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Abstract

The immune responses exhibited by females are distinct from those of males. Females are

known to generate, among others, higher levels of antibodies, greater interferon responses,

and increased levels of inflammatory mediators in response to pathogens. Mounting evi-

dence suggests that gonadal hormones play a key role in these differences. To better under-

stand the effect of cycling hormones on the immune response, we sought to investigate the

relationship between gonadal hormone fluctuations during the ovarian cycle and the levels

of interleukin 1β and IL-1RA, both in circulation and in PBMCs in response to TLR4 stimula-

tion, in healthy premenopausal females. To do this we measured the gonadal hormones

17β-estradiol, progesterone, and luteinizing hormone, and the cytokines IL-1β and IL-1RA

in nine cycling females at several time points throughout one complete cycle. We evaluated

35 follicular, 17 ovulatory, and 44 luteal time points in our cohort and found a clear increase

in serum levels of anti-inflammatory IL-1RA in the luteal phase, as compared to the follicular

phase, and a positive correlation between both 17β-estradiol and progesterone and IL-RA.

There was no difference in the serum levels of IL-1β and no difference in IL-1 β or IL-1RA

produced in response to LPS by PBMCs isolated from different phases. Division of the cycle

into sub-phases revealed an increase in the level of IL-1RA by ovulation that persisted

through the luteal phase. These data suggest that significant changes in the immune

response occur throughout the ovarian cycle in healthy females.

Introduction

Human females are known to mount a more efficient immune response to vaccination, infec-

tion, and injury than males. This is in part due to a more Th2-predominant response in

females, which is responsible for increased neutralizing antibody production [1]. For example,

females can achieve similar antibody titers as males following inoculation with only half the

standard dose of trivalent influenza vaccine [2]. These differences are thought to be a result of
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several factors, including sex-linked overexpression of the X-linked Toll-like receptor 7 gene

in females relative to males, and the influence of gonadal steroid hormones on immune cell

function and gene expression [3, 4].

Of these factors, gonadal hormones are of particular interest for several reasons. It has been

speculated for some time that the sexual dimorphism in the immune response is due to differ-

ences in the sex steroid environment between males and females [5]. A substantial literature

has developed underscoring this point. The human sex hormones estrogen and progesterone

have been shown to have a broad range of both pro- and anti-inflammatory effects [6]. Estro-

gen and 17β estradiol binds the estrogen receptor expressed on both innate and adaptive

immune cells. Estrogen signaling regulates neutrophil numbers and function [7], as well as

macrophage and dendritic cell function modulating expression of inflammatory cytokines IL-

6 and CCL2 [8–11]. Furthermore, estrogen has been shown to modulate adaptive cells of the

immune system including Th1, Th2, Th17 and Tregs CD4+ T cell subsets, and CD8+ T cells,

enhancing inflammatory gene expression and skewing the immune system to a TH2 response

[12–14]. In males, testosterone levels are known to affect several immune cell populations in

humans, a topic thoroughly reviewed in [15]. Androgens have been shown to promote the dif-

ferentiation of neutrophils, mice lacking androgen receptors are neutropenic and show com-

promised host defense [16] while human females with increased level sof androgens due to

polycystic ovarian syndrome exhibit neutrophilia [17]. In other studies, gonadectomized male

mice exhibit increased TLR4 macrophage expression that results in elevated pro-inflammatory

responses during infection suggesting that limiting myeloid cell responsiveness to pathogens is

one possible mechanism by which androgens are immunosuppressive [18]. Subsequent studies

demonstrated higher TLR4 expression, increased phagocytosis, and enhanced oxidative burst

in female macrophages as compared to male macrophages [19] and a specific downregulation

of TLR4 expression by testosterone in vitro [18]. IL-4 knockout C56BL/6 mouse bone mar-

row-derived DCs exposed to dihydroxy testosterone during antigen uptake activate T cells less

effectively than unexposed DCs [20]. In other studies, low testosterone levels have been associ-

ated with higher B cell counts [21], whereas higher testosterone levels are associated with less

potent antibody production following influenza vaccination [22]. Castrated mice show greater

T cell proliferation after TCR stimulation [23], and administration of testosterone likewise

reduces T cell proliferation in response to the OVA antigen [24]. All of these data point to a

substantial role of sex steroids in the sex bias of the immune response; moreover, the dynamics

of these hormones’ fluctuation over the course of the ovarian cycle introduces another layer of

complexity, which has yet been incompletely addressed.

