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Abstract
The ability to engineer synthetic systems in the biochemical context is constantly being

improved and has a profound societal impact. Linear system design is one of the most per-

vasive methods applied in control tasks, and its biochemical realization has been proposed

by Oishi and Klavins and advanced further in recent years. However, several technical

issues remain unsolved. Specifically, the design process is not fully automated from specifi-

cation at the transfer function level, systems once designed often lack dynamic adaptivity to

environmental changes, matching rate constants of reactions is not always possible, and

implementation may be approximative and greatly deviate from the specifications. Building

upon the work of Oishi and Klavins, this paper overcomes these issues by introducing a

design flow that transforms a transfer-function specification of a linear system into a set of

chemical reactions, whose input-output response precisely conforms to the specification.

This system is implementable using the DNA strand displacement technique. The underly-

ing configurability is embedded into primitive components and template modules, and thus

the entire system is adaptive. Simulation of DNA strand displacement implementation con-

firmed the feasibility and superiority of the proposed synthesis flow.

Introduction
Advancements in synthetic biology have resulted in the development of biochemical systems of
increasing complexity that are capable of using living cells as well as cell-free systems. Synthetic
biology holds promise for biotechnology, biomedicine, bio-environmental, bioenergy, and
other applications. Many computation and control design examples have been demonstrated
either in vivo or in vitro. For instance, oscillators [1], toggle switches [2], logic gates [3], band
pass filters [4], and analog circuits [5] have been designed and implemented in living cells,
while digital circuits [6], neural networks [7], and switchable memories [8] have been demon-
strated in cell-free systems. These developments show a clear growing trend in design

PLOSONE | DOI:10.1371/journal.pone.0137442 September 9, 2015 1 / 27

a11111

OPEN ACCESS

Citation: Chiu T-Y, Chiang H-JK, Huang R-Y, Jiang J-
HR, Fages F (2015) Synthesizing Configurable
Biochemical Implementation of Linear Systems from
Their Transfer Function Specifications. PLoS ONE 10
(9): e0137442. doi:10.1371/journal.pone.0137442

Editor: Jean Peccoud, Virginia Tech, UNITED
STATES

Received: April 3, 2015

Accepted: August 16, 2015

Published: September 9, 2015

Copyright: © 2015 Chiu et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: The Ministry of Science and Technology,
Taiwan, provided support in the form of salaries for
authors Tai-Yin Chiu, Hui-Ju Chiang, Ruei-Yang
Huang, and Jie-Hong R. Jiang, but did not have any
additional role in the study design, data collection and
analysis, decision to publish, or preparation of the
manuscript. The specific roles of these authors are
articulated in the “author contributions” section.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0137442&domain=pdf
http://creativecommons.org/licenses/by/4.0/


complexity. Indeed, the more sophisticated systems we can build, the better skills we will have
to comprehend biology and to build even more sophisticated systems.

The increasing system complexity renders the necessity of design automation tools. Con-
structing biochemical systems bottom-up using pre-characterized parts in synthetic biology is
analogous to designing electronic systems using pre-designed standard modules. While elec-
tronic design automation (EDA) has largely enabled system design under exponential capacity
growth over the past five decades thanks to the driving force of Moore’s law, design automation
in synthetic biology may play a similar key role in the construction of complex biochemical sys-
tems [9]. Computer-aided modeling, simulation, synthesis, and verification are crucial because
a biochemical design is often intended to function in a biological context that is often too com-
plex to be fully characterized.

Depending on its target application, a system is often designed for a specific application
rather than as a general purpose computing machine. In control applications, linear systems
are pervasive due to their simplicity of design and analysis. Any linear control system can be
realized with three primitive components: integration, gain, and summation. Realizing linear
control with biochemical reactions has been proposed by Oishi and Klavins [10], who showed
that three types of chemical reactions (catalysis, degradation, and annihilation) are sufficient to
implement the three primitive components. In principle, any polynomial ordinary differential
equation can be approximated by chemical reaction networks (CRNs) [11]. Therefore, any lin-
ear control system can be built using CRNs.

To realize CRNs, nucleic acids have been exploited as a universal tool for biomolecular com-
putation [12]. By appropriately changing their nucleotide sequences, the interaction between
nucleic acids can be precisely controlled and programmed in vitro. Specifically, toehold-medi-
ated or enzyme-free DNA strand displacement (DSD) is a promising approach to perform bio-
logical computations. Although the DSD mechanism has been studied since the 1970s [13–17],
until recently it was systematically used to build a molecular machine made of DNA and RNA
[18]. The DSD method is attractive for several reasons. First, the kinetics of DSD devices can
be engineered by controlling toehold binding rates, which may range from 1 to 6 × 106 M−1 s−1

[19–21]. Second, composability [22] can be achieved. In typical implementation schemes, sin-
gle-stranded DNAs play the role of signals and double-stranded DNAs act as gates, and they
work together with the mechanism of toehold-mediated DNA displacement [19]. DNA signals
of different domain lengths [23–25] have been proposed. For example, gates can be composed
to realize complex systems using a 2-domain signal architecture [25]. Third, the DSD mecha-
nism works autonomously [26] as long as the DNA or RNA fuels are supplied. With these
advantages, many biomolecular devices, e.g., [27–29], have been designed using this powerful
mechanism. The DSD technology allows computation and interfacing with molecular compo-
nents in living organisms [30] and shows potential in bio-sensing and control, biomedicine,
and other applications.

Despite the advancement of biochemical implementation of linear systems, four challenges
remain to be solved. First, the construction of Oishi and Klavins’s system requires that the rate
constants of the underlying reactions be carefully matched to achieve the intended integration,
gain, and summation functions. This requirement imposes substantial practicality restrictions
because, in reality, the reaction rates of available reactions can be limited. Thus, not all gain
and summation blocks can be realized. Second, once a system is constructed, its function is
fixed and cannot be changed without redesign. However, this fixed functionality can be inade-
quate for a system reacting to its biochemical environment, which is intrinsically stochastic
and often full of uncertainty. Thus, designing systems with dynamic adaptation capabilities is
crucial, especially in the biochemical context. Third, the CRN implementations of the gain and
summation components are approximative. In essence, the transfer functions of the gain and
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summation components contain extra poles rather than just the ideal scalar and summation.
When a complex system is built from these components, these additional poles might cause
system behavior that deviates from its specification and can even lead to unwanted instability.
Fourth, an automated flow of the synthesis of CRN from the transfer function specification of a
linear system is lacking. Although a linear system can be compiled into a CRN with a direct
block-by-block conversion from a block diagram, the block diagram may not be available in
the first place and the CRN implementation may only approximate the specification. Specify-
ing a linear system using transfer functions can be more natural than using block diagrams.
However, converting a transfer function into a block diagram suitable for CRN realization can
be a nontrivial optimization task.

