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A B S T R A C T

Background: Preterm birth and low birth weight (LBW) affect one in ten and one in seven livebirths, respec-
tively, primarily in low-income and middle-income countries (LMIC) and are major predictors of poor child
health outcomes. However, both have been recalcitrant to public health intervention. The maternal intestinal
microbiome may undergo substantial changes during pregnancy and may influence fetal and neonatal health
in LMIC populations.
Methods: Within a subgroup of 207 mothers and infants enrolled in the SHINE trial in rural Zimbabwe, we
performed shotgun metagenomics on 351 fecal specimens provided during pregnancy and at 1-month post-
partum to investigate the relationship between the pregnancy gut microbiome and infant gestational age,
birth weight, 1-month length-, and weight-for-age z-scores using extreme gradient boosting machines.
Findings: Pregnancy gut microbiome taxa and metabolic functions predicted birth weight and WAZ at 1
month more accurately than gestational age and LAZ. Blastoscystis sp, Brachyspira sp and Treponeme carriage
were high compared to Western populations. Resistant starch-degraders were important predictors of birth
outcomes. Microbiome capacity for environmental sensing, vitamin B metabolism, and signalling predicted
increased infant birth weight and neonatal growth; while functions involved in biofilm formation in
response to nutrient starvation predicted reduced birth weight and growth.
Interpretation: The pregnancy gut microbiome in rural Zimbabwe is characterized by resistant starch-
degraders and may be an important metabolic target to improve birth weight.
Funding: Bill and Melinda Gates Foundation, UK Department for International Development, Wellcome Trust,
Swiss Agency for Development and Cooperation, US National Institutes of Health, and UNICEF.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
Key words:

microbiome
metagenome
maternal
birth weight
pregnancy
gestation
ity of British Columbia, School

School of Population and Pub-
Mall, Vancouver, BC Canada

B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Introduction

Children weighing <2,500 grams (g) at birth (low birth weight
[LBW]), due to intrauterine growth retardation or preterm birth (<37
weeks completed gestation), are at high risk of morbidity and mortal-
ity during infancy and childhood, and of adverse effects over the life
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Research in context

Evidence before this study

Preterm birth and low birth weight are a persistent public
health challenge in low-income and middle-income countries
(LMIC) that predict poor child health. There is need to identify
more effective targets for intervention. A limited number of
small studies, predominantly from high-income western popu-
lations, suggest that the maternal gut microbiome undergoes
important metabolic changes during pregnancy that may play
an underappreciated role in preterm, low birth weight and sub-
sequent neonatal health. However, studies of the pregnancy
gut microbiome in LMICs, where preterm and low birth weight
are most prevalent, are extremely sparse; and metagenomic
studies to date severely underrepresent populations outside of
North America and Europe.

Added value of this study

We used shotgun metagenomics to investigate the relationship
of pregnancy gut microbiome taxa and metabolic functions
with infant gestational age, birth weight, and neonatal growth
in a subsample of women and their infants enrolled in the Sani-
tation, Hygiene, Infant Nutrition Efficacy trial in rural Zim-
babwe. In this population, resistant-starch degrading bacteria
were the predominant gut taxa and were important predictors
of birth weight and neonatal growth. Microbiome functions
involved in signaling, starch, vitamin B and energy metabolism
were also important predictors. Gut microbiome predictors of
birth weight and neonatal growth largely reflected the low-
diversity, resistant-starch dominated diet of the study popula-
tion. This is the first study to identify gut microbiome markers
of birth weight and early infant growth that likely reflect the
dietary patterns of the mother, in a sub-Saharan African popu-
lation where there is a very high prevalence of preterm birth
and low birth weight.

Implications of all the available evidence

The pregnancy gut microbiome of rural Zimbabwean mothers,
primarily the abundance of resistant-starch degraders, is an
important contributor to birth weight and neonatal growth.
Microbiome functions that predicted these outcomes suggested
that bacterial capacity to respond to nutrient availability in the
maternal diet may be important to promoting improved birth
weight and early infant growth in populations with a monoto-
nous starch-rich diet.
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course [1]. Globally, LBW and preterm birth affect one in seven [2]
and one in ten [3] livebirths respectively, primarily in low-income
and middle-income countries (LMICs). However, nutritional inter-
ventions to promote optimal gestation, fetal and neonatal growth
have not had a significant impact, or their effects have been consider-
ably heterogeneous [4]. There is a need to better understand the
underlying nutritional and environmental determinants of LBW and
preterm birth so more effective targets for intervention can be identi-
fied.

Recent evidence suggests that the composition and function of the
maternal gut microbiome before and during pregnancy may affect
birth weight and duration of gestation [5�8]. Changes in maternal
gut microbiome composition [9�11] and metabolic activity [12] have
been observed during pregnancy; for example, increased carbohy-
drate metabolism and butyrate production [12]. These alterations in
the maternal microbiome may contribute directly to fetal growth, or
indirectly through influences on maternal nutritional status and
gestational weight gain. In contrast, other studies have reported no
differences in gut microbiome composition during pregnancy [9] or
have reported that the effect of other host characteristics such as pre-
pregnancy weight, gestational weight gain, fasting blood glucose, and
place of residence explain 3-5 fold more variance in microbiome
composition than stage of pregnancy [13].

The gut microbiome can directly suppress [14,15] or promote [16]
intestinal inflammation, and has been associated with biomarkers of
environmental enteric dysfunction [17,18]. Biomarkers of intestinal
damage and microbial translocation that indicate enteric dysfunction,
in turn, have been associated with shorter gestation [19�21] and
smaller birth size [21]. Enteric pathogens also promote intestinal
inflammation and are associated with alterations in microbiome
composition [22]. Inadequate sanitation and hygiene have been
linked to preterm birth in LMICs [23] where exposure to enteric
pathogens is prevalent [24].

Nutrition during pregnancy can also influence fetal growth and
development [25,26]. Dietary influences on the gut microbiome are
well established [27,28], and the intestinal microbiome plays an
important role in nutrient harvesting [29]. The gut microbiome can
regulate blood pressure through the production of short chain fatty
acids (SCFAs) [30] from dietary fiber [31]. Production of SCFAs by the
gut microbiome during pregnancy has been associated with lower
blood pressure in observational studies [8] and pregnancy micro-
biome composition has been associated with pre-eclampsia [32],
which is an important risk factor for preterm birth [33]. In addition,
the gut microbiome may contribute to prevention of micronutrient
deficiencies, such as folate deficiency [34,35]. Plasma folate has been
related to LBW when deficient [36], and higher carriage of intestinal
Bifidobacteria spwas positively associated with plasma folic acid [37].