The menstrual cycle comprises two major phases, the follicular and luteal phase. The first

day of menstrual bleeding defines day 1 of the cycle and marks the beginning of the follicular

phase, which continues until ovulation. Follicular phase typically persists for 12 to 16 days and

is characterized by the presence of maturing ovarian follicles. During this phase, daily produc-

tion of 17β-estradiol (E2) is approximately 36 μg/day, while progesterone (P) is very low, at

1 μg/day [25]. Towards the end of the follicular phase, a surge in luteinizing hormone (LH)

occurs and is maintained for approximately 24–48 hours. The LH surge leads to increased

intrafollicular proteolytic enzymes, destroying the basement membrane of the follicle and

allowing for follicular rupture [26]. After follicular rupture, LH stimulates an increase in P and

E2 levels, beginning the luteal phase and preparing the corpus luteum and endometrium for

possible implantation by a zygote [27]. The second phase typically lasts from day 14 to day 28,

and is characterized by increased E2 and P levels, with daily production at approximately 250

ug/day (~7-fold increase from follicular) and 25 ug/day (25-fold increase from follicular),

respectively [25, 27].
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We have little understanding of the changes in the immune response that occur in healthy

cycling females over the course of the menstrual cycle. Increased plasma concentrations of the

Th2 cytokine IL-4 have been reported in the luteal phase as compared to the follicular phase

[28, 29], with Fass’ group suggesting a possible role of increased E2 and P in promoting this

shift. This is consistent with the notion of females’ greater tendency towards a Th2 response as

compared to males being partly dependent on gonadal hormones. The same lab later reported

an increased sensitivity of monocytes to endotoxin during the luteal phase [30], as well as an

increase in the percentage of monocytes producing IL-1β. These latter two observations under-

score both the relevance of our ex vivo stimulations with LPS, as well as our focus on the IL-1

family of cytokines.

The IL-1 cytokine family comprises 11 members, all of which promote the activity of cells

of the innate immune system [31, 32]. Though the family has since been expanded, IL-1β was

among the first described; it functions as a potent pyrogen, lymphocyte activator, and media-

tor of autoinflammation [33, 34]. Due to both the potency and extensive function of IL-1β, it

must be tightly regulated; IL-1RA, its cognate antagonist, binds the target receptor of IL-1β,

blocking further binding of the cytokine [31]. Current data suggest that the ratio of IL-1β and.

IL-1RA concentration markedly affects the severity of some diseases [35–37]. Children with a

disorder caused by mutations of IL1RN, the gene encoding IL-1RA, experience disorders

including neonatal onset of sterile multifocal osteomyelitis, periostitis, and pustulosis [38].

After receiving FDA approved anakinra, a recombinant form of IL-1RA, children with IL1RN

mutations experienced clinical remission with both peripheral blood counts and acute-phase

reactant levels normalizing [38]. The pathogenic potential of IL-1β, and the reciprocal impor-

tance of IL-1RA was demonstrated in in vivo studies using IL-1RA deficient mice whereby

chemical carcinogen exposure led to the development of more aggressive tumors and more

potent angiogenic responses when compared to WT mice [39]. Together, IL-1β and IL-1RA

both have substantial clinical relevance: the anti-IL-1β antibody canakinumab, along with ana-

kinra, are FDA approved for a range of pathologies involving dysregulated inflammation.

Despite their importance, the dynamics of these cytokines over the course of the menstrual

cycle has not been well-defined. Human urine samples taken over the course of the menstrual

cycle show lowest levels of IL-1RA during menses; and experiments with LPS-stimulated

monocytes show increased secretion of IL-1β following ovulation, along with an upward trend

of IL-1RA that did not reach statistical significance [40, 41]. Later transcriptomics work

showed enrichment of pro-inflammatory genes among up-regulated genes in the luteal phase

as compared to the follicular phase following aerobic exercise, while IL-1RA gene expression

was downregulated over the same interval [42]. These studies are limited by their use of indi-

rect measurements of the cytokines in question and potentially confounding experimental

conditions, and leave unknown the dynamics of the serum cytokine concentrations over the

course of the normal menstrual cycle.