In this paper, we tackle the above challenges. To address the first two challenges, we devise a
mechanism to make linear control systems configurable by adding auxiliary species to CRN as
control knobs. The concentrations of the auxiliary species can be adjusted not only to compen-
sate for reaction rate mismatch but also to reconfigure a control system to dynamically adapt
to environmental changes. Hence, implementing linear control systems in biochemistry can be
made more practical. To resolve the last two challenges, we apply parallel decomposition on a
given transfer function and express it as a summation of elementary modules, and propose a
CRN solution that achieves the exact implementation of the elementary modules. The CRN
implementation of a transfer function can be further mapped and realized using the DSD
method. The proposed method lends itself to an automated design flow (as depicted in Fig 1)
where the linear system to be synthesized is specified by a transfer function, which is decom-
posed for CRN implementation and further mapped into the DSD reactions. Through simula-
tion using Visual DSD [31, 32], we show the feasibility and superiority of our proposed design
automation flow for synthesizing a specified linear system into DSD reactions.

Fig 1. Automated flow of linear system synthesis.

doi:10.1371/journal.pone.0137442.g001
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Methods and Results
Although synthetic biology shows promising potential in biotechnology applications, it poses
grand challenges to complex system design. A typical reactive system may involve sensing,
actuation, information processing, and other tasks, while a control unit is one of the fundamen-
tal ingredients that constitute a reactive system. In this work, we address the design automation
problem of linear control systems that are to be realized by biochemical reactions.

Any linear time-invariant (LTI) system can be fully specified by means of a transfer func-
tion, which corresponds to the Laplace transform of the impulse response of the system, with
all initial conditions set to zero. In essence, once the impulse response of a linear system is
known, the output y(t) of the system with any input u(t) can be characterized using the transfer
function. However, for a multiple-input multiple-output (MIMO) linear system, the principle
of superposition suggest that the total effect on any output due to all the inputs acting simulta-
neously is obtained by summing up the output effects due to the individual inputs acting alone.
Consequently any MIMO system can be specified by a matrix of transfer functions. For sim-
plicity, in this paper we focus on single-input single-output (SISO) systems without loss of
generality.

Configurable Primitive Components
A transfer function can be realized by building a network of primitive components consisting
of integration, gain, and summation blocks; therefore, implementing an LTI system in bio-
chemical systems amounts to realizing these three basic components with chemical reactions
[10]. However, the CRN realizations of these components proposed by Oishi and Klavins [10]
are deficient in that rate constants have to be carefully matched and the designed control sys-
tem cannot be reconfigured. These deficiencies impose a practicality issue that restricts system
realization and a flexibility issue that prevents dynamic system adaptation. We can overcome
these issues by introducing configurable primitive components as discussed below.

Following Oishi and Klavins [10], we represent a real signal x by the difference (x+ − x−)
between the concentrations of two complementary molecular species x+ and x−. In this paper,
we do not distinguish notationally between a species and its concentration. Moreover, we
abbreviate a pair of chemical reactions of complementary species

xþ þ � � � !rþ y� þ � � � ;
x� þ � � � !r� yþ þ � � � ;

with rate constants r+ and r−, to

x� þ � � � !r� y� þ � � � ;
where the plus and minus signs in the superscripts ± and� are ordered.

Table 1 shows the chemical reactions and transfer functions of the proposed configurable
primitive components, which we will elaborate on in the following sections.

Integration Block. An integration block takes a signal u(t) as input, and produces a signal

yðtÞ ¼ k
R t

0
uðtÞdtþ yð0Þ, for some constant k 2 R, as output. The chemical realization of an

integration block for k� 0 consists of a pair of catalytic reactions

x� þ u�!r�1 x� þ u� þ y�

and an annihilation reaction

yþ þ y�!rint ;;

Configurable Biochemical Reaction Synthesis of Linear Systems

PLOSONE | DOI:10.1371/journal.pone.0137442 September 9, 2015 4 / 27



where rþ1 ; r
�
1 ; rint are the rate constants. The reactions differ from those of Oishi and Klavins

[10] in that the auxiliary species x± are newly added to the catalytic reactions. Both the auxiliary
species x± and the input species u± serve as catalysts.

With the definition that rþ1 x
þ ¼ r�1 x

� � k, the signal y is exactly the integration of signal u
as described by the ordinary differential equation

_y ¼ _yþ � _y� ¼ rþ1 x
þuþ � r�1 x

�u� ¼ ku;

for _y� ¼ r�1 x
�u� � rinty

þy�. Taking the Laplace transform of the above equation, we obtain

the transfer function
Y
U

¼ k
s
.

Because the concentrations of x+ and x− can be controlled externally, in theory it is always
possible to design a reaction network to meet any required k. For k< 0, the reactions are the
same except that the catalytic reactions should be modified by reversing the complementary
species of the output signal y as

x� þ u�!r�1 x� þ u� þ y�;

where y� replaces the original y±.
Gain and Summation Blocks. A weighted summation block takes a number of input sig-

nals ui(t), i = 1, 2, . . ., n and produces an output signal yðtÞ ¼ Pn
i¼1 kiuiðtÞ for ki 2 R. A gain

block is a special weighted summation block with only one input u(t) that produces output y(t)
= k1 u(t) for k1 2 R. The gain block with k1 � 0 can be realized by one pair of catalytic reac-
tions,

x� þ u�!r�1 x� þ u� þ y�;

one pair of degradation reactions,

z� þ y�!r�0 z�;

and an annihilation reaction

yþ þ y�!rgs ;;

where x± and z± are auxiliary species. These reactions induce the following kinetic equations

_y� ¼ r�1 x
�u� � r�0 z

�y� � rgs y
þy�:

Table 1. Three primitive components, their chemical reactions, and their transfer functions.

Type Reactions Transfer Function

Integration x� þ u�!r�1 x� þ u� þ y�

yþ þ y�!rint ;

(
YðsÞ ¼ k

s
UðsÞ;

k � rþ1 x
þ ¼ r�1 x

�

Gain & Summation x�i þ u�
i !

r�i x�
i þ u�

i þ y�; i ¼ 1; . . . ;n

z� þ y�!r�0 z�

yþ þ y�!rgs ;

8>>><
>>>:

YðsÞ ¼ Pn
i¼1

ki
sþ k0

UiðsÞ;

ki � rþi x
þ
i ¼ r�i x

�
i ; i ¼ 1; . . . ;n

k0 � rþ0 z
þ ¼ r�0 z

�

8<
:

doi:10.1371/journal.pone.0137442.t001
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Let k1 � rþ1 x
þ ¼ r�1 x

� and k0 � rþ0 z
þ ¼ r�0 z

�. The mass action of y becomes

_y ¼ k1ðuþ � u�Þ � k0ðyþ � y�Þ ¼ k1u� k0y: ð1Þ

When the steady state is reached, the changing rate of y (i.e., _y) equals zero, which implies

y ¼ k1
k0
u. Note that the concentrations of the auxiliary species x± and z± are controlled exter-

nally. Therefore, it becomes theoretically possible to meet any required k1 by tuning the con-
centrations of these auxiliary species. For k1 < 0, the plus and minus signs of the superscripts
of y in the pair of catalytic reactions should be swapped.

