate  
median values. *, P < 0.05; **, P < 0.01; ***, P < 0.001. Bars, 200 µm.
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of CD20 mAb treatment was caused by the use of a mouse 
model that generates excessive inflammation in response to 
a very high lipid overload, we examined the effect of B cell 
depletion in Apoe/ mice fed a chow diet. Treatment of 
these mice with CD20 antibody for 12 wk also resulted in 
significant reduction of lesion development (Fig. 1 e) de-
spite similar plasma cholesterol levels (5.5 ± 0.6 vs. 5.7 ± 
0.8 g/liter in control IgG and CD20 mAb–treated groups, 
respectively; P = 0.96). The elevated plasma cholesterol 
levels in Apoe/ mice are mostly of the very low LDL sub-
type, whereas elevated LDL is the major atherosclerosis risk 
factor in humans. Thus, we examined the effects of B cell 
depletion in the Ldlr/ mouse model. Again, treatment of 
Lldr/ mice with CD20 mAb led to marked B cell depletion 
(Fig. S3) and to significant reduction of atherosclerosis  
(Fig. 1 f). Overall, these studies provide solid evidence for 
an unsuspected proatherogenic role of B cells in three mouse 
models of atherosclerosis.

CD20 antibody–mediated B cell depletion preserves  
the production of natural anti-oxLDL IgM antibodies over 
IgG type anti-oxLDL antibodies
We next addressed the potential mechanisms responsible for 
atheroprotection after B cell depletion. We found that treat-
ment with CD20 depleting antibody resulted in a profound 
reduction of IgG type anti-oxLDL antibodies both at 6 and 
12 wk of treatment (Fig. 2), which was consistent with the 
profound depletion of B220high cells in blood, spleen, and 
bone marrow (Fig. 1 and Fig. S1). Reduction of anti-oxLDL 

B cell depletion. We first used Apoe/ mice fed a high fat 
Western diet, a model previously shown to be associated 
with significant B cell activation and previously used to 
demonstrate the protective role of B cells in atherosclerosis 
(Caligiuri et al., 2002). To deplete B cells, mice were treated 
every 3 wk with a previously validated mouse monoclonal 
CD20 antibody (Uchida et al., 2004a,b) for either 6 or  
12 wk. Control mice received a control mAb. As expected 
(Uchida et al., 2004a; Hamaguchi et al., 2005), treatment 
with CD20 mAb led to sustained and profound reduction 
of the number of mature B cells in the blood (Fig. 1 a), 
spleen (Fig. 1 b), peritoneum, and bone marrow (Fig. S1). 
B220high IgM+ cells were severely depleted (92–100%) at all 
studied sites. Spleen B220low IgM+ cells also showed a marked 
reduction (80%). However, as previously observed (Uchida 
et al., 2004a), immature bone marrow B220low IgM+ cells 
(Fig. S1) were less sensitive to CD20 mAb–mediated depletion. 
Treatment with CD20 mAb for 6 wk did not affect plasma 
cholesterol levels (6.4 ± 0.9 vs. 6.3 ± 0.8 g/liter in control 
and CD20 mAb–treated groups, respectively; P = 0.88) but 
unexpectedly led to a significant reduction, not accelera-
tion, of atherosclerotic lesion development (Fig. 1 c). We 
subsequently analyzed the experiments of Apoe/ mice 
treated for 12 wk under a high fat diet and still found a sig-
nificant reduction of atherosclerosis at two different vascu-
lar sites (Fig. 1 d and Fig. S2) despite similar plasma 
cholesterol levels (18.7 ± 1.1 vs. 17.9 ± 1 g/liter in control 
IgG and anti-CD20–treated groups, respectively; P = 0.68). 
To rule out the possibility that the atheroprotective effect 

Figure 2.  CD20 mAb (-CD20) reduces the production of anti-oxLDL antibodies. (a and b) Antibody (IgG and IgM) responses to copper-oxidized 
(CuOx) or malondialdehyde (MDA)-modified LDLs in the circulating blood of Apoe/ mice fed a Western diet for either 6 (a) or 12 wk (b) and treated with 
-CD20 or a control antibody. MDA 1 indicates IgG1 type antibodies against MDA-LDL, and MDA 2c indicates IgG2c type antibodies. Data are representa-
tive of 6 (6 wk), 12 (Ctr; 12 wk), and 13 (-CD20; 12 wk) mice per group and two different experiments. Mean values ± SEM are represented. *, P < 0.05; 
**, P < 0.01; ***, P < 0.001. R.L.U., relative light units.