We hypothesized that the changes in the levels of E2 and P from the follicular to the luteal

phase would influence the cellular activation response and the circulating levels of key IL-1

inflammatory cytokines. To investigate this effect over the course of the menstrual cycle, we

analyzed the levels of IL-1β and IL-1RA during different phases throughout the cycle, in serum

as well as de novo production by PBMCs, either non-stimulated or stimulated with LPS. Here

we provide evidence for a robust increase in serum IL-1RA levels from the follicular to the

luteal phase of the menstrual cycle. By dividing the cycle into sub-phases, we were able to more

accurately elucidate the trends seen over the ovarian cycle [41]. Analysis of these 5 sub-phases

—early and late follicular, ovulation, and early and late luteal—demonstrated the increase

occurred by ovulation and was maintained throughout the luteal phase.
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Materials and methods

This study was a retrospective cohort analysis of a previous prospective study [43] utilizing de-

identified subject data collected from university volunteers. The study was approved by the

SUNY Upstate Medical University Institutional Review board (IRB-157178-1). The subject

cohort included nine volunteers who were healthy, Caucasoid women between the ages of 19–

29 years, not pregnant or taking oral contraceptives, with stable menstrual cycles (appr. 28

days), no history of medical problems, and normal BMI. Subjects were required to monitor

symptoms experienced over three menstrual cycles and record their ovulation time while hav-

ing blood drawn 9–12 times across a single cycle for cytokine and hormone analysis. Written

informed consent was obtained from all volunteers.

The menstrual cycle diary consisted of a single page, self-report questionnaire to monitor

symptoms [44]. The diary measured the magnitude of severity of 21 symptoms on a scale from

1–3. Briefly, if the volunteer did not experience any symptoms, the space corresponding to

that symptom was left blank; if the symptom was mild (noticeable but not troublesome), the

number 1 was recorded; if the symptom was moderate (interferes with normal activity), a 2

was recorded; and if the symptom was severe (temporarily incapacitating), a 3 was recorded.

The OvuQuick Ovulation predictor kit (Pharmasience Inc., Montreal) detects the presence

or absence of LH in urine. Urine was collected between 10:00 and 20:00 and was not the first

urine of the day. Date, cycle day and time were recorded when the sample was obtained to

determine when ovulation occurred. The test was carried out by the volunteer according to the

manufacturer’s instruction.

Venous blood samples (3 ACD; 2 clot) were obtained by venipuncture from the subjects

three times a week for five weeks. Both serum and peripheral blood mononuclear cells

(PBMC) were collected. The serum-separating tubes were left at room temperature to clot for

1h, then centrifuged at 2000 rpm for 20 minutes. Serum was removed, aliquoted and frozen at

-70˚C for future analysis. Peripheral blood mononuclear cells (PBMC) were isolated from

fresh blood using density gradient centrifugation in Lymphoprep TM (Cederlane, Ontario).

PBMCs were cultured at 5 x 106 cells/mL in RPMI-1640 supplemented with 5% FCS, 2mM

L-glutamine, 1mM sodium pyruvate, and 50IU/mL penicillin-streptomycin. PBMCs were

either left unstimulated or stimulated with the bacterial TLR4 ligand lipolysaccaride (LPS, 8μg/

mL, Sigma) for 24h at 37˚C in a humidified 5% CO2-incubator. Cell free supernatants were

harvested at 24 h post-stimulation, aliquoted, and stored at -70˚C for analysis.

The cytokines in this study were all measured by commercial ELISA assay. Samples were

run in duplicate and all the samples collected for one volunteer during the menstrual cycle

were run on the same plate. The lower limit of detection of the ELISAs were, for IL-1β ultra-

sensitive (0.083pg/mL, Biosource), for IL-1β (1.0pg/mL, Biosource), and for IL-1RA (22.0pg/

mL, R&D Systems). ELISAs were carried out according to the manufacturer’s instruction.

E2, P, and LH (Immunocorp) were measured in serum samples by RIA according to the

manufacturer’s instructions. All samples were run in duplicate and all samples collected for

one volunteer were run at the same time. Sensitivities of the assays were 5pg/mL, 0.1ng/mL,

and 0.46U/L, respectively.

Statistical analysis

Cycle phases were defined on a per-subject basis. If multiple measurements were taken within

a phase as defined, the median of those measurements was taken as the representative value of

the phase or sub-phase. For repeated-measures analysis, one subject with missing values at one

sub-phase was excluded. All statistical analyses were performed in GraphPad Prism (version

8.2.0 for OSX, GraphPad Software, La Jolla California USA, www.graphpad.com).
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Statistical comparison of cycle timepoints was performed as follows. Where appropriate,

unspecified cytokine measurements were imputed; these values were entered as the lower limit

of detection for the assay in question. Data were then log (10) transformed, and tested for nor-

mality per cycle phase with the Shapiro-Wilk normality test [45]. The threshold for data to

meet normality assumptions was prespecified as p > α = 0.05. Follicular and luteal phase

mediator levels meeting normality assumptions were compared with the paired Student’s t-

test; those not meeting normality assumptions were compared with the Wilcoxon signed rank

test. The threshold for statistical significance of the pairwise tests was prespecified as p� α =

0.05, and the Bonferroni correction was applied to correct for multiple comparisons.