For the weighted summation block, the reactions are the same as those for the gain block
except that the pair of catalytic reactions becomes

x�i þ u�
i !

r�i x�i þ u�
i þ y�; for i ¼ 1; . . . ; n:

By setting ki � rþi x
þ
i ¼ r�i x

�
i we obtain the equation

y ¼
X

i

ki
k0
ui ð2Þ

in the steady state. Similarly, if a scaling factor ki < 0, we swap the signs in the superscript of y
in the reaction corresponding to input ui.

It is worth noting that in contrast to the integration block, the weighted summation block
only approximates the intended weighted summation when the steady state is not yet reached;
this is often the case in practice. This approximation can be clearly seen from its transfer func-

tion
Y
U

¼ P
i

ki
sþ k0

, rather than the ideal
Y
U

¼ P
i

ki
k0
. Although this approximation may seem

to inevitably cause a chemical reaction implementation to deviate from its specification, we will
later show methods that can be used to circumvent this imperfection.

Case Study. To assess the benefit of the auxiliary species, we perform a proof-of-concept
case study on the mass-spring-damper (MSD) system as shown in Fig 2A. The system can be
modeled by the equation

M€x þ b _x þ kx ¼ F:

Fig 2. Mass-spring-damper system and its block diagrams. (A) MSD system. (Let F = 1 N,M = 1 kg, b = 10 N s/m, and k = 20 N/m.) (B) Block diagram of
the MSDmodel, where the triangular blocks denote gain functions with their corresponding weights, the rectangular blocks denote integrators, and the circle
blocks denote mixers for summation and/or subtraction. (Let A = 2.764, B = 7.236 andC = 0.2236.) (C) Block diagram of the PI-controlled MSDmodel, where
G is the plant shown in (B). (Assume the values of KP and KI given in Table 2.)

doi:10.1371/journal.pone.0137442.g002
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UsingM = 1 kg, b = 10 N s/m, k = 20 N/m, and F = 1 N, by Laplace transform we derive the
transfer function

G ¼ 1

s2 þ 10sþ 20
� 0:2236

1

sþ 2:764
� 1

sþ 7:236

� �

The transfer function can be implemented with the block diagram shown in Fig 2B. The pro-
portional-integral (PI) controller to the MSD system is shown in Fig 2C.

The block diagrams are constructed with k0 = 10 for all the summation and gain blocks,
with the exception of the summation blocks shown in red and gain blocks A and B with k0 =
50. The values of ki’s are set to αk0, where the values of α are equal to the weights specified in
the corresponding gain blocks. Additionally, we assume qþ0 and q�0 have the same values as k0,
and qþ1 and q�1 are mismatched to k1 by 10%, where q1 and q0 are the rate constants of the cata-
lytic and degradation reactions, respectively, formulated in the prior work [10].

Fig 3A1, 3A2, 3A3, and 3B show the step, impulse, and sinusoidal responses of the MSD sys-
tem, and the step responses of the PI-controlled MSD system, respectively. Our method
achieves better approximation to the ideal cases than the prior method [10]. One of the advan-

tages of our method is that we can match the weight
k1
k0

by tuning the concentrations of x± and

z±. In contrast, no tuning is possible in the prior method [10] to avoid the inexact gain
q1
q0
,

where q1 and q0 are the rate constants of the catalytic and degradation reactions formulated in
the prior work [10], respectively, due to the mismatch of the rate constants. (Note that the bio-
chemical implementations have their own optimal KP and KI values, shown in Table 2, to
approximate the ideal system.)

Suppose that the spring and damper of the above MSD system are now replaced with new
ones for b = 40 N s/m and k = 60 N/m. Our method can still adapt the PI-controller to the new
MSD system without redesigning the PI-controller, whereas the prior method has no such
capability. Because we can tune the concentrations of x± and z± in biochemical implementa-
tion, it is possible for us to adapt (KP, KI) to optimal values (40, 60) for the new PI-controlled
MSD system, which is in contrast to the original system (15, 20). Fig 3C compares the results
with and without such reconfigurability.

DSD Realization of Configurable Primitive Components
We exploit the DNA strand displacement (DSD) technique [24, 33] as an experimental chassis
for our synthesis flow, and map the synthesized CRNs to DSD reactions. The simulation is con-
ducted using the Visual DSD tool [34] for validation.

To implement each primitive component, we map the reactions listed in Table 1 to DSD
reactions considering the compatibility among the components. We adopt the two-domain
DSD method [25] to compile CRNs into nucleic acid-based chemistry to achieve flexible com-
posability. In this method, any free (i.e., unbound) single-stranded DNA species consist of two
domains: one toehold domain and one recognition domain. A toehold may initiate the binding
between a single-stranded DNA species and a double-stranded DNA species. The two-domain
DSD method supports compositionality, which indicates that a block implemented with DSD
reactions can be cascaded with other blocks implemented with DSD reactions. Thus, the output
species of one block fits the input species required by its downstream blocks.

As a notational convention, we indicate a domain t to be a toehold by a hat “̂” as t̂ . We also
use superscript 	 to indicate the Watson-Crick complement of a domain DNA sequence (e.g.,
domain t	 is sequence CTAG if domain t is sequence GATC). For a single-stranded species, we
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Fig 3. Responses of MSD systems with and without a PI controller. The blue, green, and red curves represent the responses in ideal, configurable
biochemical implementation, and nonconfigurable biochemical implementation cases, respectively. (A) Step, impulse, and sinusoidal responses of the MSD.
(B) Step responses of PI-controlled MSD. (Assume 10% rate mismatch in the MSD system.) (C) Step responses of PI-controlled MSD, where the MSD
undergoes a parameter change with b = 40 N s/m and k = 60 N/m, respectively, to induce a gain change of A = 1.561, B = 38.44 andC = 0.0271.

doi:10.1371/journal.pone.0137442.g003
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indicate the 50 end using a vertical bar “j” and the 30 end by an angle bracket “i” or “h.”We call
a single-stranded species of the form j i (50 end on the left and 30 end on the right) and h j (50
end on the right and 30 end on the left) an upper strand and a lower strand, respectively. A dou-
ble-stranded species with an upper strand jt ui (and a lower strand ht	 u	j) is denoted as [[t u]].
A double-stranded species with one or more dangling (or exposed) toeholds is called a gate,
and is used to help transduce one or more species into other species. Double-stranded species
without any dangling (exposed) toeholds or single-stranded species containing no toeholds are
regarded as waste because they lack the ability to react with other species. The gates and species
separately used to construct catalysis, degradation, and annihilation CRNs are called fuel.