Indirectly, the gut microbiome may affect pregnancy outcomes
through an impact on maternal nutritional status and gestational
weight gain during pregnancy, which influence fetal growth. In
adults, gut bacteria-derived SCFAs regulate food intake, body weight,
energy expenditure, and satiety [38,39], and oral probiotic adminis-
tration has been shown to regulate central adiposity during and after
pregnancy [40]. In observational studies, mothers who were over-
weight prior to pregnancy or who gained more weight during preg-
nancy showed greater gut Bacteroides, Clostridium, Staphylococcus
and Enterobacteriaceae (Escherichia coli) abundance [37,41].

Furthermore, the maternal gut is a predominant source of bacteria
to colonize the infant gastrointestinal tract at birth [42,43]. Childhood
microbiome immaturity (delayed acquisition of specific taxa with
child age) is related to early-life growth [44�46]. A dysbiotic mater-
nal gut microbiome can, in part, be directly transferred to the new-
born [47], regardless of whether the dysbiosis results from dietary
deficiencies or pathogen exposure. Growth during the neonatal
period may, therefore, also be impacted via acquisition of the mater-
nal pregnancy gut microbiome by the infant at birth.

However, the evidence for a relationship between the pregnancy
gut microbiome and adverse birth outcomes comes predominantly
from high-income settings, and the results of these small studies
have been inconsistent [48]. Moreover, human microbiome species
from settings outside of high-income European and North American
populations are severely underrepresented, which highlights the
need for evidence from more diverse populations and environments
[49]. We sought to better understand the role of the maternal micro-
biome during pregnancy on gestational age, birth weight, and neona-
tal growth. Our hypothesis is that pathogen carriage, and bacterial
species and functions in the fecal microbiome of pregnant mothers
that are related to diet, water, sanitation, and hygiene will predict
gestational age, birth weight and neonatal growth. We investigated
our hypothesis in a subsample of mothers and infants participating in
the Sanitation Hygiene Infant Nutrition Efficacy (SHINE) Trial [50].
SHINE was a 2 £ 2 factorial cluster-randomized trial designed to test
the impact of improved household water quality, sanitation, and
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hygiene (WASH) and improved infant and young child feeding (IYCF)
on linear growth and anaemia at 18 months (mo) of infant age in
rural Zimbabwe [50].

We performed whole metagenome shotgun sequencing of
maternal fecal specimens collected during pregnancy and at 1mo
post-partum to identify maternal microbes and metabolic func-
tions that might influence infant gestational age, size at birth, or
growth during the neonatal period. We also investigated the
impact of the SHINE WASH intervention, baseline sanitation and
hygiene-related factors, and maternal characteristics on the
maternal fecal microbiome.

Methods

Study design and participants

The study design and methods for the SHINE trial and for micro-
biome analyses have been reported previously [51,52]. In brief, SHINE
was a cluster-randomized trial of the independent and combined
effects of improved IYCF and WASH in two rural Zimbabwean dis-
tricts with 15% antenatal HIV prevalence. The WASH intervention
was designed to limit exposure to human and animal feces, was initi-
ated during pregnancy, and included, at the household level: con-
struction of a ventilated improved pit latrine, installation of two
hand-washing stations plus monthly delivery of liquid soap and
water chlorination solution, provision of a play space for the infant,
and hygiene counseling. Infants had birth weight measured in insti-
tutions by personnel who had been provided with Seca scales and
had been trained in their use. At 1mo of infant age, a home visit was
conducted to measure weight and length, as previously described
[50]. The SHINE trial is registered at ClinicalTrials.gov
(NCT01824940).

In a pre-specified substudy of SHINE, 1,656 mother-child pairs
were selected for biological specimen collection from the mother
during pregnancy then at 1mo post-partum, and intensive collection
from the infant at 1, 3, 6, 12 and 18 months of follow-up. This sub-
study sample was enriched for HIV-positive mothers because we
were also interested in investigating outcomes associated with fetal
HIV-exposure. Of these substudy pairs, two hundred seven mother-
child pairs with nearly complete longitudinal fecal sample collection
were investigated as part of the fecal microbiome study; these are
the focus of our analyses in this manuscript.

Fecal specimens

Mothers collected fecal specimens prior to a home visit by a
research nurse during pregnancy and at the 1mo post-partum
study visit. Fecal specimens were immediately placed in a cold
box and transported to the regional laboratory, where they were
stored at -80°C until transfer to the central laboratory in Harare
for long-term archiving at -80°C. Fecal specimens were trans-
ferred via private courier on dry ice from Harare, Zimbabwe to
Vancouver, British Columbia. The Qiagen DNeasy PowerSoil Kit
was used to extract total DNA from 200mg of feces, according to
manufacturer’s instructions.

Whole metagenome library preparation and sequencing

Paired-end libraries were constructed using the Illumina TruSeq
kit and using New England Biosystem TruSeq compatible library
preparation reagents. Libraries were sequenced at the British Colum-
bia Genome Sciences Centre using the Illumina HiSeq 2500 platform.
Forty-eight libraries were pooled and included per sequencing lane.
Sixteen negative process controls, consisting of sterile water sub-
jected to DNA extraction, library preparation, and sequencing, were
included to capture microbial contamination of laboratory reagents.
Bioinformatics

Sequenced reads were trimmed of adapters and filtered to remove
low-quality, short (<60 base-pairs), and duplicate reads, as well as
those of human, other animal or plant origin using KneadData with
default settings [53]. Species composition was determined by identi-
fying clade-specific markers from reads using MetaPhlAn3 with
default settings [54]. Relative abundance estimates were obtained
from known assigned reads, and unknown read proportions were
estimated from total, assigned and unassigned, reads. Percent human
DNA was estimated from KneadData output, using the proportion of
quality-filtered reads that align to the human genome. DNA extrac-
tion from fecal samples did not include enrichment for viral DNA, nor
was cDNA synthesized. Given the smaller viral genome sizes,
sequencing depth, and limitations of MetaPhlAn3 for virus identifica-
tion, we did not include viruses in our current analyses. We applied a
minimum relative abundance threshold of 0.1% for taxa and included
taxa meeting this threshold in �5% of specimens in all downstream
analyses.