http://www.jem.org/cgi/content/full/jem.20100155/DC1
http://www.jem.org/cgi/content/full/jem.20100155/DC1
http://www.jem.org/cgi/content/full/jem.20100155/DC1
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dominate the humoral response to oxLDL in Apoe/ mice 
(Palinski et al., 1994, 1996) and are increased even at a young 
age (before the initiation of CD20 mAb treatment in this study), 
which may also explain, at least in part, the persistence of a 
significant IgM level after CD20 immunotherapy, a treat-
ment that does not dramatically affect preexisting antibody 
titers (DiLillo et al., 2008).

CD20 antibody–mediated B cell depletion reduces DC  
and T cell activation, and inhibits T cell infiltration  
within atherosclerotic lesions
We next examined atherosclerotic lesion composition to gain 
more insight into the mechanisms of atheroprotection. In ad-
dition to the significant reduction of macrophage accumula-
tion (Fig. S5), CD20 mAb treatment was associated with a 
marked reduction of T lymphocyte accumulation within the 
lesions (Fig. 3 a), suggesting a role for B cells in driving  
T cell–dependent lesion inflammation. As expected at this 
stage of lesion formation, very few B cells were detected 
within the plaques or within the adventitial layer (Fig. S6), 
suggesting that modulation of lesion T cell accumulation by 
CD20 mAb therapy most likely occurred as a consequence  

IgG antibodies might have limited the potentially deleterious 
consequences of immune complex formation on atheroscle-
rosis (Hernández-Vargas et al., 2006). However, in other 
studies and particularly after splenectomy, profound reduc-
tion in anti-oxLDL IgG levels was observed in association 
with acceleration, not reduction, of atherosclerosis (Caligiuri 
et al., 2002). Thus, in the absence of studies directly address-
ing the role of IgG type anti-oxLDL antibodies on athero-
sclerosis, changes in anti-oxLDL IgG levels after CD20 mAb 
treatment could not be held responsible for lesion reduction. 
Levels of IgM type antibodies against either copper-oxidized 
or malondialdehyde-modified LDL were also reduced after 6 
or 12 wk of CD20-targeted therapy (Fig. 2). IgM type anti-
bodies are endowed with atheroprotective properties (Lewis 
et al., 2009), and their reduction after CD20 mAb therapy 
could not account for atheroprotection. It is interesting to 
note, however, that IgM type anti-oxLDL and T15id+ IgM 
antibodies showed a much lower reduction compared with 
IgG type antibodies (Fig. 2), which is consistent with the 
lower efficiency of CD20 mAb on peritoneal B1 cell deple-
tion (Fig. S4; Hamaguchi et al., 2005). This might have pre-
served an atheroprotective pathway. IgM type antibodies 

Figure 3.  CD20 mAb (-CD20) reduces systemic T cell activation and limits T cell accumulation within atherosclerotic lesions. (a) Represen-
tative photomicrographs and quantitative analysis of CD3 staining in atherosclerotic lesions of Apoe/ mice fed a Western diet for 12 wk and treated 
with CD20 mAb (-CD20) or control antibody (Ctr). Horizontal bars indicate median values. Data are representative of one experiment with eight mice per 
group. Bars, 100 µm. (b and c) Representative histograms of CD69 and CD44 expression on gated CD4+ spleen cells of Apoe/ mice fed a Western diet for 
12 wk and treated with CD20 mAb (-CD20; blue) or control antibody (Ctr; magenta). CD44 expression was divided into low, intermediate, or high. Data 
are representative of four mice per group and two separate experiments. (d) Percentage of BrdU-positive cells determined using flow cytometry among 
spleen- or subcutaneous lymph node–derived CD4+ populations. BrdU was administered the week before animal sacrifice (after 6 wk of a Western diet), as 
described in Materials and methods. Data are representative of three mice per group and two separate experiments. (e) Representative histograms of CD40 
expression on gated CD11c+ spleen cells of Apoe/ mice fed a Western diet for 12 wk and treated with CD20 mAb (-CD20; blue) or control antibody 
(Ctr; magenta). Data are representative of four mice per group and two separate experiments. Mean values ± SEM are represented. *, P < 0.05; **, P < 0.01.