To ignore the effects of fuel depletion, we maintain all of the separately used species at con-
stant concentrations. Moreover, we set the binding rates of all toeholds to 0.05 nM−1 s−1, which
is consistent with the prior work [35]. We assume infinite unbinding rates [32, 36] to ignore
the unproductive reactions [32] that result from the situation where a single-stranded species
binds to a gate but does not further displace the strand with which it competes for the same rec-
ognition domain. Under these settings, we map the catalytic chemical reactions

x� þ u�!r�1 x� þ u� þ y�

to the DSD reactions shown in Fig 4, where the domains highlighted in red and green are toe-

holds. Reactions xþ þ uþ!rþ1 xþ þ uþ þ yþ and x� þ u�!r�1 x� þ u� þ y� can be realized by the
same set of DSD reactions except for species renaming (on recognition domains). For brevity,

we simply use the same set of species ĵt xi (catalysis_7), ĵt ui (sp_0), and jt̂2 yi (sp10) to
denote the species x+, u+, and y+, respectively, to implement the former reaction and to denote
x−, u−, and y−, respectively, for the latter reaction.

The set of DSD reactions outlined in Fig 4 consists of two stages. Gate catalysis initiates the

first stage of the reactions by reacting with ĵt xi. At the end of the first stage, the species ja t̂i
will be produced, and this species will react with gate catalysis_1 to initiate the second stage.

During the second stage reactions, the species ĵt xi and ĵt ui will be produced to compensate
for their consumption in the first stage.

We note that if the recognition domains of u and x were exchanged within the seven gates
and one waste in the four first stage reactions, the entire set of reactions would still represent
an implementation of the intended catalytic chemical reactions. However, the new arrange-

ment of ½½u t̂ 

 followed by ½½x t̂ 

 would accelerate input ĵt ui (effectively, u+ or u− in the cata-

lytic chemical reactions) consumption because the input ĵt ui would directly react with the

new catalysis gate. This is in contrast to the original catalysis structure, where ½½x t̂ 

 is followed
by ½½u t̂ 

. Therefore, this consumption acceleration of ĵt ui would amplify the bias between

the production and consumption rates of ĵt ui. Because the concentration of ĵt ui could not
remain constant, the input species ĵt ui could not be treated as a catalyst as expected. As a
result, the new set of DSD reactions will not be as effective as the example presented in Fig 4.

Table 2. Values of (KP, KI) in ideal, configurable and non-configurable implementations of the original
and newMSD systems.

Ideal Config. Imp. Non-config. Imp.

Original MSD (30, 70) (15, 20) (15, 20)

New MSD (15, 55) (40, 60) (15, 20)

doi:10.1371/journal.pone.0137442.t002
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To calibrate the values of the rate constants r�1 , we conduct an experiment on the catalytic

reaction x� þ u�!r�1 x� þ u� þ y�. Let x± be mapped to ĵt xi, u± to ĵt ui and y± to jt̂2 yi at the
concentrations summarized in Table 3. Additionally, we set and maintain the concentrations

of all fuel to 2000 nM. However, the concentration of auxiliary species ĵt xi can be obtained by
the weight k � rþ1 x

þ ¼ r�1 x
� after r�1 are determined. Based on the relationship

r�1 x
�u� ¼ _y� ¼ y�final=t, where y

�
final are the concentrations of jt̂2 yi after an elapsed time τ =

1000 seconds, we derive the rate constants r�1 . As seen from Table 3, the reaction rates r�1 hold

Fig 4. DSD realization of catalytic reactions. The species in green are fuels whose concentrations are fixed to 2000 nM to avoid the effect of fuel depletion.
The species sp_0, sp10, and catalysis_7 represent the input u+ or u−, output y+ or y−, and catalyst x+ or x−, respectively. Species catalysis_7 reacts
with the gate catalysis to begin the first stage of the reactions followed by a series of reactions involving species sp_0 and catalysis_2. At the end of
the first stage, species sp16 is produced and reacts with the gate catalysis_1 to begin the second stage of the reactions. In this stage, species
catalysis_7 and sp_0 are yielded to compensate for their consumption in the first stage. Finally, the output species sp10 is generated.

doi:10.1371/journal.pone.0137442.g004
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almost the same value when the concentrations of ĵt ui and ĵt xi are smaller than 100 nM, but

slightly decrease when one of the concentrations approaches 100 nM. Because ĵt ui and ĵt xi
will be low concentrations (approximately 10−6 to 1 nM) in our later experiments, we set r�1 ¼
0:0249 nM−1 s−1. Fig 5A and 5B show the concentration of jt̂2 yi over time under the concen-

tration (in nM) settings of ðĵt xi; ĵt uiÞ at (0.001, 0.001) and (100, 100), respectively. These
results suggest that the DSD reactions produce the output y± (i.e., jt2 yi) at a constant rate. The
linearity of the DSD reactions indicates their adequacy in realizing our proposed configurable
primitive components.

Similar to the construction proposed by Yordanov et al. when mapping chemical reactions

y�!q�0 ; to DSD reactions [37], we map the degradation chemical reactions

z� þ y�!r�0 z�:

to the DSD reactions shown in Fig 6. For brevity, the DSD reactions shown only correspond to

one of the reactions zþ þ yþ!rþ0 zþ and z� þ y�!r�0 z�. The species ht̂2 	½½y

, labeled deg, is the
only gate or fuel used in this network, while the species jt̂2 yi represents y±. The products sp3

Table 3. Experimental data used for measuring the rate constant of DSD catalysis.

ðĵt ui; ĵt xi; jt̂2 yiÞ r�1
(nM, nM, nM) (nM−1 s−1)

(1, 1, 24.97) 0.0250

(1, 100, 2272) 0.0227

(10, 10, 2469) 0.0247

(100, 1, 2436) 0.0244

(100, 100, 220492) 0.02205

(10−3, 10−3, 2.49 × 10−3) 0.0249

doi:10.1371/journal.pone.0137442.t003

Fig 5. Concentration of jt̂2 yi over time in DSD realized catalytic reactions. (A) ðĵt xi; ĵt uiÞ ¼ ð0:001; 0:001Þ in nM and (B) ðĵt xi; ĵt uiÞ ¼ ð100;100Þ in
nM.

doi:10.1371/journal.pone.0137442.g005
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and sp4 are waste products. In contrast to the DSD reactions proposed by Yordanov et al. [37]
where the fuel concentrations are not maintained as constants, we maintain the fuel deg at a
constant concentration. Therefore, the reaction can be effectively regarded as

deg þ jt̂2 yi !0:05 deg;

which is the same form as the above degradation chemical reactions. Thus, the species deg cor-
responds to z+ or z−, and the rate constants r�0 equal 0.05 nM−1 s−1, which is the binding rate
constant of a toehold. By solving the differential equation of the kinetics of y±, we derive that
its concentration at time t is y(t)± = y(0)±exp[−(0.05z±)t], where y(0)± are the initial concentra-
tions of y(t)±. Fig 7A and 7B plot y(t)± for z± = 1 nM and 100 nM, respectively. In each case,
there are three curves corresponding to different initial concentrations of y(0)± = 10, 50 and
100 nM. These six curves are shown in Fig 7A and 7B and exactly fit the ideal waveforms.