Functional gene and metabolic pathway composition was deter-
mined using HUMAnN3 with default settings against the UniRef90
database [55]. Functionally annotated reads were further classified
into level-4 enzyme commission (EC) categories using provided
scripts. Enzyme family and pathway abundance estimates were nor-
malized using reads per kilobase per million mapped reads (RPKM)
and then re-normalized to relative abundance. We applied a mini-
mum relative abundance threshold of 3 £ 10�7% for EC and pathway
features, at �5% prevalence, in all downstream analyses.

Statistical analyses

All analyses were conducted in R version 3.3.2 [56]. Infant weight
and length at 1mo of age were converted to Z-scores using the WHO
growth standard [57]. The association between epidemiologic varia-
bles and birth weight or infant growth was assessed using multivari-
able linear regression. Epidemiologic variables associated with infant
growth were selected for inclusion in XGBoost models.

Maternal fecal microbiome composition was investigated using
descriptive approaches (e.g. boxplots) and a- and b-diversity metrics.
a-diversity was assessed using the Shannon, Simpson, inverse Simp-
son, evenness and richness metrics; while b-diversity was evaluated
using the Bray�Curtis dissimilarity index and visualized using princi-
pal coordinate analyses (PCoA) performed in the package vegan [58].
Permanova was performed to assess significant differences in
b-diversity by visit, HIV-status, season of birth, and WASH assign-
ment using the adonis function [59] in vegan.

The bivariate relationship between epidemiologic variables and
maternal fecal taxa was examined using zero-inflated beta regression
fitted by generalized additive models for location, scale and shape
(GAMLSS), with a log-link, in the R package gamlss [60]. A separate
model was fit for each microbiome taxon, yielding a relative abun-
dance ratio (RAR). Epidemiologic variables were assessed individually
and included baseline household characteristics (number of occu-
pants, diet diversity, food insecurity, wealth index, improved floor,
improved latrine, time to water, water treatment), maternal charac-
teristics (age, height, mid-upper-arm circumference (MUAC), educa-
tion, religion, HIV-status, anti-retroviral therapy, depression score,
parity), mode and location of delivery, season of fecal specimen col-
lection, diet composition on a normal day, randomized WASH alloca-
tion, and percent human DNA. To assess diet composition on a
normal day, mothers responded to questions about her diet and her
family’s diet (meals and snacks) consumed ‘yesterday’, unless yester-
day was a feast day or celebratory day, then she was asked to respond
for the day before or her last ‘normal’ diet day. False discovery rate
(FDR) adjustment was used to calculate q-values from p-values [61].
Results are reported when the q-value was less than 0.05.
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Independent associations between the maternal pregnancy
microbiome and gestational age, birth weight, WAZ or LAZ at 1mo
was evaluated using extreme gradient boosting machines (XGBoost).
Microbiome data are very complex, consisting of hundreds of species
or pathways, and thousands of enzyme commissions (EC), and com-
prise of highly right-skewed distributions with many zeros. Analytic
methods that can address these challenges and select the most
important subset of features for a given outcome are limited. XGBoost
builds an optimized predictive model by creating an ensemble from a
series of weakly predictive models. In aggregate, each additional
model that is fitted is parameterized to improve the overall predic-
tion accuracy of the ensemble when the new model is combined
with previous models. Only features that improve model accuracy
are retained in the process. XGBoost is also non-parametric, can cap-
ture non-linear relationships, and can accommodate high-dimen-
sional data [62]. XGBoost or other decision-tree based methods (eg.
Random Forests) have been applied in other microbiome analyses
[45,63,64].

The XGBoost models were developed using microbiome relative
abundances, diversity measures, percent human DNA reads, per-
cent unknown reads, and selected epidemiologic variables. Epide-
miologic variables were selected for inclusion in the XGBoost
model based on: (i) their association with birth weight, LAZ or
WAZ at 1mo in multiple linear regression models (Supplemental
Table 4); (ii) their association with microbiome diversity indices in
simple linear regression models (p<0.05); and (ii) their association
with microbiome taxon abundance in GAMLSS models (q<0.05).
XGBoost model selection was performed in 3 stages. In stage one,
the BayesianOptimization function of the rBayesianOptimization
package was used with 10-fold cross-validation to select model
hyperparameters (Supplementary Table 1) by minimizing the
mean squared error (MSE). Models with the lowest MSE (in the 5th

percentile) were retained, and from these models the variables
that contributed to the top 95% of variable importance by propor-
tion were retained. In stage two, all epidemiologic variables were
included with the microbiome variables obtained in stage one.
BayesianOptimization was run as described in stage one but using
leave-one-out cross-validation. Microbiome variables that contrib-
uted to the top 95% of variable importance by proportion were
retained. In stage three, all epidemiologic variables, microbiome
features, and hyperparameters selected in stage two were used to
fit our final models. Final models were fit using leave-one-out
cross-validation to minimize the MSE. This process was imple-
mented separately for each outcome (gestational age, birth weight
and neonatal growth measures), and separately for microbiome
taxa, pathways, and enzymes. Finally, all models were re-run
excluding epidemiological variables to assess the contribution of
the maternal pregnancy microbiome alone to the accuracy of our
final models. XGBoost models were fitted using the H20.ai engine
and h2o R package interface with the XGBoost package.

XGBoost model performance was evaluated using three esti-
mates: (i) pseudo-R-squared (pseudo-R2) between the final XGBoost-
predicted outcome value and the observed outcome value, where
pseudo-R2=1¢0 is perfect prediction; (ii) the mean absolute error
(MAE), which is defined as the average absolute difference between
observed and predicted outcome values estimated from cross-valida-
tion and summarizes model performance in the actual units of the
outcome variable (kilograms for birth weight, weeks for gestational
age, standard deviations for LAZ and WAZ at 1mo); and (iii) the root
mean squared error, which is defined as the average squared differ-
ence between observed and predicted outcome values estimated
from cross-validation. We used the scaled relative importance for
each variable in a model to identify the twenty most informative vari-
ables for further interpretation, where the most important variable is
ranked first, and the importance of subsequent variables are relative
to the first variable.
The marginal relationships between the twenty most important
epidemiologic variables, microbiome species, pathway or enzyme
relative abundances and each outcome were visualized for interpre-
tation [65] using accumulated local effects plots (ALE). ALE plots can
be interpreted as showing a marginal effect, adjusted for all covari-
ates retained in the final model. That is, the plots show the expected
change in the outcome variable per increment in a feature, either epi-
demiologic or microbiome, adjusted for the variables retained in the
model. The range of the feature across all observations is partitioned
into intervals such that each interval contains roughly the same num-
ber of observations. The corresponding expected changes in the out-
come values per increment, or effect sizes, are averaged. The
resulting effect sizes are plotted cumulatively and centered about the
average effect size [66]. ALEs were generated using the ALEplot pack-
age and were plotted using ggplot2. Standard deviations were calcu-
lated per increment and were used to calculate and plot increment-
wise 95% confidence intervals.