For early/late follicular/luteal analysis, if all sub-phases of a given mediator met normality

assumptions, a repeated-measures one-way ANOVA was performed. The Dunnett post-hoc

test was performed on statistically significant ANOVAs, comparing the early and late follicular

and luteal sub-phase levels to mediator levels at ovulation. If one or more sub-phases of a given

mediator did not meet normality assumptions, a Friedman test was performed. Dunn’s post-

hoc test was performed on statistically significant Friedman tests, comparing the early and late

follicular and luteal sub-phase levels to mediator levels at ovulation. The threshold for statisti-

cal significance of ANOVAs, Friedman tests, and post-hoc tests was prespecified as p� α =

0.05.

To test correlations between gonadal hormones and cytokine values, data were pooled from

all patients at all five sub-phases, and subjected to a Spearman rank correlation test.

Results

Characteristics of the study population

A total of 9 healthy premenstrual cycling females were included in this study and their charac-

teristics can be found in Table 1. Median (IQR) age was 23 years (20–25), cycle length was 29

days (28–29), and ovulation occurred on day 16 (14–16). Between 9 and 13 time points were

taken for each participant over the course of 5 weeks and serum hormone levels were

Table 1. Characteristics of the study participants.

Characteristic Participants (n = 9)

Age in years 23 (20–25)�

Cycle Length in days 29 (28–29)

Ovulation Day 16 (14–17)

HgB, g/L 138.0 (135.0–143.0)

WBC, 109 cell/L 5.7 (5.3–5.7)

Monocytes, 109 cell/L 0.4 (0.4–0.5)

Lymphocytes, 109 cell/L 1.6 (1.6–1.7)

Neutrophils, 109 cell/L 3.4 (2.6–3.5)

Follicular (n = 35) Luteal (n = 44)

17beta-Estradiol, pg/mL 87.0 (65.0–102.0) 138.5 (105.8–175.3)

15.0–350.0† 15.0–350.0†

Progesterone, ng/mL 0.1 (0.1–0.2) 7.8 (3.2–13.2)

0.1–0.7† 2.0–25.0†

Luteinizing Hormone, u/L 4.0 (3.0–6.0) 4.0 (2.0–5.0)

1.9–12.5† 0.5–16.9†

�median, (interquartile range)
†expected range

https://doi.org/10.1371/journal.pone.0238520.t001
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measured by RIA to define the phases of the cycle (Fig 1). E2 levels, median and (IQR), were

87.0pg/mL (65.0–102.0) and 138.5pg/mL (105.8–175.3), P was 0.1 pg/mL (0.1–0.2) and 7.8pg/

mL (3.2–13.2), and LH was 4.0U/L (3.0–6.0) and 4.0U/L (2.0–5.0), in the follicular and luteal

phase, respectively. LH levels during ovulation were 16.0U/L (13–26.5). Hormone analysis

indicated that the nine volunteers had normal ovulatory cycles, with levels of E2, LH, and P

within normal limits. In addition, mean symptom severity values derived from the menstrual

diary during inter-menstrual and luteal phase were 1.86 (0.86–2.14) and 1.29 (0.93–2.64),

respectively (n = 7) and indicated no significant premenstrual syndrome symptoms [44].

Heightened anti-inflammatory IL-1RA levels during the luteal phase of the

menstrual cycle

Females tend to have more robust immune responses than males and some of these differences

are thought to be due to gonadal hormones influencing the outcome of the immune response.