Finally, following the construction scheme of Yordanov et al. [37], we map the annihilation
chemical reaction

yþ þ y� !rint or rgs ; ð3Þ

to the DSD reactions provided in Fig 8, where species jt̂2 ypi and jt̂2 ymi represent y+ and y−,

Fig 7. Simulation of DSD realized degradation reactions. (A) Concentration of y� ¼ jt̂2 yi over time under deg = z± = 1 nM. (B) Concentration of y� ¼
jt̂2 yi over time under deg = z± = 100 nM. The three curves in each case correspond to different initial concentrations y(0)± = 10, 50, and 100 nM.

doi:10.1371/journal.pone.0137442.g007

Fig 6. DSD realization of the degradation reaction.Here, deg serves as fuel with its concentration
maintained at a fixed value and corresponds to catalysts z±. In the reaction, the rate constant equals the
toehold binding rate 0.05 nM−1 s−1.

doi:10.1371/journal.pone.0137442.g006
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respectively. These species correspond to the output species of the primitive components. Two
fuels with similar structures are used to make the entire DSD reaction symmetric and balance

the consumption rates of jt̂2 ypi and jt̂2 ymi. As shown in Fig 8, the fuel ann first reacts with

jt̂2 ypi and then the product sp11 reacts with jt̂2 ymi. In contrast, the fuel ann_1 first reacts

with jt̂2 ymi followed by the reaction between the product sp15 and jt̂2 ypi. Therefore, the con-
sumption rates of jt̂2 ypi and jt̂2 ymi are balanced and achieve effective annihilation.

The above DSD reactions for catalysis, degradation, and annihilation form a set of basic ele-
ments that enable the construction of primitive components and any proper linear system. We
built the proposed configurable primitive components of integration and weighted summation
with DSD reactions. The simulation results are shown in Fig 9. Fig 9A shows the output

response of the integration component computing y ¼ R t

0
uðtÞdt with respect to fixed inputs

u+ = 2 nM and u− = 1 nM. The concentration of y− (green curve) remains at approximately 8
nM due to the effect of the annihilation reaction [Eq (3)], while the concentration of y+ (blue
curve) grows to 105 nM after 100 seconds. As expected, the output signal y = y+−y− grows line-
arly and reaches 97 nM after 100 seconds. Fig 9B shows the simulation results of the weighted
summation component computing y = 2u1 + u2. Two sets of inputs ðuþ

1 ; u
�
1 Þ ¼ ð5; 3Þ and

ðuþ
2 ; u

�
2 Þ ¼ ð2; 1Þ in nM are observed. As expected, the component functions correctly with

y = 12 − 7 = 5 (for y+ = 2 × 5 + 2 = 12 and y− = 2 × 3 + 1 = 7) nM.
The above simulation results confirm the successful realization of the integration and

weighted summation components using DSD reactions. Because good compatibility is
observed among the blocks constructed using the two-domain DSD method, these primitive

Fig 8. DSD realization of the annihilation reaction. Here, jt̂2 ymi and jt̂2 ypi correspond to the output species y+ and y−, respectively. Two fuels (ann and
ann_1) with similar structures are used to ensure that the consumption rates of y+ and y− are balanced.

doi:10.1371/journal.pone.0137442.g008
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DSD reactions can be composed to realize sophisticated linear systems. Later we will show that
any proper transfer functions can be realized using the DSD realized primitive components.

Implementation of Transfer Functions in Biochemistry
Transfer Function Decomposition. The transfer function G(s) of an LTI system can

always be written as

G ¼ YðsÞ
UðsÞ ¼

bms
m þ bm�1s

m�1 þ � � � þ b0
ansn þ an�1sn�1 þ � � � þ a0

; ð4Þ

where Y(s) and U(s) are the Laplace transforms of the output y(t) and input u(t) signals, respec-
tively. A transfer function is called strictly proper, as we shall assume, ifm< n (i.e., the degree
of the numerator polynomial is smaller than the denominator polynomial).

Using the fundamental theorem of algebra, U(s) can be rewritten as

UðsÞ ¼ ðsþ a1Þn1 � � � ðsþ alÞnlðs2 þ b1sþ g1Þm1 � � � ðs2 þ bpsþ gpÞmp ;

where αi, βi and γi are real numbers satisfying b2

i � 4gi < 0 for stable LTI systems, l and p are
non-negative integers, and ni andmi are positive integers. By partial fraction expansion, Eq (4)
can be factorized as

GðsÞ ¼
Xl

i¼1

Xni
j¼1

Aij

ðsþ aiÞj
þ
Xp

i¼1

Xmi

j¼1

Bijsþ Cij

ðs2 þ bisþ giÞj
;

where Aij, Bij, and Cij are real coefficients. Because the terms of
1

ðsþ aiÞj
and

1

ðs2 þ bi þ giÞj
can

be realized by cascading j times the elementary modules of
1

ðsþ aiÞ
and

1

ðs2 þ bisþ giÞ
,

Fig 9. Simulation of DSD realized primitive components. (A) Concentrations of y+, y−, and y = y+−y− of the integration component computing y ¼ R t

0
uðtÞdt

under constant inputs u+ = 2 and u− = 1 nM. (B) Concentrations of y+, y−, and y = y+−y− of the weighted summation component computing y = 2u1 + u2 under
constant inputs ðuþ

1 ; u
�
1 Þ ¼ ð5; 3Þ and ðuþ

2 ; u
�
2 Þ ¼ ð2; 1Þ in nM.

doi:10.1371/journal.pone.0137442.g009
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respectively, we only need to implement the set

D1

sþ a
;

D2

s2 þ bsþ g
;

D3s
s2 þ bsþ g

� �
; ð5Þ

of elementary modules, where D1, D2 and D3 are real numbers. We refer to the three elemen-
tary modules as the “degree-(1, 0),” “degree-(2, 0),” and “degree-(2, 1)”modules, respectively,
according to the degrees of their denominator and numerator polynomials.

Below we investigate how to implement these three elementary modules to construct any
LTI system with CRNs. First, we provide a naive construction to illustrate inexactness, and
then present a refined exact solution.

Naive Implementation of Elementary Modules. To build a degree-(1, 0) module J(j1, j2)
with parameters j1, j2 with real values, one might use the negative feedback loop consisting of a

forward integration block of
j1
s
and a negative feedback of gain j2 (as shown in Fig 10A). The

Fig 10. Block diagrams of naive implementation of elementary modules. (A) Block diagram of the
degree-(1, 0) module with parametric weights j1 and j2 to match the transfer function coefficients. (B) Block
diagram of the degree-(2, 0) module with parametric weights e1, e2, and e3 to match the transfer function
coefficients. (C) Block diagram of the degree-(2, 1) module with parametric weights f1, f2, and f3 to match the
transfer function coefficients.

doi:10.1371/journal.pone.0137442.g010
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transfer function of this realization equals
j1

sþ j1j2
, which exactly represents the target form.

Recall that the introduction of auxiliary species enables the configurability of primitive compo-
nents, and thus the values of j1 and j2 can be set as desired.