Ethics statement

All SHINE mothers provided written informed consent. The Medi-
cal Research Council of Zimbabwe (MRCZ/A/1675), Johns Hopkins
Bloomberg School of Public Health (JHU IRB # 4205.), and the Univer-
sity of British Columbia (H15-03074) approved the study protocol,
including the microbiome analyses.

Data sharing

All relevant data are within the paper and its Supporting Informa-
tion files except for the raw data which the trial team will begin load-
ing as individual participant data with an accompanying data
dictionary at http://ClinEpiDB.org in mid-2021. Prior to that time, the
data are housed on the ClinEpiDB platform at the Zvitambo Institute
for Maternal and Child Health Research and available upon request
fromMs. Virginia Sauramba (vsauramba@zvitambo.co.zw).

Role of funding source

The funders had no role in study design, data collection, data anal-
yses, interpretation, or writing of the manuscript.

Results

Study population

Two hundred seven SHINE mothers were included in these analy-
ses (Figure 1). These mothers gave birth to 215 infants (199 single-
tons and 8 sets of twins). A comparison of mothers included in the
microbiome substudy and the entire SHINE cohort is provided in
Table 1. There were 97 mothers living with HIV in the substudy, with
median (IQR) CD4 count of 444 cells/mm3 (300,652). The majority
(93%) were receiving antiretroviral therapy (ART) and 46% were
receiving cotrimoxazole prophylaxis at baseline (Table 1). In the
microbiome substudy compared to the overall SHINE cohort, there
were slightly fewer mothers allocated to the WASH intervention arm
and fewer mothers in the lowest wealth quintile, more HIV-positive
mothers with a handwashing station, and more HIV-negative moth-
ers with livestock in the home at baseline. Approximately 45% of
households met minimum dietary diversity standards, and few
households experienced severe food insecurity (Table 1). Mothers
and infants included in these analyses otherwise resembled the over-
all SHINE population (Table 1). Importantly, 100% of mothers con-
sumed cereals on a typical day (Supplementary Table 2). In
Zimbabwe, the most commonly consumed cereal is maize, a major
source of resistant-starch.

http://ClinEpiDB.org


Figure 1. Flow of participants through the SHINE microbiome substudy.
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A total of 351 whole metagenome sequencing datasets were pro-
duced. 144 mothers provided samples from the gestational visit
(between 9- and 37-weeks gestation) and at 1mo post-partum
(between 12 and 90 days after birth); an additional 43 provided only
a pregnancy sample and 20 only a postpartum sample. There were
median 1(IQR: 1,2) and 2(IQR: 1,4) datasets per randomization clus-
ter at each visit, respectively. Since there was little opportunity for
expression of intra-cluster correlation, it was not adjusted for in any
of our analyses. There was very little variability in sequencing depth
across specimens (mean 11¢4§3¢0 million quality-filtered read pairs
for all datasets). Negative controls revealed negligible levels of micro-
bial contamination of reagents (mean 734§3,462 quality-filtered
reads) relative to the sequencing depth achieved across specimens.
The median proportion of human reads detected was 0¢01% but
ranged widely from 0¢0004% to 19¢3% (Supplementary Figure 1), indi-
cating high human DNA enrichment in some fecal specimens.

After applying our relative abundance and prevalence threshold
criteria, 144 unique taxa at the species level or above, 424 micro-
biome pathways, and 1,956 enzyme commission features were
included in downstream analyses from the pregnancy and 1mo post-
partum metagenome datasets. Of these, 39 taxa (28%) were defined
by MetaPhlAn3 as co-abundance gene groups (CAGs) [67]. CAGs are
putative species genomes derived from assembled sequences in pub-
licly available metagenomes, and for which no bacterial culture-
derived representative exists [49,67]. These represent novel bacteria
that are prevalent in rural Zimbabwean mothers and that are missing
from reference databases comprised of bacteria isolated or sequenced
primarily from North American and European populations. Eight of
these CAGs were defined at the phylum (Firmicutes) level only,
meaning no genetically closer relative exists in reference databases
at finer taxonomic levels.

Baseline variables influencing maternal microbiome composition during
pregnancy and 1mo post-partum

In PCoA analyses of microbiome b-diversity by epidemiologic var-
iables (using Bray-Curtis distances), maternal microbiome composi-
tion differed modestly by HIV-status (Permanova p-value = 0¢012,
goodness of fit=0¢19) and randomized WASH assignment (p-
value = 0¢022, goodness of fit = 0¢23) (Supplementary Figure 2). How-
ever, microbiome composition did not vary by trimester of pregnancy
(p-value = 0.343) (Supplemental Figure 3).



Table 1
Baseline characteristics of the microbiome sub-study versus all SHINE mothers and their infants

Characteristic SHINE mothers included in the microbiome sub-study n = 207 All SHINE mothers completing the baseline visit n = 4,675

HIV-positive n = 97 HIV-negative n = 110 HIV-positive n = 773 HIV-negative n = 3902

Trial Arm
Standard of care 23 (23.7%) 32 (29.1%) 173 (22.4%) 911 (23.4%)
IYCF 28 (28.9%) 32 (29.9%) 164 (21.2%) 929 (23.8%)
WASH 20 (20.6%) 20 (18.2%) 214 (27.7%) 996 (25.5%)
WASH + IYCF 26 (26.8%) 26 (23.4%) 222 (28.7%) 1066 (27.3%)
Household Characteristics
Median Number of Occupants (IQR) 4.0 (3.0,5.0) 5.0 (3.0,6.0) 4.0 (3.0, 6.0) 5.0 (3.0, 6.0)
Wealth Quintile
1 (lowest) 18 (20.0%) 9 (9.3%) 210 (27.5%) 714 (18.5%)
2 21 (23.3%) 24 (24.7%) 178 (23.3%) 752 (19.5%)
3 21 (23.3%) 19 (19.6%) 150 (19.6%) 775 (20.1%)
4 17 (18.9%) 26 (26.8%) 112 (14.6%) 823 (21.3%)
5 (highest) 12 (13.3%) 19 (19.6%) 115 (15.0%) 801 (20.7%)
Sanitation
Improved latrine at household 29 (32.2%) 36 (37.1%) 217 (28.7%) 1227 (32.2%)
Water
Main source of household drinking water

improved
63 (70.0%) 60 (61.9%) 450 (59.6%) 2440 (63.7%)