http://www.jem.org/cgi/content/full/jem.20100155/DC1
http://www.jem.org/cgi/content/full/jem.20100155/DC1
http://www.jem.org/cgi/content/full/jem.20100155/DC1
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Of note, this was associated with a deviation of the immune  
response toward a significant increase of T cell–derived 
(Fig. 4, b and c) and circulating IL-17A production in CD20 
mAb–treated animals compared with controls (26 ± 4 vs.  
0 pg/ml, respectively). Replacement of control CD11c+ cells 
with DCs isolated from CD20-depleted mice significantly 
shifted (control) T cell cytokine production toward a higher 
IL-17/IFN- ratio (Fig. S7 a), indicating a contribution of DCs 
to the observed cytokine switch. Recent studies in our labora-
tory identified an unexpected regulatory and protective role for 
IL-17A in atherosclerosis under a context of reduced IFN- 
production (Taleb et al., 2009). In addition, IL-17A has been 
shown to modulate Th1 polarization (O’Connor et al., 2009). 
Thus, the T cell cytokine profile induced by B cell depletion is 
compatible with the observed atheroprotective effects.

IL-17A neutralization abrogates CD20 antibody– 
mediated atheroprotection
To examine whether CD20 mAb–induced changes in T cell 
cytokine profile (reduced IFN- and increased IL-17) could 
be responsible for CD20 mAb–dependent atheroprotection, 
CD20 mAb was administered to Apoe/ mice (on a high fat 
diet for 6 wk) in the presence of control or anti–IL-17A neu-
tralizing antibody. IL-17 neutralization led to increased IFN- 
production in the spleen (not depicted) and atherosclerotic 
aortas, and completely abrogated the atheroprotective effects 
of CD20 mAb therapy (Fig. 5, a and b) despite similar circulat-
ing cholesterol levels, similar efficiency of B cell depletion  
(Fig. S8), and no significant changes in anti-oxLDL antibodies 
levels (Fig. S8). We reproduced these results in a second sepa-
rate experiment (Fig. 5 c). Collectively, these results identify a 
hitherto unsuspected role for B cells in driving the develop-
ment of atherosclerosis through modulation of T cell acti
vation and cytokine production.

of systemic modulation of T cell function. To address this 
hypothesis, we examined T cell activation and proliferation. 
Interestingly, we consistently found marked reductions in 
CD69 and CD44high expression on spleen-derived CD4+  
T cells of mice treated with CD20 antibody compared with 
controls at both 6 wk (not depicted) and 12 wk (Fig. 3, b and c) 
of a high fat diet, indicating reduced T cell activation. B cell 
depletion also led to significant reduction of in vivo BrdU 
staining of effector CD4+CD25– T cells, suggesting reduced 
proliferation (Fig. 3 d). This is consistent with the lower pro-
liferative potential of CD4+ cells recovered from CD20-
treated mice and co-cultured with purified CD11c+ cells in 
the presence of CD3 stimulation (Fig. S7 a). In addition, re-
placement of control CD11c+ cells with DCs isolated from 
CD20-depleted mice led to a reduction of (control) T cell 
proliferation in vitro (Fig. S7 a). This is also consistent with 
the marked reduction of CD40 expression on CD11c+  
DCs recovered from CD20 mAb–treated mice (Fig. 3 e). 
Moreover, we show that incubation of DCs with activated  
B cells leads to enhanced CD40, CD80, and MHC-II ex-
pression on DCs (Fig. S7 b). Thus, a major consequence of  
B cell depletion using CD20 antibody is a marked reduction 
of DC and T cell activation in vivo, which could potentially 
account for its atheroprotective effect.

CD20 antibody–mediated B cell depletion switches  
the immune response toward diminished IFN- secretion 
and enhanced production of IL-17
T cell–derived cytokines significantly alter lesion develop-
ment (Tedgui and Mallat, 2006). Therefore, we examined 
the consequences of B cell depletion on cytokine production 
by purified T cells. We found a marked reduction of pro
atherogenic IFN- by purified T cells recovered from CD20 
mAb–treated mice compared with controls (Fig. 4 a).  