To build a degree-(2, 0) module, one has to increase the degree of the denominator polyno-
mial. Therefore, one might try to use a degree-(1, 0) module for a compositional construction
(as shown in Fig 10B). Let the degree-(1, 0) module be J(e1, e2) fed to a forward integration

block of
1

s
, and let the negative feedback have gain e3. Then, the transfer function of the block

diagram equals
e1

s2 þ e1e2sþ e1e3
as desired.

To build a degree-(2, 1) module, one might also try to use a degree-(1, 0) module for compo-
sitional construction (as shown in Fig 10C). Let the degree-(1, 0) module be J(f1, f2) fed forward

to the output, and place an integration block of
f3
s
on the negative feedback path. Then, the

transfer function of the block diagram equals
f1s

s2 þ f1f2sþ f1f3
as desired.

Although the block diagrams of Fig 10 yield the desired transfer functions of the elementary
modules, they are problematic due to the imperfection of the weighted summation components

realized by the chemical reactions (with transfer function
P

i

ki
sþ k0

instead of
P

i

ki
k0

as dis-

cussed earlier in the primitive component construction section). The following example dem-
onstrates that a system constructed in this fashion may deviate drastically from the
specification and can even be unstable.

Consider the LTI system specified by transfer function

G ¼ 3s4 þ 19s3 þ 47s2 þ 51sþ 22

s5 þ 10s4 þ 36s3 þ 67s2 þ 66sþ 30
: ð6Þ

By partial fraction expansion, G can be expressed as

G ¼ 1

s2 þ 3sþ 3
þ s
s2 þ 2sþ 2

þ 2

sþ 5
: ð7Þ

By defining

G1 �
1

s2 þ 3sþ 3
;

G2 �
s

s2 þ 2sþ 2
;

G3 �
2

sþ 5
;

ð8Þ

8>>>>>>>><
>>>>>>>>:

they correspond to the basic elements in Eq (5) and can be implemented with the block dia-
grams of Fig 10 by setting (j1, j2) = (2, 2.5), (e1, e2, e3) = (1, 3, 3) and (f1, f2, f3) = (1, 2, 2). Assume
that k0 = a for some positive real constant a for all weighted summation primitive components;
then, assume that ki, i = 1, . . ., n, of a weighted summation primitive component are deter-
mined according to the required weights. The transfer functions after the chemical reaction
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realization become

G1 !
a2ðsþ aÞ

s2ðsþ aÞ3 þ 3a2sðsþ aÞ þ 3a3
� G0

1;

G2 !
a2s

s2ðsþ aÞ2 þ 2a2sþ 2a2
� G0

2;

G3 !
2aðsþ aÞ

sðsþ aÞ2 þ 5a2
� G0

3:

ð9Þ

8>>>>>>>>>><
>>>>>>>>>>:

Based on (asymptotic) stability analysis, the implemented system is unstable when a pole of the
transfer functions (i.e., a root of the denominator polynomials) falls in the right-half of the s-
plane. To avoid instability, the value of a has to be carefully determined. However, choosing a
proper value for a can be tedious and sometimes even impossible.

The responses of G0
1, G

0
2, and G

0
3 to the step input with an amplitude of 10−6 are shown in

Fig 11. Specifically, Fig 11A and 11B show the responses of G0
1, C and D show the responses of

G0
2, and E and F show the responses of G0

1. As seen from the plots of Fig 11A, 11C, and 11E, the
responses are unstable under the chosen small a values, while for plots of B, D, and F, the
responses are stable under the chosen large a values. However, even the stable responses may
deviate from the ideal transfer function responses to some extent. When a in G0

1, G
0
2 and G

0
3

increases to 6, the maximal concentrations of the auxiliary species used in each case are 6 × 3/
0.0249� 720, 6 × 2/0.0249� 480, and 6 × 2.5/0.0249� 600 nM, respectively, where the factors
3, 2 and 2.5 are the weights of the gain blocks in each system. As seen in Fig 11, the naive imple-
mentations cannot approximate the ideal responses well even under such high concentrations.

Exact Implementation of Elementary Modules. To prevent the non-ideal effect of the
weighted summation components, we present a refined method that exactly implements the
three elementary modules with chemical reactions.

The degree-(1, 0) module can be realized directly by the CRN transfer function of the primi-
tive gain block. For the other two modules, we take advantage of the non-ideal form of the
weighted summation block and devise their corresponding block diagrams, whose CRN trans-
fer functions match the specification. The block diagrams, normal transfer functions, and CRN
transfer functions for the three elementary modules are summarized in Fig 12. The CRN trans-
fer function of the degree-(2, 0) module can be calculated from

X1 ¼
k1

sþ k0
U � k2

sþ k0
Y ;

Y ¼ k3
s
X1:

ð10Þ

8>>><
>>>:

Therefore, the CRN transfer function
Y
U
equals

Y
U

¼ k1k3
s2 þ k0sþ k2k3

:

Note that if the gain and summation blocks are ideal, the normal transfer function should be
k1k3

k0sþ k2k3
. Similarly, the CRN transfer function of the degree-(2, 1) module can be derived as

Y
U

¼ k1s
s2 þ k0sþ k2k3

:
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Fig 11. Responses of naive implementations to a step input of amplitude 10−6 nM under different values of parameter a. (A) Responses ofG0
1 under

a = 0.5, 1.0, 1.5. (B) Responses ofG0
1 under a = 4.0, 5.0, 6.0. (C) Responses ofG0

2 under a = 0.5, 1.0, 1.5. (D) Responses ofG0
2 under a = 4.0, 5.0, 6.0. (E)

Responses ofG0
3 under a = 0.5, 1.0, 1.5. (F) Responses ofG0

3 under a = 4.0, 5.0, 6.0.

doi:10.1371/journal.pone.0137442.g011
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As a result, the responses can be made exact through the control of auxiliary species
concentrations.

There are two special cases that need attention. First, if the coefficient β vanishes in the

denominators of the transfer functions
D2

s2 þ bsþ g
and

D3s
s2 þ bsþ g

of the degree-(2, 0) and

degree-(2, 1) modules, respectively, we have to make k0 = 0 in the CRN transfer functions.

Therefore, we need to remove the degradation reactions z� þ y�!r�0 z� from the summation
blocks. Second, for the negative parameter k1 or k2 in Fig 12, as mentioned previously the plus
and minus signs of the superscripts of y in the pair of catalytic reactions of the weighted sum-
mation CRN should be swapped; for negative k3, the superscript signs of y in the pair of cata-
lytic reactions of the integration CRN should be swapped. Notice that k0 can always be non-
negative for stable linear systems, whose poles should all be on the left-half of the s-plane.
Therefore, with these modifications our method is sufficient to implement any stable linear
system.