Median one-way walk time to fetch water (IQR),
min

10 (5,15) 10 (5,15) 10.0 (5, 20) 10.0 (5, 20)

Median one-way walk time to fetch water (IQR),
min

10 (5,15) 10 (5,15) 10.0 (5.0, 20.0) 10.0 (5.0, 20.0)

Treat drinking water to make it safer 15 (15.9%) 15 (14.2%) 84 (12.1%) 449 (12.6%)
Hygiene
Improved floor at household 44 (47.7%) 69 (62.7%) 361 (47.8%) 2118 (55.6%)
Maternal characteristics
Mean age (sd), years 31.2 (5.9) 27.2 (6.7) 29.0 (6.3) 25.7 (6.7)
Mean height (sd), cm 161.0 (6.2) 160.6 (5.4) 159.6 (9.0) 159.8 (8.1)
Mean mid-upper-arm circumference (sd), cm 27.0 (2.7) 27.3 (3.5) 26.3 (3.0) 26.4 (3.1)
Mean years of schooling completed (sd) 9.2 (2.2) 9.4 (1.9) 9.2 (2.1) 9.6 (1.8)
Median parity (IQR) 2.0 (1.0,3.0) 2.0 (1.0,3.0) 2.0 (1.0, 3.0) 2.0 (1.0, 3.0)
Married 85 (94.4%) 89 (91.8%) 691 (94,5%) 3550 (95.8%)
Religion
Apostolic 50 (55.6%) 30 (31.0%) 348 (47.2%) 1732 (46.4%)
Other Christian 35 (38.9%) 63 (64.9%) 313 (42.4%) 1699 (45.5%)
Other 3 (3.3%) 2 (2.1%) 77 (10.4%) 306 (8.2%)
HIV status and therapy
Mean CD4 count (sd) 444 (300,652) NA 460.5 (349, 614) NA
Currently receiving cotrimoxazole 32 (45.7%) NA 399 (55.7%) NA
Currently receiving ART 65 (92.6%) NA 582 (81.2%) NA
Potential depression (� 10 on Edinburgh Postna-

tal Depression Scale
11 (11.7%) 6 (6%) 103 (14.0%) 350 (9.4%)

Trimester of Specimen collection
First trimester (0 to �84 weeks) 13 (15.1%) 21 (22.8%)
Second trimester (>84 to �196 weeks) 65 (75.6%) 56 (60.9%)
Third trimester (>196 weeks) 8 (9.3%) 15 (16.3%)
Diet quality and food security
Household meets minimum Diet Diversity Score 35 (43%) 44 (44%) 252 (38.2%) 1364 (40.2%)
Median Coping Strategies Index score (IQR) 0 (0,3) 1 (0,4) 2.0 (0, 10) 1.0 (0, 7)
Mean days of staple food in the household (sd) 144 (119) 176 (120) 114.6 (146) 129.3 (129)
Season of stool collection
Dry (May to September) 40 (44.4%) 59 (57%) 281 (39.4%) 1566 (42.5%)
Rainy (October to April) 50 (55.6%) 44 (43%) 433 (60.6%) 2120 (57.5%)
Infant Characteristics*
Female sex 48 (48%) 50 (43%) 363 (50.1%) 1830 (49.1%)
Mean birth weight (sd), kg 3.0 (0.5) 3.0 (0.5) 3.0 (0.5) 3.1 (0.5)
Birthweight < 2500 g 13 (13%) 11 (10%) 84 (11.5%) 306 (9.2%)
Preterm (<37 weeks gestation) 6 (9.8%) 9 (11.5%) 63 (17.3%) 326 (16.3%)
Vaginal delivery 91 (96%) 104 (94%) 63 (17.3%) 326 (16.3%)
Institutional delivery 81 (86%) 107 (96%) 612 (92.5%) 3207 (92.4%)
Exclusive breastfeeding initiation 89 (98%) 103 (95%) 545 (83.6%) 3026 (88.7%)
Mean LAZ at 1-month (sd) -1.1 (1.3) -0.9 (1.3) -1.1 (1.3) -0.9 (1.4)
MeanWAZ at 1-month (sd) -0.6 (1.4) -0.3 (1.5) -0.8 (1.3) -0.5 (1.2)

* *n=215 infants born to 207 mothers (100 born to HIV-positive mothers and 115 born to HIV-negative mothers). Accurate gestational age measurement was unavailable for 20
HIV-exposed infants and 13 HIV-unexposed infants; and twins were excluded from gestational age estimation. n, sample size; IYCF; infant and young child feeding; WASH, water
sanitation, and hygiene; IQR; inter-quartile range; min, minutes; sd; standard deviation; cm; centimeters; ART, antiretroviral therapy; Kg, kilograms; g, grams; AGA, adequate
size for gestational age; SGA small for gestational age; LAZ, length-for-age z-score, WAZ, weight-for-age z-score.
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In bivariate analyses of differences in relative abundance of indi-
vidual taxa by epidemiologic variables using GAMLSS models, only
one taxon differed by maternal HIV-status and two taxa differed by
WASH intervention, after FDR adjustment, at the post-partum visit
only. Higher Treponema berlinense (RAR=4¢67, q=0¢003) was observed
in HIV-negative mothers at the post-partum visit; while higher Bra-
chyspira sp CAG 700 (RAR = 6¢9, q<0¢001) and lower Akkermansia
muciniphila (RAR=0¢37, q=0¢042) were observed in mothers assigned
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to the WASH intervention (Supplementary Table 3) at the post-par-
tum visit. There was no evidence that any of the a-diversity metrics
varied by these variables.

Pathogen detection

Overall, based on MetaPhlAn3 results, carriage of pathogens was
uncommon. At a minimum relative abundance of 0¢1%, Brachyspira
pilosicoli, a spirochete associated with human zoonotic spirochaeto-
sis, was carried by 20 mothers, while 22 mothers carried Brachyspira
sp CAG 700. Interestingly, lower wealth quintile, lower primary edu-
cation and greater maternal height were associated with higher Bra-
chyspira sp abundance (Supplementary Table 3). Higher percentage
of human DNA was associated with higher relative abundance of
Blastocystis and Alistipes shahii at 1mo postpartum (Supplemental
Table 3). Other non-pathogenic spirochetes were identified in many
SHINE mothers, including Tremponema succinifaciens (n=68) and
Treponema berlinense (n=17) (Supplementary Figure 4). Spirochetes
have been shown to be over-represented in many non-Western pop-
ulations [68]. Thirty-one mothers were also positive for Blastocystis
sp subtype 1 during at least one visit. Giardia intestinalis or Cryptospo-
ridium spp were detected but below the 0¢1% relative abundance
threshold. Shigella was not detected and Salmonella enterica, Cam-
pylobacter jejuni and C. coli were also present at <0¢1% relative abun-
dance. Escherichia coli was common, but MetaPhlAn3 does not
separate by E. coli pathotype; therefore, presence of enteroaggrega-
tive or enteropathogenic E. coli could not be assessed.