To investigate any changes in inflammatory cytokine levels over the menstrual cycle we ana-

lyzed serum levels of potent pro-inflammatory IL-1β and anti-inflammatory IL-1RA levels at

each time point by ELISA. We found levels of IL-1RA were readily detectable in serum, while

IL-1β levels were 100x lower and only detectable with an ultrasensitive ELISA. To determine if

any differences occurred between the phases, we divided each participant’s cycle into follicular

and luteal phases based on individual hormone levels. Follicular phase was defined as the inter-

val following day 1 of menses to ovulation, exclusive. Luteal phase was defined as the interval

following ovulation to day 1 of menses, exclusive. Our data showed that serum levels of IL-

1RA significantly increased from the follicular to the luteal phase; log transformed median

Fig 1. Subjects demonstrate stable menstrual cycles. Serum levels of E2, P and luteinizing hormone were measured by RIA in 9 female

volunteers over one complete menstrual cycle.

https://doi.org/10.1371/journal.pone.0238520.g001

PLOS ONE Increased serum IL-1RA in the luteal phase

PLOS ONE | https://doi.org/10.1371/journal.pone.0238520 September 3, 2020 6 / 13

https://doi.org/10.1371/journal.pone.0238520.g001
https://doi.org/10.1371/journal.pone.0238520


(IQR) values were 2.07 (1.79–2.37) vs. 2.45 (2.14–2.56), p = 0.004, (Fig 2B), while serum IL-1β
levels were not different between the two phases, -0.50 (-1.04–0.68) vs -0.51 (-1.08–0.80),

p = 0.83 (Fig 2A).

To evaluate any differences in the ability of peripheral blood mononuclear cells to respond

to the common bacterial ligand, LPS, PBMCs isolated from peripheral blood at several time

points over the menstrual cycle were stimulated with or without LPS in vitro. At 24 h, cell-free

supernatants were harvested and IL-1β and IL-RA levels were assessed by ELISA. Our analysis,

reported as median (IQR), found no differences in the levels of IL-1β (Fig 2C) or IL-1RA (Fig

2D) produced in the follicular vs the luteal phase in unstimulated cultures; 1.32 (0.23–1.92) vs.

1.60 (0.60–2.05), p = 0.60, and 0.47 (0.37–0.98) vs. 0.76 (0.29–0.88), p = 0.96, respectively; and

no significant differences in TLR4-LPS stimulated cultures, IL-1β (Fig 2E) and IL-1RA (Fig

2F), 1.19 (0.90–3.84) vs. 1.09 (0.91–3.87), p = 0.73, and 1.57 (1.42–1.62) vs. 1.63 (1.50–1.69),

p = 0.38, respectively.

Anti-inflammatory associated serum IL-1RA levels are increased by

ovulation

Our data suggest an increase in the levels of circulating IL-1RA during the luteal phase of the

menstrual cycle. To begin to understand when these differences emerge during the cycle and

how long they were maintained, we divided the individual phases into 5 distinct sub-phases,

early/late follicular (EF/LF), early/late luteal (EL/LL) and ovulation (O) [41]. Early/late follicu-

lar and early/late luteal sub-phases were defined as equal intervals on either side of the mid-

point of the entire follicular and luteal phases, respectively, and ovulation was defined by LH

peak. Analysis of serum revealed significantly increasing IL-1RA levels (Fig 3B) from early fol-

licular to ovulation, represented as median (IQR) and determined to be 1.96 (1.66–2.8) vs. 2.34

(2.15–2.49), p<0.01, with no significant changes in IL-1β observed (Fig 3A), p = 0.47. The

increased levels of IL-RA within the cycle were evident at ovulation and persisted over the EL

and LL phases. We observed no differences in IL-1β or IL-1RA production by PBMCs isolated

at different sub-phases in either TLR-LPS stimulated (Fig 2E and 2F) or non-stimulated cul-

tures (Fig 2C and 2D).

Serum IL-1RA levels positively correlate with gonadal hormone levels

To determine if there was any relationship between serum hormone and cytokine levels, we

carried out Spearman correlation tests to evaluate the relationship between gonadal hormones

and cytokines. Our data showed a weak but positive correlation between IL-1RA and E2

(r = 0.26, p = 0.01) and between P and IL-1RA (r = 0.22, p = 0.04) (Fig 3G and 3H, respec-

tively), suggesting that increased estradiol and progesterone was associated with a rise in IL-

1RA levels.

Discussion

Females are known to have enhanced immune responses when compared to males. In princi-

ple, the fluctuations in gonadal steroid hormones during the menstrual cycle have the potential

to both explain part of these differences, as well as adjust the immune milieu more generally.

However, the dynamics of major immune cytokines in serum over the course of the cycle are

not fully understood. Here, we provide evidence for an increase in serum IL-1RA by ovulation

that persists through the luteal phase in young, eumenorrheic women.