Fig 12. Block diagrams and their transfer functions for the exact implementation of the elementary modules. The first, second, and third rows in the
table correspond to the implementations of the degree-(1, 0), degree-(2, 0), and degree-(2, 1) modules, respectively. The first, second, and third columns in
the table show the block diagrams, normal transfer functions, and CRN transfer functions, respectively. A normal transfer function is obtained directly from its
block diagram, whereas a CRN transfer function is obtained when the gain and summation blocks in the block diagram are realized using the gain and
summation CRNs in Table 1.

doi:10.1371/journal.pone.0137442.g012
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DSD Realization of Transfer Functions
Wemap the naive and exact implementations of the transfer function specification of Eq (6)
into DSD reactions for comparison. In the simulation, we assume the rate constants r�0 ¼ 0:05

nM−1 s−1 and r�i ¼ 0:0249 nM−1 s−1 for i = 1, . . ., n.
The responses of DSD that realized naive implementation of the transfer function specifica-

tion are shown in Fig 13. Specifically, Fig 13A and 13B show the results realizing the transfer
function G1 in Eq (8), C and D show those realizing G2, and E and F show those realizing G3.
In the plots of Fig 13A, 13C, and 13E, the realized systems are unstable under the chosen small
a values, while in the plots of B, D, and F the realized systems are stable under the chosen large
a values. These results are consistent with the CRN responses of Eq (9) in Fig 11.

The maximum ki’s in the DSD realizations of G0
1, G

0
2, and G

0
3 are 6.0 × 3 = 18.0,

6.0 × 2 = 12.0, and 6.0 × 2.5 = 15.0, respectively. Because the rate constants r�i , i = 1, . . ., n are
set to 0.0249 nM−1 s−1, the corresponding concentrations of the catalysts x± in the gain and
summation blocks in Fig 10 of G0

1, G
0
2, and G

0
3 are approximately 18.0/0.0249� 720, 12.0/

0.0249� 480, and 15/0.0249� 600 nM, respectively. Not only are such high concentrations
undesirable, but it is also difficult to find a proper a value to fit the ideal response.

To compare the naive and exact implementations of transfer function specifications under
DSD realization, the responses of the targeted transfer functions G1, G2 and G3 are plotted in
Fig 14A, 14B, and 14C, respectively. The red curves in Fig 14A, 14B, and 14C correspond to the
naive implementations with a = 6; the involved concentrations of catalysts are approximately
720, 480, and 600 nM, respectively. The species with the largest concentrations used in the
exact implementations of G1 and G2 are both the catalysts x± in the integration CRNs. Because
the weights of the integration blocks in the exact implementations of G1 and G2 are both equal
to 2.0, the corresponding concentrations of x± in the catalytic reactions are approximately 80
nM. In contrast, in the exact implementation of G3 the catalysts z

± in the gain block (where k0
equals 5.0) have the highest concentration (5.0/0.05 = 100 nM). Compared to the naive imple-
mentations involving concentrations as large as 720 nM, the exact implementations require
much lower concentrations, and yet fit the ideal responses much better.

For the overall transfer function G = G1 + G2 + G3, the responses of the DSD reactions real-
ized via the naive and exact implementations are compared in Fig 15 against the ideal response.
There are two approaches combining the subsystems G1, G2, and G3. One approach is to use a
summation block to sum up the outputs Y1, Y2, and Y3 of G1, G2, and G3, respectively; the
other approach is to keep Y1, Y2, and Y3 intact without summation by assuming that the output
species of Y1, Y2, and Y3 share the same piece of the DNA segment (rather than the entire DNA
segment) that corresponds to the intended final product. The result of the former approach is
shown in Fig 15A and the latter approach is shown in Fig 15B, which corresponds to the direct
superposition of individual G1, G2, and G3 responses. We observe that summing Y1, Y2, and Y3

with an additional summation block may result in slight distortions in comparison with direct
superposition. In either case, the exact implementation fits the ideal response much better than
the naive implementation.

Discussion

Rate Matching and Configurability
The CRN of the integration block proposed by Oishi and Klavins contains the catalytic reac-

tions u�!q�c u� þ y�. The integration is made possible under the assumption that
qþc ¼ q�c � wint. Accordingly _y ¼ wint _u (i.e., output y is a weighted integration of input u).
However, the CRNs of the gain block contain one pair of additional degradation reactions
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Fig 13. Responses of DSD realized naive implementations to a step input of amplitude 10−6 nM under different values of parameter a. (A)
Responses ofG0

1 under a = 0.5, 1.0, 1.5. (B) Responses ofG0
1 under a = 4.0, 5.0, 6.0. (C) Responses ofG0

2 under a = 0.5, 1.0, 1.5. (D) Responses ofG0
2 under

a = 4.0, 5.0, 6.0. (E) Responses ofG0
3 under a = 0.5, 1.0, 1.5. (F) Responses ofG0

3 under a = 4.0, 5.0, 6.0.

doi:10.1371/journal.pone.0137442.g013
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y�!q�d ;. The gain function with weight wgn is realized by assuming
qþc
qþd

¼ q�c
q�d

¼ wgn. Thus, not

only qþc ¼ q�c but also qþd ¼ q�d ¼ qþc =wgn must be satisfied.

To cope with the problem of matching qþc and q�c in the integration CRN, Oishi and Klavins

provided a solution by maintaining a large rate constant qua in the annihilation reaction uþ þ
u�!qua ; so that qþc and q�c do not need to be exactly the same, as long as they are close enough
to wint. The reason is that one of the concentrations of u+ and u− would approach zero under
fast annihilation, and thus _y equals either wint u

+ or wint u
−. Because qþc and q�c are close to wint,

the integration can be reasonably approximated. Similarly, the matching problem in the gain

CRN is overcome by asserting not only a large qua, but also a large qya in yþ þ y�!qya ;. Thus,
by requiring that q�c are close enough and the ratios

qþc
qþd

and
q�c
q�d

are close to wgn, the gain func-

tion can be well approximated.

Fig 14. Response comparisons on DSD realized systems under the naive and exact implementations of transfer functionsG1,G2, andG3. (A)
Responses ofG1 implementations. (B) Responses ofG2 implementations. (C) Responses ofG3 implementations. The curves in red corresponds to naive
implementations (under the parameter setting a = 6 inG0

i), while the curves in green correspond to exact implementations.

doi:10.1371/journal.pone.0137442.g014
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However, the above assumptions of fast annihilations uþ þ u�!qua ; (and yþ þ y�!qya ;)
may not be easily satisfied, especially when these reactions are achieved by composing multiple
reactions (e.g., in the DSD realization). Two undesirable situations might occur in composite
reactions even if the rate constant qua is high. One is that u

+ and u− both degrade, but the spe-
cies with the lower concentration converges to a non-zero concentration value due to the resto-
ration of the reactants by other reactions. The other is that although the species with the lower
concentration vanishes, the remaining species converges to a concentration value less than ju+-
−u−j because some fuels can react with the remaining species. The approximations may be
unsound when these situations occur. Although the effect of inappropriate assumptions might
not be serious for a single primitive component, for a complex system composed of many
primitive components the approximation would be crude due to error accumulations.