Epidemiologic variables, birth weight, and neonatal growth

In multivariable linear regression models, maternal height, MUAC,
and gestational age, were associated with infant birth weight, as
expected (Supplementary Table 4). While maternal MUAC and gesta-
tional age were associated with WAZ and LAZ at 1mo respectively.

Maternal microbiome diversity, birth weight, and neonatal growth

To ensure temporality between maternal microbiome characteris-
tics and pregnancy outcomes, all analyses of the association between
maternal microbiome, gestational age, birth weight, and neonatal
growth utilized the pregnancy visit metagenome datasets only. In
simple linear regression models, microbiome Shannon diversity was
not associated with infant birth weight or LAZ at 1mo (Supplemen-
tary Figure 5) but was associated with higher WAZ at 1mo (Supple-
mentary Figure 5). Higher pregnancy microbiome taxon evenness
was associated with higher infant WAZ at 1mo, and there was evi-
dence for a positive association with the Shannon diversity index (p-
value = 0¢09).

XGBoost model performance

Variables chosen for inclusion in XGBoost model building were
infant sex, HIV-status, maternal MUAC, maternal height, birth season,
pregnancy trimester and season of maternal specimen collection,
microbiome diversity metrics, percent unknown, percent human
DNA, and gestational age (for growth models). Performance measures
for final models of microbiome species, ECs, or pathways, including or
excluding epidemiologic variables, are presented in Supplementary
Table 5. For all outcomes, the performance of models that included
only microbiome features performed as well as the models that also
included epidemiologic variables, indicating that model performance
was predominantly driven by microbiome composition. Overall,
model performance was best for birth weight, followed by neonatal
growth, then gestational age. In terms of microbiome features, path-
way relative abundance was more predictive than species abundance,
while EC abundance was as good or better than pathway abundance
at predicting outcomes, although this may be driven by the higher
overall number of ECs.

Important XGBoost variables for birth weight

ALE plots are shown in Figures 2-3, and Supplementary Figures 6-
15 to visually interpret the marginal relationships between each out-
come and the individual top 20 variables in the final XGBoost models
adjusted for the other epidemiologic variables and microbiome fea-
tures retained in the model. Microbiome features are plotted using
percentiles of the abundance distribution to improve visualization
near zero where abundance data are denser. Epidemiologic and
microbiome diversity variables are plotted on the original scale.

For infant birth weight, gestational age and maternal height were
the most informative variables, predicting a cumulative increase in
birth weight of 150g and 200g, respectively, over the range of
observed values (Figure 2). Taxa that are associated with resistant-
starch degradation, specifically members of the Ruminococcaceae,
Lachnospiraceae, and Eubacteriaceae families [69,70], were the next
most important predictors of birth weight. However, the relation-
ships were quite variable, and most effects were only observed in the
extremes of the abundance distributions. For example, E. eligens pre-
dicted a cumulative decrease of 250g from the lowest abundance up
to approximately the 40th abundance percentile, while R. torques pre-
dicted a cumulative decrease of 150g above the 25th abundance per-
centile. In contrast, R. intestinalis and Butyrivibrio sp CAG 318
predicted a cumulative increase of 200g and 100g, respectively,
above the 80th abundance percentile (Figure 2). Maternal MUAC was
also among the 20 most important variables, predicting a 75g
increase in birth weight.

The bacterial enzyme with the highest-ranking importance was
glycogen synthase (~200g cumulative decrease up to the median
abundance), exhibiting greater importance in the model than gesta-
tional age and maternal height (Supplementary Figure 6). Glycogen
synthase is involved in starch metabolism. The remaining top 20
enzymes are involved in metabolic pathways that engage in signal-
ling, energy, and vitamin B metabolism (Supplementary Figure 6).
For example, histidine kinase (involved in environmental sensing)
predicted a 300g increase in birth weight in the lowest abundance
percentile. While thiazole biosynthesis pathway (vitamin B1 metabo-
lism) predicted a 200g increase in the lowest abundance percentile
and N10-formyl-tetrahydrofolate biosynthesis (vitamin B9 metabo-
lism) predicted a 75g increased (Supplementary Figure 7).

Similarly, top ranking metabolic pathways are engaged in starch
degradation, energy metabolism and signalling processes (Supple-
mentary Figure 7). For example, sucrose degradation II pathway and
the superpathway of anaerobic sucrose degradation predicted a 200g
increase above the 80th abundance percentile (Supplementary Figure
7). The signalling ppGpp biosynthesis pathway predicted an 85g
decrease; while, in contrast, the signalling pathway purine ribonu-
ceosides degradation predicted a ~150g increase (Supplementary
Figure 7).

Important XGBoost variables for WAZ at 1mo

For WAZ at 1mo, the most important taxa were also predomi-
nantly starch-degrading species in the families Ruminococcaceae,
Lachnospiraceae, and Eubacteriaceae (Figure 3). One species outside of
these families (Catenibacterium mitsuokai), that is also associated
with fiber fermentation [71] and consumption of animal fat [72], pre-
dicted a ~0.3 sd increase in WAZ. Treponema berlinense predicted a
0.6 sd decrease above the 97th abundance percentile. The Simpson
diversity index and evenness were also important predictors, indicat-
ing a 0.2 sd and 0.7 sd increase through the range of observed diver-
sity values, respectively. However, species richness predicted a 1 sd
cumulative decrease in WAZ. As with birth weight, gestational age



Figure 2. Relationships between infant birth weight in Kg, epidemiologic variables, and maternal gut microbiome species relative abundance. The top 20 predictors of infant
birth weight by variable importance score are shown. For microbiome abundances, the x-axis represents the percentile of the abundance distribution. Epidemiologic and micro-
biome diversity variables are on the original scale. Tick marks on the x-axis are a rug plot of individual feature abundance percentiles. ALEs were generated using the ALEplot pack-
age and were plotted using ggplot2. Standard deviations (sd) were calculated per increment in microbiome feature and were used to calculate and plot increment-wise 95%
confidence intervals as the average change in the outcome §1.96(sd/sqrt(n)), where n is the number of observed feature values, and sd is the standard deviation of the change in
the outcome variable in an interval. gaw_final, gestational age; mom_height, maternal height in centimeters; mom_muac, maternal mid-upper arm circumference in millimeters;
pct_human, percent human reads; pct_unknown, percent unknown reads.
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and maternal anthropometry were also important predictors of 1mo
WAZ (Figure 3).