Figure 4.  Treatment with CD20 mAb (-CD20) induces a 
switch toward lower IFN- but higher IL-17 production.  
(a) Representative examples and quantitative analysis of intra-
cellular IFN- staining of isolated splenocytes from Apoe/ 
mice fed a Western diet for 6 wk and treated with CD20 mAb  
(-CD20; blue) or control antibody (Ctr; magenta). Plots are gated 
on CD4+ cells. Numbers in each quadrant indicate percentages 
of cells. Histograms depict mean values ± SEM. Similar results 
were obtained after 12 wk of a high fat diet (not depicted).  
(b) Quantitative analysis of IL-17 and IFN- production (ratio of  
Il-17/IFN- is depicted) in supernatants of purified spleen- 
derived T cells (Apoe/ mice fed a Western diet for 12 wk) after 
stimulation with anti-CD3 antibody in the presence of purified 
CD11c+ cells. Horizontal bars indicate median values. Data are 
representative of four to five mice per group and two separate 
experiments. (c) Representative examples and quantitative  
analysis of intracellular IL-17 staining among spleen CD3+ cells,  
determined using flow cytometry on isolated splenocytes from 
Ldlr/ mice fed a Western diet for 6 wk and treated with CD20 
mAb (-CD20; blue) or control antibody (Ctr; magenta). Mean 
values ± SEM are represented. Data are representative of five 
mice per group and one experiment. **, P < 0.01; ***, P < 0.001.

http://www.jem.org/cgi/content/full/jem.20100155/DC1
http://www.jem.org/cgi/content/full/jem.20100155/DC1
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in mice. Our results challenge the paradigm that overall  
B cell function is atheroprotective and show that a major  
B cell role in atherosclerosis is to drive T cell activation to-
ward enhanced proatherogenic Th1 immune response and 
limited production of atheroprotective IL-17 (Fig. S9). Al-
though limited vascular B cell infiltration is detectable in 
the early stages of atherosclerosis, B cell accumulation sub-
stantially increases with time. It localizes within and around 
advanced atherosclerotic coronary lesions and atheroscle-
rotic abdominal aortic aneurysms (Moos et al., 2005) of 
mice and humans, and is even prominent in vascular in-
flammation associated with other immune-mediated dis-
eases (Aubry et al., 2004). Inhibition of excessive B cell 
activation either through depletion or immune modulation 
might substantially limit vascular inflammation and athero-
sclerotic lesion development.

MATERIALS AND METHODS
Animals. All mice were on a C57BL/6 background. Apoe/ mice were 
10-wk-old males maintained on a chow diet for 12 wk or put on a Western 
diet (20% fat, 0.15% cholesterol, 0% cholate) for either 6 or 12 wk. Ldlr/ 
mice were 10-wk-old males put on a Western diet for either 6 or 12 wk. At 
10 wk old, mice were treated i.p. with a previously validated mouse CD20 
mAb (Uchida et al., 2004a,b) or control IgG (200 µg every 3 wk) for either 
6 or 12 wk. In some experiments, mice received an i.p. injection of either 
purified neutralizing anti–IL-17A–specific antibody (200 µg/mouse, twice 
per week; Uyttenhove and Van Snick, 2006; Uyttenhove et al., 2007; Taleb 
et al., 2009) or control IgG for 6 wk. Experiments were conducted according 
to the French veterinary guidelines and those formulated by the European 
Community for experimental animal use (L358-86/609EEC), and were  
approved by the Institut National de la Santé et de la Recherche Médicale.

Extent and composition of atherosclerotic lesions. Quantification of 
lesion size and composition was performed as previously described (Taleb 
et al., 2007).

Our results may seem in disagreement with previous 
studies showing that both MT deficiency (Major et al., 
2002) and splenectomy (Caligiuri et al., 2002) accelerate ath-
erosclerosis in mice. However, these studies did not directly 
address the role of mature B cell depletion on atherosclerosis 
in immunocompetent mice. Several other concomitant im-
mune cell dysfunctions (Moulin et al., 2000; Ngo et al., 2001; 
João et al., 2004; AbuAttieh et al., 2007) might have contrib-
uted to enhanced lesion development in MT-deficient ani-
mals. Furthermore, the reported limitation of atherosclerosis 
acceleration in splenectomized mice after reconstitution with 
purified B cells could have been confounded by the reduc-
tion of plasma cholesterol levels in B cell–reconstituted mice 
(Caligiuri et al., 2002), and could not be selectively attributed 
to B cells because T cell reconstitution also resulted in athe-
roprotection (Caligiuri et al., 2002). Finally, it should be 
noted that although B cell depletion significantly limited le-
sion development in our present studies, the roles of specific 
subtypes of B cells in driving or controlling atherosclerosis 
merit further investigation. More particularly, it will be im-
portant to address the respective roles of regulatory (Yanaba 
et al., 2008) versus nonregulatory B cells in these processes 
(Bouaziz et al., 2007). Finally, it could be argued that skew-
ing T cell responses from Th1 to IL-17 production in the  
absence of mature B cells would not be helpful in other  
autoimmune/inflammatory diseases known to be mediated 
in part by Th17 cells. However, recent studies have provided 
data indicating that not all Th17 cells are endowed with the 
same pathogenic potential (McGeachy et al., 2007). These 
issues merit further investigation.