In contrast, because our primitive components are configurable due to the addition of the
auxiliary species, we can match not only the reaction rates but also the required weights by tun-
ing the concentrations of auxiliary species. Another advantage provided by the use of auxiliary
species is the ability for dynamic system adaptation. As discussed in the case study of the PI-
controller, the parameters of a PI-controller may be modified by simply tuning the concentra-
tions of auxiliary species to react to environmental changes. Thus, by using auxiliary species we
may fulfill a new system with the same set of reactions by tuning only the concentrations of the
auxiliary species. In contrast, without auxiliary species the system would have to be redesigned
by finding new catalysts and degradations to match the new weights and rate constants.

Transfer Function Decomposition
A transfer function can be decomposed in many different ways. Two common choices are
through parallel decomposition (G = G1 + G2) and serial decomposition (G = G1 � G2). In this
paper, we adopt the former for the following reasons. First, given a strictly proper transfer func-
tion it is not always possible to decompose it as a product of the strictly proper transfer func-

tions. For instance, the transfer function
2s2 þ 3sþ 4

ðsþ 1Þðsþ 2Þðsþ 3Þ cannot be decomposed serially

Fig 15. Response comparisons on DSD realized systems for the naive and exact implementations of transfer functionG. (A)G implemented by a
summation block addingG1,G2, andG3, assuming a = 6 for this summation block in both the naive and exact methods. (B)G implemented by superposing
G1,G2, andG3, assuming that the DSD output species ofG1,G2, andG3 have a common sub-domain that is recognized as the output ofG.

doi:10.1371/journal.pone.0137442.g015
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into a system involving the cascade of two strictly proper subsystems. Because only proper sys-
tems where the degree of the numerator polynomial does not exceed that of the denominator
polynomial are physically realizable, the only hope for implementing the system physically is
to have a product of bi-proper subsystems, where the degrees of the numerator and denomina-

tor polynomials are the same. For example, it can be decomposed as
2s2 þ 3sþ 4

ðsþ 1Þðsþ 2Þ � 1

ðsþ 3Þ.
However, if we implement the system with CRNs or the primitives introduced previously, the

bi-proper subsystem might be an approximation due to
2s2 þ 3sþ 4

ðsþ 1Þðsþ 2Þ ¼ 2� 3s
s2 þ 3sþ 2

,

whose realization might involve a gain and a summation block, both of which are approxima-
tions. Second, by cascading subsystems using serial decomposition a system may be susceptible
to error accumulation due to realization approximation. In contrast, parallel decomposition
avoids the issue of error accumulation and amplification. Third, a strictly proper transfer func-
tion can always be decomposed as a summation of strictly proper transfer functions, which can
be modeled by the three elementary modules described in Eq (5). Furthermore, we show that
the three elementary modules allow exact CRN implementation using our configurable primi-
tive components. For these reasons, parallel decomposition may be preferable to serial
decomposition.

Nevertheless, applying parallel decomposition exclusively may not always be the best choice.
The reasons are twofold. First, parallel decomposition requires one final summation block to
sum up all elementary modules. This summation block, when it is implemented with a CRN, is
approximative. Second, a hybrid decomposition strategy may achieve more effective imple-
mentation than applying a parallel decomposition. For instance, consider the system of transfer

function T ¼ 3s2 þ 8sþ 6

ðsþ 1Þðsþ 2Þðs2 þ 2sþ 2Þ. If only parallel decomposition is applied, then T is

decomposed into
2

s2 þ 2sþ 2
þ 1

sþ 1
� 1

sþ 2
. Nevertheless, if serial decomposition is also

exploited, then
1

sþ 1
� 1

sþ 2
can be rewritten as

1

ðsþ 1Þðsþ 2Þ, which can be implemented by

cascading two gain blocks with (k0, k1) = (1, 1) and (2, 1), respectively. Therefore, with this
rewriting a final summation block only needs to sum up the outputs of the two subsystems
rather than three subsystems. Furthermore, the hybrid parallel and serial decomposition strat-
egy may be more cost effective than using parallel decomposition alone. Future work should
exploit a good hybrid decomposition strategy and remove the approximative effect due to the
final summation block in parallel decomposition.

DSD Reaction Rates
In this paper, we realize all CRNs with DSD reactions. Typically, the rate constants in DSD
reactions are approximately 10−3 nM−1 s−1 [33]. For example, if one requires the parameter
k0 ¼ r�0 z

� in the degradation reaction to be 100 s−1, then the concentrations of z± should be of
magnitude 105 in nM. However, such a high concentration might be impractical. To alleviate
this high concentration requirement, one may try to increase the DSD reaction rates. Zhang
et al. constructed and characterized DNA catalytic circuits driven by entropic gains [28]. Based
on the entropy effects, a variant called the tethered entropy driven catalytic circuits was intro-
duced [35, 38] to shorten the catalytic cycle and improve the reaction kinetics using localized
hybridization reactions, which are achieved by tethering the key species in DSD reactions to
increase their local concentrations. The influence of tethering is effectively presented in a
speed-up factor λ, whose value can be feasibly reach approximately 105 [35]. Thus, the toehold
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binding rate constants can be scaled up to λ × 5 × 10−5 nM−1 s−1, where 5 × 10−5 nM−1 s−1 is
the short toehold binding rate constant in diffusion-based systems [6].

In our DSD simulation, we assume the factor λ = 1000 is available to increase the toehold
binding rate constants to approximately 0.05 nM−1 s−1. Effectively, the concentrations of the
auxiliary species can be reduced by a factor of 25. Under the toehold binding rate increase, a
catalysis has a rate constant approximately 0.025 nM−1 s−1 in our interested range of concen-
trations under the intended system operation. Thus, the kinetics of the products y± will now

become _y� ¼ 0:025x�u�. If x± could be tuned to 1000 nM, then we can have an integration
block with weight as high as 25.

Although we have reduced the required concentrations of auxiliary species using the speed-
up factor λ, there are still some limitations. First, if β is set to 500 in the elementary modules

D2

s2 þ bsþ g
and

D3s
s2 þ bsþ g

shown in Fig 12, then we have to prepare the catalysts z± with large

concentrations (approximately 500/0.05 = 10000 nM due to the relation b ¼ rþ0 z
þ ¼ r�0 z

�). In
contrast, if D3 ¼ 500 ¼ rþ1 x

þ ¼ r�1 x
�, then the concentrations of x± would be 500/

0.025 = 20000 nM. Thus, although we have reduced the concentrations of the auxiliary species
to increase the range of coefficients in the transfer functions, further reduction may be needed.

Fuel Supply
DSD is a relatively mature technology for reliable in vitro construction of biochemical systems,
and is more practical than in vivo experiments. However, one of the main obstacles for practi-
cal DSD experiment is to provide constant supply of fuels [37]. This paper assumes the fuels
are large in quantity and ignore the situations where the fuels become deficient. In reality, the
fuels are converted to inert waste and one has to continually provide the fuels to the system.
Providing stable fuel supply can be challenging in a cellular context. Therefore, it is easier to
implement DSD reactions in vitro instead of in vivo.
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