Important microbiome pathways and ECs to 1mo WAZ are also
involved in vitamin B, starch metabolism, and signalling. For exam-
ple, flavin biosynthesis pathway III (vitamin B2 synthesis) predicted
Figure 3. Relationships between infant WAZ at 1-month, epidemiologic variables, and m
WAZ at 1-month by variable importance score are shown. For microbiome abundances, the x
biome diversity variables are on the original scale. Tick marks on the x-axis are a rug plot of
age and were plotted using ggplot2. Standard deviations (sd) were calculated per increm
confidence intervals as the average change in the outcome §1.96(sd/sqrt(n)), where n is th
the outcome variable in an interval. gaw_final, gestational age; mom_height, maternal heig
pct_human, percent human reads; pct_unknown, percent unknown reads.
an increase of 0.5 sd (Supplementary Figure 9). Cellulase abundance
predicted ~0.5 sd increase above the 87th abundance percentile. D-
fructuronate degradation and sucrose degradation pathway III pre-
dicted 1 sd and 0.2 sd increase in WAZ, respectively (Supplementary
Figure 9). While enzymes involved in signalling predicted 0.2 sd
aternal gut microbiome species relative abundance. The top 20 predictors of infant
-axis represents the percentile of the abundance distribution. Epidemiologic and micro-
individual feature abundance percentiles. ALEs were generated using the ALEplot pack-
ent in microbiome feature and were used to calculate and plot increment-wise 95%
e number of observed feature values, and sd is the standard deviation of the change in
ht in centimeters; mom_muac, maternal mid-upper arm circumference in millimeters;
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increase (e.g cytidine deaminase) or >0.2 sd decrease (e.g. GMP
reductase) (Supplementary Figure 8).

Important XGBoost variables for LAZ at 1mo

Gestational age, maternal height and MUAC were also among the
most important predictors of LAZ at 1mo; however, Anaerotruncus sp
CAG 528 exhibited a higher relative importance score than maternal
height and MUAC (Supplementary Figure 10). Resistant-starch
degraders also figured prominently in the set of taxa important to
LAZ, as well as the dietary fiber fermenting Prevotella copri [73,74]
(Supplementary Figure 10). Some important microbiome functions to
1mo LAZ were also important to WAZ and are also involved in starch
metabolism, signalling and vitamin B metabolism (Supplemental Fig-
ures 11 and 121). For example, holo- [acyl-carrier-protein] synthase
(vitamin B5 and Coenzyme A metabolism) and 4-phosphoerythro-
nate dehydrogenase (vitamin B6 metabolism) predicted a 1 sd and
0.2 sd increase in LAZ, respectively, below the 25th abundance per-
centile (Supplemental Figure 10).

Important XGBoost variables for gestational age

The most important predictors of gestational age were all micro-
biome taxa or microbiome diversity metrics, except for trimester of
specimen collection and maternal MUAC (Supplemental Figure 13).
As with other outcomes, several important taxa are associated with
resistant-starch degradation, including members of the Ruminococca-
ceae, Lachnospiraceae, and Eubacteriaceae families [69,70] and dietary
fiber, including Prevotella copri [73,74] which predicted a 0.5 week
decrease in gestation (Supplemental Figure 13). Another important
taxonomic predictor of gestational age was Slackia isoflavoniconvert-
ens (1 week increase in gestational age through the range of observed
abundances). Species richness also predicted ~0.5 week shorter ges-
tation in enzyme and pathway models (Supplementary Figure 14 and
15).

Discussion

In this study of 207 mothers and their infants in rural Zimbabwe
where there is a high prevalence of preterm birth and LBW, we inves-
tigated the relationship between pregnancy microbiome characteris-
tics and gestational age, birth weight or neonatal growth. Taxonomic
features of the maternal microbiome alone predicted birth weight
(pseudo-R2=0¢23), 1mo WAZ (pseudo-R2=0¢21) and LAZ (pseudo-
R2=0¢11) as accurately as models that combined microbiome features
with sociodemographic and epidemiologic variables, pointing to the
importance of the pregnancy microbiome. Gestational age was pre-
dicted less accurately (pseudo-R2=0¢05). Prediction accuracy for all
outcomes was improved when functional enzyme relative abundan-
ces were used (pseudo-R2: 0¢25-0¢37), demonstrating the potential
value of whole metagenome shotgun sequencing for investigating
the human microbiome and health. There were only modest global
differences between mothers allocated to the WASH versus the non-
WASH arms of the SHINE trial, as measured by b-diversity, and only
few differences in taxon abundances after FDR p-value adjustment.
In prior analyses, the WASH intervention also had only a modest
impact on pathogen carriage and diarrhea in SHINE infants [75]. Sur-
prisingly, the same was true for maternal HIV-status and pregnancy
trimester in this substudy.

The maternal fecal microbiome of rural Zimbabwean mothers was
highly enriched for metabolizers of resistant-starch, including Rumi-
nococcus bromii and Faecalibacterium prausnitizii, most likely driven
by the daily consumption of maize by all mothers. These starch-
degraders and producers of SCFAs were among the most abundant
and most prevalent. Starch-degraders release energy from dietary
polysaccharides that are not processed by host enzymes, providing
an important nutrient-harvesting function for the host. Although
common to many human intestinal microbiomes, they showed
important associations with birth weight and neonatal growth in this
study population. Prevotella copri and Eubacterium rectale were also
highly abundant species. P. copri tends to be more abundant in the
microbiomes of populations living non-Westernized lifestyles [76],
and have been associated with high fibre diets. E. rectale has also
been shown to increase, along with Eubacterium-derived butyrate, in
subjects given resistant-starch from maize [77]. As with R. bromii,
and other resistant starch-degraders, P. copri and E. rectale are likely
more abundant due to dietary selection.