In conclusion, we provide strong evidence that mature  
B cell depletion reduces the development of atherosclerosis 

Figure 5.  IL-17A neutralization abrogates CD20  
antibody–mediated atheroprotection. (a) Representative 
photomicrographs of oil red O–stained aortic sinuses and 
quantitative analysis of intimal lesion size in Apoe/ mice 
fed a Western diet for 6 wk and treated with control anti-
bodies for both CD20 and IL-17 (Ctr group), CD20 mAb and 
a control antibody for IL-17 (-CD20 group), or neutralizing 
anti–L-17A mAb and a CD20 mAb (-CD20 + –IL-17A 
group). Horizontal bars indicate median values. *, P < 0.05. 
Bars, 200 µm. This experiment was repeated in c. (b) Quanti-
tative analysis of IFN-, IL-10, and TGF- mRNA expression 
(relative to GAPDH) in the thoracic aortas of Apoe/ mice 
fed a Western diet for 6 wk and treated with CD20 mAb or 
CD20 mAb and anti–L-17A mAb. Mean values ± SEM are 
representative of five to seven mice per group and one  
experiment. *, P < 0.05. (c) Quantitative analysis of intimal 
lesion size in an additional set of Apoe/ mice fed a  
Western diet for 6 wk and treated with control antibodies 
for both CD20 and IL-17 (Ctr group; n = 8), CD20 mAb and a 
control antibody for IL-17 (-CD20 group; n = 7), or  
neutralizing anti–L-17A mAb and a CD20 mAb (-CD20 + 
–IL-17A group; n = 9). Data represent mean values ± SEM. 
*, P < 0.05; **, P < 0.01.

http://www.jem.org/cgi/content/full/jem.20100155/DC1
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5-AGCAACAATTCCTGGCGTTACCTT-3; TGF- L, 5-TGGGCTC-
GTGGATCCACTTC-3), and IFN- (IFN- R, 5-GCCACGGCACAG
TCATTGAAA-3; IFN- L, 5-TCGCCTTGCTGTTGCTGAAGA-3).

Determination of circulating antibodies. Specific antibody titers to given 
antigens in plasma were determined by chemiluminescent ELISA, as previ-
ously described (Friguet et al., 1985; Binder et al., 2003; Chou et al., 2009).

Statistical analysis. Values are expressed as means ± SEM. Differences  
between values were examined using nonparametric Mann-Whitney or 
Kruskal-Wallis tests, and were considered significant at P < 0.05.

Online supplemental material. Fig. S1 shows CD20 mAb–induced  
B cell depletion in bone marrow and peritoneum. Fig. S2 shows that CD20 
mAb treatment reduces the development of atherosclerosis in the thoracic 
aorta. Fig. S3 shows the efficiency of B cell depletion in Ldlr/ mice.  
Fig. S4 shows the relative efficiency of CD20 mAb treatment on peritoneal 
B2, B1a, and B1b cell depletion in Apoe/ mice. Fig. S5 shows that CD20 
mAb treatment reduces macrophage infiltration within atherosclerotic lesions.  
Fig. S6 shows that very few B cells are detected with atherosclerotic arter-
ies of Apoe/ mice fed a Western diet for 12 wk. Fig. S7 shows modula-
tion of DC and T cell functions through B cell activation or depletion.  
Fig. S8 shows that IL-17A neutralization does not affect plasma cholesterol 
levels, efficiency of B cell depletion, or production of anti-oxLDL antibod-
ies. Fig. S9 shows the proposed mechanisms for the atheroprotective effect 
of CD20 mAb. Online supplemental material is available at http://www 
.jem.org/cgi/content/full/jem.20100155/DC1.
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