The IL-1 family of cytokines and their receptors play a central role in the modulation of

innate immunity and inflammation [46]. We investigated IL-1β, a pro-inflammatory positive

effector of the IL-1 system, and IL-1RA, an anti-inflammatory negative regulator of the IL-1
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system. Previous investigations into IL-1RA production have shown that levels were lowest

during menses in urine samples [41]. In another report, secreted IL-1RA trended upwards

(though did not reach statistical significance) following ovulation, while levels of cell-associ-

ated IL-1RA were significantly increased post-ovulation in monocytes [40]. These observations

Fig 2. Serum IL-1RA levels increase from the follicular to luteal phase. Comparison of mediator levels between

follicular and luteal phase of the menstrual cycle. Shown are median levels of IL-1β and IL-1RA from: serum (A, B);

naïve, unstimulated PBMCs (C, D); and LPS-stimulated PBMCs (E, F). Data were log-transformed before analysis to

meet normality assumptions; whiskers denote 5th and 95th percentiles, �� denotes p� 0.005.

https://doi.org/10.1371/journal.pone.0238520.g002
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are broadly consistent with our data. Regarding potential origins of this increase from the fol-

licular to luteal phase, it should be noted that cytokine secretion is not confined to the vascular

compartment. Along with circulating monocytes, epithelial cells of the endometrium have

been implicated: a significant increase in secretion of IL-1RA from endometrial cells is

observed from the follicular to luteal phase [47]. Taken together, our findings and published

data suggest a shift in the cytokine environment at ovulation and through the end of the cycle.

Given the above, it is important to consider the possible drivers of this shift. As discussed,

there is a strong biological rationale that cycling gonadal hormones themselves affect the

immune response in women. Sex steroids play a major role in the sex bias of the immune

response and have been shown to exert specific effects on female immunocompetence at the

cellular and molecular level [48]. E2 receptors (ERs) are expressed on a majority of the innate

and adaptive immune system cells, including T cells, B cells, neutrophils, macrophages, den-

dritic cells, and natural killer cells [49]. Transition into menopause, characterized by declining

E2 levels, increases susceptibility to infection while decreasing vaccine efficacy. Post-meno-

pausal women also show upregulation of TNF, IL-1β, IL-10, and IL-6, while showing

Fig 3. Serum IL-1RA levels increase over the cycle while being maintained in the luteal phase and are positively correlated with E2

and P. Patient samples were grouped into 5 distinct sub-phases of the menstrual cycle. Shown are median levels of IL-1β and IL-1RA

from: serum (A, B); naïve unstimulated PBMCs (C, D); and LPS-stimulated PBMCs (E, F). Serum IL-1RA positively correlated with

gonadal hormones E2 (G) and P (H); values from all five sub-phases were pooled from all patients. Data were log-transformed before

analysis to meet normality assumptions; whiskers denote 5th and 95th percentiles; �� denotes p� 0.005.

https://doi.org/10.1371/journal.pone.0238520.g003
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diminished phagocytic capacity of DCs, leading to impaired antigen presentation and activa-

tion of the adaptive immune response. Moreover, E2 has been shown to block inflammatory

effects caused by IL-1β and LPS in human and rat uteruses [50]. We found a modest but statis-

tically significant correlation between both P and E2 levels and IL-1RA levels in our cohort

when analyzed by sub-phase, consistent with prior observations of dampened IL-1β effects in

the presence of E2.

Future studies should further investigate the clinical significance of a post-ovulation anti-

inflammatory shift. A 2006 review of the relevant literature suggested that pre-menopausal

breast cancer patients who underwent resection during the luteal phase had higher disease-

free survival (DFS) rates than patients who underwent resection at other cycle times, despite

some equivocal evidence [51]. More recently, a systematic review and meta-analysis found the

literature on the matter to be inconclusive, but noted that the studies supporting the benefits

of surgery in the luteal phase were generally more robust, with larger cohorts and longer fol-

low-up times [52]. One such prospective study reported decreased DFS when surgeries were

scheduled in the follicular phase of the menstrual cycle [53]. This effect was independent of the

hormone receptor status of the tumors, indicating that the effect was not due to an intrinsic

susceptibility of the tumors themselves to fluctuating hormone levels. Rather, the authors note

that the immunosuppressive effect of adrenergic stimulation (e.g., from perioperative anesthe-

sia) is exaggerated during the follicular phase in animal studies, possibly allowing for escape of

tumor cells released during the resection. This suggests a potential mechanistic link between

cycle phase, immune surveillance, and post-operative DFS. While the full mechanism for the

increased survival rate is unclear, our data suggest that circulating anti-inflammatory cytokines

may be associated with better clinical outcomes observed during luteal phase.
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