However, the direction of taxon abundance relationships with
birth weight and neonatal growth was quite varied. Notably, greater
relative abundance of Butyrivibrio sp CAG 318 and Roseburia intestina-
lis, predicted larger birth weight, while Catenibacterium mitsuokai
predicted greater 1mo WAZ. These bacteria are butyrate producers
with the capacity to degrade the plant fibers hemicellulose [78,79],
mannan [80], and inulin [71,81], respectively. Starch-metabolizing,
SCFA-producing microbes can regulate gestational weight gain [82],
and may impact fetal growth [83]. However, increasing abundance of
several other starch-degrading taxa predicted worse outcomes. Dif-
ferent species of bacteria do appear to prefer different sources of die-
tary fiber [84], suggesting that the potential benefits of SCFA-
producing primary starch-degraders may partly depend on both the
dietary-fiber source consumed and the resident gut species. The
improvement in outcomes predicted by an increase in some taxa
may reflect a response of these particular microbes to specific dietary
fibers consumed by some mothers in this population. The abundance
of specific taxa may also be a marker of dietary deprivation that could
explain decreases in birth weight or neonatal growth. Microbiome
evenness was also associated with increasing birth weight and 1mo
WAZ. Evenness measures the uniformity of the abundance of taxa
present in a microbiome. A less even microbiome may reflect selec-
tion for only a few predominant taxa by low dietary diversity, result-
ing in lower birth weight and neonatal WAZ.

Also, there were remarkably few Bacteroidetes, aside from Prevo-
tella spp, that emerged in these analyses. The lack of Bacteroides spp
specifically could indicate a dietary deficiency, as these are associated
with a diet rich in meat or fat [73] and may reflect dietary or func-
tional microbiome differences that contribute to pregnancy outcomes
and neonatal growth.

Several pregnancy gut microbiome metabolic pathways and
enzymes were also important predictors of birth weight, WAZ and
LAZ. These broadly reflected starch metabolism, vitamin B metabo-
lism, signalling and environmental sensing. For example, greater rela-
tive abundance of the microbiome enzymes for plant fiber
degradation (e.g. cellulase, neopullulanase) and pathways for sucrose
and fiber degradation (e.g. D-fructuronate degradation) predicted
greater birth weight and neonatal growth. These provide further evi-
dence that a microbiome with an increased capacity to degrade the
maize-rich, plant-based Zimbabwean diet, is beneficial for healthier
growth. Also, greater abundance of histidine kinase predicted larger
birth weight. Histidine kinases are important in bacterial sensing, sig-
nal transduction and energy utilization [85]. Bacteria that possess
many histidine kinases are generally able to adapt to a variety of
environmental stimuli [86]. Histidine kinase abundance may reflect a
microbiome that is more robust to unstable nutrient availability. In
contrast, glycogen synthase and bacterial functions involved in
purine metabolism (e.g. ppGpp synthesis, GMP reductase) predicted
decreasing birth weight; while signalling enzymes involved in bio-
film dispersal (e.g. cytidine deaminase) predicted increasing WAZ.
Glycogen synthesis is an important strategy for bacterial survival and
persistence in conditions of fluctuating nutrient availability [87], and
facilitates transition into a biofilm state in response to bacterial nutri-
ent starvation [88]. Purine and pyrimidine salvage pathways are also
potential markers of biofilm formation and dispersal to a planktonic
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state [89�93]. The role of these microbial mechanisms in pregnancy
outcomes requires further investigation, but these data suggest that a
monotonous, nutrient-poor diet, may induce a starvation response in
some maternal gut microbiomes that display characteristics of bio-
film formation. Microbiome functions related to vitamin B biosynthe-
sis pathways predicted greater birth weight, WAZ or LAZ. This may
reflect varied microbiome capacities for vitamin B metabolism in
response to deficiencies in the host diet.

An important taxonomic predictor of longer gestation was
Slackia isoflavoniconvertens. When present, S. isoflavoniconvertens
converts dietary isoflavones, largely found in soy [94], to equol
[95,96]. Equol has been found to reduce anxiety and depressive
behaviour in rodent models [97�99], and humans [99]. This
mechanism could influence gestation length [100,101]. In con-
trast, Prevotella copri predicted reduced gestation. P. copri has
been associated with increased gut inflammation, damage [102]
and bacterial translocation [103]. Host inflammation drives
increased blood pressure [104�106], which is an important risk
factor for preterm birth. The inflammatory contribution of the
maternal gut microbiome may contribute to reduced gestation in
this sub-Saharan African population. These results should be
interpreted with caution as the gestational age outcome model
exhibited the weakest performance metrics.

Overall, pathogen carriage was low, aside from Brachyspira which
is associated with intestinal spirochetosis [92]. However, four spiro-
chetes [107] were carried by many mothers and Treponema berlinense
predicted lower 1mo WAZ. Treponemes have been found in the
microbiota of non-Western populations [108�110] and may repre-
sent a critical member of an evolutionarily intact intestinal micro-
biome, similar to Helicobacter pylori, another spirochete, which
typically resides in the stomach. The contribution of non-pathogenic
Treponema sp to intestinal microbiome function is unknown. In a
macaque model that tested the impact of a high- versus low-fat diet
on maternal and offspring microbiota, the largest change was a sig-
nificant reduction in non-pathogenic Treponema spp (T. berlinense, T.
porcinum and T. parvum), in dams administered a high-fat diet,
regardless of obese or lean status. The authors suggested that these
Treponema spp benefited from a low fat, plant-rich diet (corn and soy
bean) [111].

There are notable limitations to our analyses. A large fraction
of the sequenced reads was un-assignable. The fact that there
was a large proportion of unknown or unidentifiable DNA in
these samples is not surprising, as microbiome data from LMICs
are under-represented in reference databases. However, the sheer
scale of un-assignable DNA reads was an important observation
and is rarely reported in microbiome studies. E. coli was common
and predicted decreasing birth weight, but specific E. coli patho-
types could not be distinguished by MetaPhlAn3, limiting our
ability to assess the impact of these pathogens. Differences in
microbiome characteristics could also be influenced by dietary
deprivation. However, wealth quintile was not an important pre-
dictor in any models.

In conclusion, our analyses illustrate that the pregnancy fecal
microbiome, primarily the abundance of resistant-starch degraders,
is an important contributor to birth weight and neonatal growth, and
to a lesser extent gestational age, in infants of rural Zimbabwean
mothers who consume a diet high in maize. The functional capacity
for starch metabolism and environmental sensing may be important
microbiome mechanisms during pregnancy; while a nutrient-poor
diet dominated by maize may promote microbiome biofilm forma-
tion in response to nutrient starvation in the gut, with potentially
detrimental consequences for the infant. Future work is warranted to
confirm these mechanisms and explore whether interventions to
facilitate starch degradation and improve dietary diversity can
improve birth weight and neonatal growth in populations with a
monotonous starch-rich diet.
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